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Abstract

The crystallization of a polymer melt is characterized by dramatic structural and mechanical 

changes that significantly impact the processing conditions used to generate industrially-relevant 

products. Relationships between crystallinity and rheology are necessary to simulate and monitor 

the effect of processing conditions on the properties of the final product. However, separate 

measurements of crystallinity and rheology are difficult to correlate due to differences in sample 

history, geometry, and temperature. Recently, we have developed a rheo-Raman microscope for 

simultaneous rheology, Raman spectroscopy, and polarized reflection-mode optical measurements 

of soft materials, which allows for quantitative crystallinity measurements through features in the 

Raman spectrum. In this work, we apply this technique to monitor the isothermal crystallization of 

polycaprolactone to probe the relationship between structure, crystallinity, and rheology. Both 

crystallinity and the shear modulus vary over comparable timescales, but the birefringence 

increases much earlier in the crystallization process. We directly plot rheological parameters as a 

function of crystallinity to probe a range of suspension-based and empirical models relating the 

complex modulus to crystallinity, and we find that the previously developed models cannot 

describe the crystallinity-modulus relationship over the crystallization process. By developing a 

suspension-based model we can fit the complex modulus over the crystallization range. The 

crystallization process is characterized by a critical percolation fraction and a single scaling 

exponent.

Introduction

When a polymer crystallizes, it undergoes a dramatic transition from an amorphous melt to a 

hierarchically-organized semicrystalline structure. This structural transition is accompanied 

by an increase in the mechanical properties of the polymer, e.g., the storage modulus 
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increases by many orders of magnitude [1]. This effect is exploited in conventional polymer 

processing techniques such as fiber spinning or blow molding [2], and it is also used heavily 

in additive manufacturing processes including filament extrusion and powder bed fusion [3]. 

The utilization of polymer crystallization is largely empirical during processing, but direct 

relationships to relate crystallinity and rheological properties would be invaluable to the 

efficient processing of new materials.

Many models have been developed to relate crystallinity and rheology in semicrystalline 

polymers. Several empirical and suspension-based models have been summarized previously 

[4]. The simplest model assumes a linear relationship between the storage modulus and the 

crystallinity as proposed by Gauthier et al.[5] and has been used extensively to estimate the 

time evolution of crystallinity from rheological measurements [6–11]. However, a linear 

relationship between the logarithm of the storage modulus and crystallinity has also been 

used [12]. Other researchers have determined nonlinear relationships between crystallinity 

and the modulus through suspension-based models [13, 14]. Christensen and Lo[15, 16] 

developed a composite sphere model for viscoelastic suspensions that has been applied to 

crystallizing polyolefins [14, 17, 18]. The model predicts the complex modulus at any 

crystallinity when the complex shear moduli and Poisson ratios of the melt and 

semicrystalline phases are known. Pogodina and Winter proposed that crystallization 

proceeds as a gelation-type transition via frequency sweep measurements during 

crystallization [19], which allows for the determination of a gelation point but not the degree 

of crystallinity.

A primary challenge in determining the underlying crystallinity-modulus relationship is the 

difficulty in relating crystallinity and rheology measurements performed on separate 

instruments. There have been attempts to correlate rheology measurements with separate 

measurements from differential scanning calorimetry (DSC) [7, 19–22], optical microscopy 

[23], small angle light scattering [24], and wide angle X-ray diffraction [14]. These methods 

have been used to justify both empirical rules, suspension-based rules, and gelation-type 

models. The difficulty in relating these measurements is attributed to the sensitivity of 

crystallization kinetics to temperature and sample history [25].

Instrumentation has also been developed to provide simultaneous measurements of 

crystallinity and rheology by coupling a rheometer with optical imaging [26, 27], 

birefringence [28], nuclear magnetic resonance (NMR) [29], or DSC capabilities [30]. NMR 

and DSC measurements quantify the crystallinity of the entire sample volume on the 

rheometer, while optical imaging measures the growth of space-filling structures in a region 

within the sample. NMR measurements provide a direct measure of crystallinity by 

quantifying the relative amounts of rigid and mobile phases in crystallizing polymers, but 

the analysis can be complicated by mobile chains in crystalline domains as observed in 

polyethylenes [31]. Quantitative crystallization information is often difficult to obtain from 

DSC measurements due to the presence of simultaneous thermal processes (crosslinking or 

degradation) during the crystallization process. Optical imaging allows for the direct 

observation of local structure growth, but sample turbidity will often obscure structural 

details at higher crystallinities. Birefringence has been shown to correlate with crystallinity 

[28], although polarized light scattering measurements in combination with Raman 
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spectroscopy have shown that turbidity and light depolarization can occur well before the 

appearance of crystallinity [32]. There is a clear need for instrumentation that can provide a 

nondestructive crystallinity measurement for a wide range of polymers over the entire 

crystallization process.

Recently, we have developed an instrument for simultaneous rheology, optical microscopy, 

and Raman spectroscopy called the rheo-Raman microscope [33]. This instrument can 

perform polarized reflection-mode optical imaging and Raman measurements within a 

sample on the rheometer using either parallel plate or cone and plate geometries. Raman 

spectroscopy measures a range of vibrational modes that are attributed to chemical 

information such as molecular conformation, bond formation/scission, and chemical 

composition. Changes in this chemical information often accompany a change in the 

rheology of a material, and simultaneous rheology and Raman spectroscopy measurements 

have been implemented to monitor agarose gelation [34], free-radical polymerization [35], 

and epoxy curing [36]. When combined with polarized optical microscopy, we gain 

additional structural insight into the process under investigation: for example, we have 

shown that birefringent structure growth precedes changes in the rheology and the Raman 

spectrum of a crystallizing polyethylene [37].

Here, we use the rheo-Raman microscope to monitor the crystallization of polycaprolactone 

(PCL), an aliphatic polyester that is often used in additive manufacturing. The ease of 

functionalization allows PCL to be made more biocompatible for printing cell and tissue 

scaffolds from extrusion-type printing processes [38]. We have recently analyzed the Raman 

spectrum of PCL to distinguish the features that indicate crystallinity from spectral features 

due to single-chain order [37]. Our results showed that the carbonyl (C=O) stretch region of 

the spectrum contains spectral features attributed to chains in a crystalline packing that can 

be directly correlated with DSC-measured crystallinities. This analysis allows for a direct 

non-destructive measurement of crystallinity to be performed via Raman spectroscopy 

during a rheological measurement.

In this work, we simultaneously measure the Raman spectra and oscillatory shear rheology 

of PCL crystallizing isothermally. Our measurements allow us to plot rheological parameters 

as a function of crystallinity to determine the sensitivity of the modulus to incremental 

addition of semicrystalline material. Additionally, this allows us to directly probe numerous 

modulus-crystallinity models proposed in the literature, both suspension-based models and 

the empirically-developed mixing rules. We find that these models do not correlate with 

experimental results. Given this situation, we model the system using suspension-type 

models across a percolation threshold to develop a relationship between crystallinity and the 

complex modulus that is applicable over the entire crystallization process.

Experimental Section

Poly-ε-caprolactone (PCL) was received in pellet form (CAPA 6500, Perstorp) and used 

without purification. The equilibrium melting temperature of PCL is 69.2 °C [39]. Gel 

permeation chromatography was used to measure the molar mass distribution of the polymer 

dissolved in tetrahydrofuran. The column was calibrated at 30 °C by using narrow 
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polydispersity polystyrene (PS) standards, and the molar mass of PCL was calculated by 

using the following Mark-Houwink parameters: KPS = 2.90 × 10−8 m3/g, aPS = 0.634, KPCL 

= 3.06 × 10−8 m3/g, aPCL = 0.70 [40]. The number-average molar mass of PCL used in this 

work is 55.8 kg/mol and the mass-average molar mass is 96.6 kg/mol to within an 

uncertainty of 10% (see Disclaimer in Acknowledgements).

The rheology, Raman spectroscopy, and polarized reflection mode microscopy 

measurements were performed using a rheo-Raman microscope (Thermo Fisher) [33]. 

Pellets were melt-pressed at 100 °C for 300 s into 1 mm thick sheets, and samples were 

punched out using a 3 mm radius brass hole punch. The samples were loaded at 100 °C 

(approximately 30 °C above the equilibrium melting temperature) into an 8 mm parallel 

plate geometry at a gap thickness of 300 μm. All measurements were performed in air. 

Samples held at 100 °C exhibited a constant modulus (ω = 6.28 rad/s) over a period of 7200 

s, which indicates negligible thermal degradation over relevant timescales for the 

measurements shown in this work. After sample loading the temperature was kept at 100 °C 

for 300 s to remove melt memory effects. Holding the sample at 100 °C for less time (30 s) 

led to faster crystallization at 40 °C, but increasing the time to 1000 s did not slow the 

kinetics further. A series of two temperature ramps were used to cool the sample to a 

crystallization temperature (Tc): an initial ramp at a rate of 0.167 °C/s from 100 °C to Tc 

+ 10 °C, then a slower temperature ramp at 0.033 °C/s from Tc + 10 °C to Tc. Oscillatory 

rheology measurements were performed at Tc in a constant strain mode controlled by a 

feedback loop within the instrumentation. All measurements were performed at a frequency 

of 6.28 rad/s, and three oscillations are used to measure the modulus at each time point 

during crystallization. We performed a strain amplitude sweep in both the melt and 

semicrystalline states to determine a strain amplitude within the linear viscoelastic region 

over the entire crystallization process. A linear viscoelastic range is found between strains of 

0.001 and 0.005 in both states (see Supplementary Material), and based on these 

measurements we choose a strain amplitude of 0.004 for the crystallization measurements. 

Results are reported in terms of the storage modulus G′ and the loss modulus G″ or the 

magnitude of the complex modulus, G ∗ = G′ 2 + G″ 2, and the phase angle δ as tan δ = 

G″/G′.

Raman spectroscopy measurements were performed using a 532 nm excitation wavelength 

at the instrument maximum power of 10 mW focused through a 10× objective into the 

sample. Two exposures of 15 s duration are averaged together to generate the spectrum, and 

the subsequent polarized optical imaging blocks laser light from the sample for 2 s. Longer 

spectra collection times would increase the signal-to-noise ratio in the spectrum but also 

decrease the number of measurements during the crystallization process. This would lead to 

large uncertainty in the fitting parameters for the modulus-crystallinity analysis presented in 

this work and is avoided here.

Sample Raman spectra are shown in Figure 1. The C=O stretch region of the spectrum is fit 

using three basis spectra attributed to different chain conformers [37]: a random coil chain 

conformation (“random coil”); an otherwise structureless coil with C=O bonds on 

neighboring chains oriented antiparallel to each other due to dipole-dipole interactions 
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(“dipole”); and ordered chains packed into the crystal lattice (“crystalline”). The line shape 

and relative position of each basis spectrum was determined through prior multivariate 

analysis [37]. The fitting procedure seeks a best fit to the experimental spectrum by varying 

the three basis spectra intensities, a single shift factor to account for instrument accuracy in 

the Raman shift, a linear background slope, and a constant offset. These six parameters are 

fit simultaneously using a nonlinear least-squares regression, and the best fit results of the 

Raman spectra are independent of the initial parameter estimation. The C=O stretch region 

of the spectrum in the melt state is shown in Figure 1a – it is well fit by the basis spectra 

associated with dipole-dipole interactions and a random coil chain conformation, with a 

negligible contribution from the crystalline peak. The spectrum of PCL after crystallization 

(Figure 1b) is instead best fit by a combination of all three basis spectra. The crystalline 

basis spectrum contributes significantly to the overall peak shape, while the random coil 

chain conformer is reduced compared to the melt spectrum.

The mass fraction of crystalline material is calculated based on the normalized integrated 

intensity of the crystalline basis spectra Icr fit to each spectrum. The crystallinity αc is then

αc = β
Icr
Itot

(1)

where Itot is the sum of the integrated intensities of the crystalline, dipole, and random coil 

basis spectra. The prefactor β = 1.26 was determined in our prior work by a comparison of 

the crystallinity measured by DSC (accounting for finite crystal thickness [41]) and the peak 

intensity ratio Icr/Itot for 8 polycaprolactones of different molecular weights with 

crystallinities ranging from 51% to 84% [37]. We perform a linear least squares regression 

of the data assuming a relationship of the form αc = β(Icr/Itot)+C, where β and C are the best 

fit coefficients. The best fit values are β = 1.26 and C = 0, which gives eq 1.

Polarized reflected light microscopy was also performed on the rheo-Raman microscope 

using the 10× objective. Images are taken immediately following each Raman spectrum, and 

the average pixel intensity is calculated in a 60 μm × 90 μm window centered on the region 

where the laser spot is focused. The images were also used to assess laser heating from the 

Raman spectra measurements. Since the material in the laser spot would be at a higher 

temperature on average, significant laser heating would cause the laser spot region to 

crystallize more slowly and exhibit birefringence at later times compared to the rest of the 

image. However, birefringence did not appear more slowly in the spot region, and so we 

assume laser heating is negligible in these experiments.

Separate isothermal crystallization measurements were performed in a Linkam shear cell 

(CSS450, Linkam Scientific) on a polarized light microscope (BX-51, Olympus). The 

sample was compressed to a thickness of 25 μm prior to measurement. Imaging was 

performed in transmission mode using a 50× objective (Olympus).
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Results

Simultaneous measurements of the complex modulus G*, crystallinity αc (via Raman 

spectroscopy), and polarized light intensity are shown in Figure 2 for isothermal 

crystallization at temperatures ranging from 40 °C to 44 °C. At temperatures below 40 °C 

we observe changes in the polarized light intensity prior to reaching the isothermal 

crystallization temperature. Measurements at temperatures greater than 44 °C showed a large 

variation in the crystallization kinetics measured via Raman spectroscopy, which we 

attribute to significant growth of semicrystalline regions outside the scattering volume of the 

laser. We find the crystallization process to be characterized mechanically by an initial slow 

increase in the modulus |G*|, followed by a more rapid increase in |G*| over orders of 

magnitude. At long times, there is a slow increase in |G*| where the modulus has a value on 

the order |G*| ≈ 108 Pa. (These modulus values are measured at a torque of approximately 

0.04 N · m, which is well below the 0.2 N · m instrument upper limit.) The initial values of 

tan δ are greater than 1, which indicates that the polymer is still in the melt state. The phase 

angle decreases to values much less than 1 as the modulus increases to indicate the 

solidification that occurs during the crystallization process. Experiments were also 

performed at a gap thickness of 1 mm to determine a potential gap dependence in our 

measurements, and we found that the timescales of the crystallization process occurred 

within a standard deviation of the measurement at the smaller gap size. For example, the 

crossover in tan δ for a 1 mm gap occurred at 550 s, which is well within the average range 

of 540 ± 44 s that was observed in a 300 μm gap.

When measuring dynamic transitions via rheology, the timescale of each modulus 

measurement must be significantly faster than the timescale of the crystallization process. 

We can compare these timescales via the mutation number Nmu = texp∂(ln G′)/∂t introduced 

by Winter, where texp is the measurement time required to measure the modulus [19, 42]. 

Values of Nmu ≪ 1 are desirable to avoid systematic errors in the reported modulus. For our 

measurements the maximum Nmu is 0.07 at the lowest crystallization temperature, which 

indicates that the change in modulus during the measurement time is negligible. At higher 

crystallization temperatures the crystallization process proceeds more slowly.

The crystallinity as measured by Raman spectroscopy starts at negligible values, then 

increases measurably at times ranging from 400 s to 1000 s depending on the temperature. 

The crystallinity grows to mass fractions greater than 0.35 before transitioning to a period of 

slower crystallization. Despite the nonzero offset of approximately 0.02 in the crystallinity 

measurement at early times, the growth of crystallinity can be fit using a combination of the 

Avrami function plus a constant (see Supplementary Material). The fits to the crystallinity 

measurements indicate Avrami exponents in the range of 3.0 < n < 4.1 for the data shown in 

Figure 2b, which is near the value of n = 4 measured by dilatometry [43]. The Avrami 

exponent value is the sum of the dimensionality of the growing crystal (either 1, 2, or 3) and 

whether the nucleation process is homogeneous (add 1) or heterogeneous (add 0) [1]. An 

Avrami exponent of 4 is consistent with crystallization proceeding via homogeneous growth 

of three-dimensional structures.
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The polarized light intensity from reflection mode microscopy in Figure 2c is more sensitive 

to the onset of crystallization than either rheology or Raman spectroscopy. The appearance 

of polarized light indicates the growth of birefringent structures within the sample, which is 

not accompanied by significant changes in the other measured parameters. After a period of 

time, the polarized light intensity decreases below the saturation level due to the continued 

growth of structures that cause significant turbidity and polarization scrambling. This change 

in the polarized light intensity as well as its appearance prior to changes in the modulus or 

crystallinity has been previously reported in polyethylene [33].

We do not observe any distinguishing structure using reflection mode imaging on the 

rheometer, and separate measurements in cross-polarized transmission optical microscopy 

did not reveal significant growth of spherulites during crystallization (see Supplementary 

Material for example images). Instead, a “grainy fog” structure appeared and increased in 

intensity during crystallization, decreasing only slightly from turbidity effects due to the 

smaller sample thickness. We note that the “grainy fog” grows with an apparent three-

dimensional structure, which correlates well with the Avrami exponents 3 < n < 4 measured 

by Raman spectroscopy in this temperature range.

Our simultaneous measurements allow us to plot the measured rheological properties as a 

function of crystallinity to better test structure-property relationships between crystallinity 

and rheology. The modulus and crystallinity are sampled at different rates, therefore we 

interpolate the modulus data to find the estimated values at the times the crystallinity was 

measured. The modulus and tan δ can then be plotted as a function of crystallinity as shown 

in Figure 3. The modulus increases dramatically with crystallinity until a transition to slower 

crystallization kinetics in the approximate range of 0.35 < αc < 0.4 for all temperatures. The 

point tan δ = 1 distinguishes the transition from a liquid-like state to a solid-like one at the 

measurement frequency; we note that this point occurs in the range of 0.06 < αc < 0.13.

Modeling the Crystallinity-Modulus Relationship

Empirical Models

The data shown in Figure 3 can be used as a direct probe of the numerous modulus-

crystallinity relationships available in the literature. We can divide these models into 

empirical models, composite-sphere models that determine the effective modulus of a 

particle embedded in a shell of matrix material, and hydrodynamic suspension models which 

assume that a crystallizing polymer melt can be modeled as a liquid with particle-like 

crystalline inclusions [4]. These suspension-based models treat the semicrystalline domains 

as solid particles that are evenly distributed and isotropically oriented with respect to each 

other. The modulus-crystallinity relationships are generally of the form

f Λ, Λm, Λs or Λ∞, ϕ or ξ = 0 (2)

where Λ is a rate-dependent rheological material property. The subscript “m” in eq 2 refers 

to the melt, “s” refers to the solid phase, and ϕ is the crystalline volume fraction. A volume 

fraction of ϕ = 1 corresponds to a single polymer crystal. Volume fractions approaching 
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unity are rarely (if ever) observed during crystallization, and many models utilize the relative 

volume fraction ξ = ϕ/ϕ∞ sometimes referred to as a degree of space filling [14], where the 

subscript “∞” refers to the condition where the sample volume is filled with spherulites. 

Because Raman measurements are correlated with DSC measurements on a mass fraction 

basis, we convert the crystalline mass fractions to volume fractions by assuming that the 

crystallizing polymer is a two-phase system of melt and crystalline material using eq 3

ϕ =
αc

αc +
vm
vc

1 − αc

(3)

where νm and νc are the specific volume of the melt and crystal phases, respectively. The 

specific volume for each phase is taken from the literature as νm = 9.1× 10−7 m3/g and νc = 

8.5 × 10−7 m3/g based on dilatometry measurements [44]. To determine the condition ξ = 1 

for our measurements we perform a linear regression on the slow crystallization dynamics 

observed at later times and set the intersection of that linear fit and the modified Avrami fit 

to the crystallization data as α∞, the crystallinity where ξ = 1. This process leads to 

crystallinities ranging from α∞ = 0.34 at 40 °C to α∞ = 0.39 at 44 °C which are converted 

to ϕ∞ at each temperature using eq 3.

Many empirical models have been proposed to describe the modulus as a function of the 

relative semicrystalline volume fraction. These have appeared in the form of mixing rules to 

interpolate from the storage modulus in the melt state Gm′ to the semicrystalline state G∞′. 

One of the initial mixing rules invoked a simple linear mixing rule

G′ = ξG∞′ + 1 − ξ Gm′ (4)

based on separate measurements of the modulus (via rheometer) and crystallinity (via DSC) 

[5, 7]. Equation 4 is a known upper bound on the shear modulus of elastic composite 

materials proposed by Voigt [45, 46]. The model assumes that the strain is uniform within 

both components of the composite for an applied stress. If the stress is assumed uniform for 

a given strain then the model of Reuss is recovered [47]:

1
G′ = ξ

G∞′ + 1 − ξ
Gm′ . (5)

This inverse mixing rule forms a lower bound on the modulus for a given volume fraction. 

Equations 4 and 5 have both been applied to the elastic deformation of semicrystalline solid 

polymers to relate the modulus to crystallinity [48]. Other groups have posited that a linear 

combination of the logarithm of the storage modulus will adequately relate the mechanical 

properties to crystallinity [12, 49]:
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lnG′ = ξlnG∞′ + 1 − ξ lnGm′ . (6)

Although this model was proposed empirically for semicrystalline polymers [50], the 

logarithmic mixing rule can be derived for elastic materials with a random orientation of 

dispersed crystalline inclusions [51].

We compare eqs 4 – 6 with the modulus-crystallinity measurements at 44 °C in Figure 4. 

The linear and inverse mixing rules form a wide envelope that encompasses our 

experimental results, but neither function is an adequate relationship for the crystallization 

of PCL. The results appear to follow the logarithmic mixing rule at low crystallinities but 

exceed the mixing rule when ξ > 0.2.

The simple mixing rules cannot adequately predict the modulus-crystallinity relationship 

over the crystallinity range, but we can still draw fundamental conclusions from the results. 

Our measurements fall within the bounds of the linear and inverse mixing formulas, which 

are rigorous physical bounds for composite materials. This provides further verification that 

the crystallinity as measured by Raman spectroscopy is an adequate measurand to 

characterize the extent of the crystallization process that is mechanically measured via 

rheology. The linear mixing rule, which has been used numerous times in the literature to 

estimate crystallinity, dramatically overpredicts the sensitivity of the rheological 

measurement to crystalline fractions. The agreement between the logarithmic mixing rule 

and the results at smaller crystallinities indicates that the semicrystalline domains grow 

without any preferred orientation, which is expected for crystallization from a quiescent 

melt. The deviation from the log mixing rule at larger crystallinities indicates that the 

structure has effectively changed from dispersed, randomly oriented crystalline structures. 

We expect that the increasing crystallinity will eventually lead to overlap and connectivity of 

the semicrystalline domains throughout the material to generate a semicrystalline solid. The 

mixing rules eqs 4 – 6 cannot account for this structural transition.

Composite Sphere Models

Increasing in complexity from the empirical models are composite sphere models, which 

relate the fraction of solids suspended in a matrix by modeling the stress-strain relationship 

of a single spherical particle embedded in a spherical matrix. The composite sphere model of 

Christensen and Lo[15, 16] has been used previously to relate the complex modulus G* to 

the crystallinity. The model calculates the effective shear modulus of a single particle of 

radius a and modulus G∞ embedded in an elastic spherical matrix of modulus Gm and radius 

b. The matrix interface is coupled to an effective homogeneous material that possesses the 

same mechanical properties of the composite sphere-matrix system. The equation for the 

elastic shear modulus can be extended to viscoelastic materials via the correspondence 

principle [52, 53]. As a result, the model seeks a complex solution to the equation
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A ∗ ξ G ∗
Gm

∗

2
+ B ∗ ξ G ∗

Gm
∗ + C ∗ ξ = 0 (7)

where the volume fraction is ξ = a3/b3. The complex coefficients A*(ξ), B*(ξ), and C*(ξ) 

depend on the modulus ratio G∞
∗ /Gm

∗  as well as the Poisson ratios of the polymer melt νm 

and the semicrystalline solid ν∞. (The coefficients are given in the Supplementary 

Material.) This model has been applied to rheological measurements of crystallizing 

polyethylenes [18] and isotactic polypropylenes [17]. In addition to the composite sphere 

model, Christensen and Lo also developed a composite cylinder model for the transverse 

shear modulus of a fiber composite [15]. Since we are not subjecting PCL to large strains, 

we do not expect orientation or alignment of semicrystalline domains in a preferential 

direction. Also, our optical microscopy measurements confirm that the sample does not 

crystallize via rod-like structures at these temperatures. We therefore do not apply the 

composite cylinder model to our experimental results.

We can directly apply eq 7 to our polycaprolactone crystallization measurements. The 

measured complex modulus G* is first normalized by the initial modulus Gm
∗ , the 

semicrystalline modulus is chosen as G∞
∗ = G ∗ ϕ∞ , and a best fit of G ∗ /Gm

∗  is determined 

by varying the melt and semicrystalline Poisson ratios using a robust nonlinear regression 

approach with bisquare weighting [54]. Figure 5 shows the best fit of eq 7 to the 

crystallization measurements performed at 44 °C. The model provides a good prediction of 

G* at vary small relative crystallinities but deviates significantly from the real and imaginary 

components of the modulus over the remaining crystallinity range. The model also predicts 

that tan δ should remain approximately constant until δ ≈ 0.5, which does not match our 

measurements. The best-fit Poisson ratios indicate that both the semicrystalline solid and 

melt are incompressible.

The model of Christensen and Lo is a single description of the system that utilizes composite 

spheres, but there are a number of other composite sphere models that could be used to fit 

the crystallinity to the modulus [55]. Fitting each model to our experiments would be overly 

cumbersome. We can instead compare the measured modulus-crystallinity relationship to 

theoretical limits for composite sphere models to assess whether this type of structural 

model is applicable. Christensen[56] developed an upper bound for the complex shear 

modulus for a spherical inclusion embedded in a viscoelastic matrix based on variational 

methods. In the limit of hard spheres, Christensen developed upper bounds for the real and 

imaginary parts of the complex modulus which we can write in terms of the absolute 

magnitude of the modulus as

G ∗
Gm

∗ ≤ 1 +
30ξ 1 − νm 7 − 10νm ξ7/3 − 1

4 4 − 5νm 7 − 10νm 1 − ξ ξ7/3 − 1 + 63ξ 1 − ξ2/3 2 . (8)
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Figure 6 shows eq 8 compared with our isothermal crystallization measurements for a melt 

Poisson ratio of νm = 0.5. The crystallization process exceeds the upper bound developed by 

Christensen over a significant range of relative crystallinities for all temperatures. At higher 

relative crystallinities the measurements fall within the upper bound, which approaches 

infinity as ξ → 1.

The discrepancy between our results and the variational limit of eq 8 indicates that a 

composite sphere model is not likely to fit the polycaprolactone crystallization process. This 

is not entirely surprising, since our polarized microscopy measurements (see Supplementary 

Material) do not indicate the growth of spherical semicrystalline domains. Rather, the 

granular birefringent domains tend to increase in number and intensity during 

crystallization. As a consequence of this structure growth process the crystallinity increases 

the modulus much more significantly than would be expected by a suspension of hard 

spheres, which suggests that a simple hard-sphere inclusion model should not be used. This 

result is in agreement with Coppola et al. [8], who showed that the rheology of a 

crystallizing polypropylene is not comparable to a suspension of glass beads dispersed in a 

polypropylene melt.

A critical conceptual limitation of the composite sphere model can be understood by 

considering the growth of semicrystalline domains in a polymer melt. As the volume 

fraction increases, the individual semicrystalline domains will begin to impinge. The size of 

the semicrystalline regions will continue to increase until eventually a spanning network of 

semicrystalline domains form within the melt. Clearly, the composite sphere models of eqs 7 

and 8 cannot capture this process of network formation. Mechanical models that include a 

percolation transition from a liquid suspension with solid domains to a solid composite with 

liquid domains would be expected to reasonably capture the rheology of the crystallization 

process.

Suspension Model Across the Percolation Threshold

Suspension-based models have been applied to polymer crystallization to model the effect of 

crystallinity on the steady shear viscosity during crystallization up to a point where network 

percolation occurs [4, 13, 57]. A benefit of suspension-based models is that very simple, 

general models can be used to predict the viscosity of suspensions over a wide range of 

particle shapes up to an asymptote at the percolation threshold [58–61]. Beyond the 

percolation threshold, the gelled suspension develops an elastic modulus that continues to 

increase with increasing solid fraction [62]. By using simple suspension-type models for a 

general particle shape, we will demonstrate that a crystallinity-modulus relationship can be 

developed over the crystallinity range.

The viscosity of a dispersion of particles in a viscous fluid will affect the viscosity based on 

particle volume fraction and the material properties of the particle. The viscosity η of a 

suspension at low particle volume fractions can be expanded as a power series as [59, 62]

η = η0 1 + η ϕ + O ϕ2 (9)
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where η0 is the viscosity of the suspending fluid and [η] is the intrinsic viscosity of the 

suspension. The intrinsic viscosity is a function of the particle shape, viscosity, and 

flexibility [61]. At higher volume fractions, semi-empirical models for the suspension 

viscosity have been developed to account for the dramatic increase in viscosity when the 

particles approach a critical volume fraction ϕc. The structure at ϕc allows for rigidity 

percolation throughout the sample and is the gelation point. The critical volume fraction 

where gelation occurs is a function of the particle properties, temperature, and shear rate 

[59]. A model for the suspension viscosity developed by Krieger and Doherty [63] has been 

useful in characterizing the viscosity of suspensions over the accessible volume fraction 

range,

η = η0 1 − ϕ
ϕc

− η ϕc
. (10)

This equation can be developed from mean-field arguments [62]. The intrinsic viscosity is 

positive for rigid particles of arbitrary shape, which means that the suspension viscosity 

diverges with a power law exponent of [η]ϕc. Maron and Pierce [64] (and later Quemada 

[65]) developed a similar functional form for suspensions of particles where the exponent 

[η]ϕc. = 2, and observations based on a range of experimental and theoretical measurements 

led Metzner [58] and Bicerano et al. [59] to conclude that an exponent of [η]ϕc = 2 and an 

appropriate value of ϕc in eq 10 would provide a good approximation for the viscosity of a 

suspension containing particles of arbitrary shape up to the gelation point.

Many authors have drawn an analogy between the hydrodynamics of fluid suspensions and 

the mechanics of incompressible solids with dispersed particles [60, 66, 67]. Experiments 

have also indicated an equivalence between the relative viscosity η/η0 of hard spheres 

dispersed in a fluid and the relative elastic modulus G/G0 of the same particles dispersed in a 

solid matrix with modulus G0 [60, 67]. Given this information, we will assume that the shear 

modulus of a suspension will follow a model similar to the Krieger-Dougherty equation,

G = G0 1 − ϕ
ϕc

− G ϕc
(11)

where [G] is the intrinsic shear modulus. Similar to [η], the value of [G] is a function of the 

shape, shear modulus, and deformability of the dispersed phase [59, 68]. For deformable 

elastic particles of initial spherical shape, the intrinsic modulus is a function of the particle 

modulus Gp and the matrix modulus as

G =

Gp
G0

− 1

1 + 2
5

Gp
G0

− 1
. (12)
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When the particle has a larger modulus than the matrix Gp > G0 the intrinsic modulus is 

positive and eq 11 predicts a power law increase in the modulus, with a limiting value of [G] 

= 2.5 at infinite particle modulus. However, dispersions of soft particles in a high modulus 

matrix G0 > Gp result in a negative intrinsic modulus and a corresponding decrease in the 

composite shear modulus with increasing particle volume fraction.

The elastic version of the Krieger-Dougherty equation (eq 11) will be used to develop a 

model across the percolation transition, based on two ideal cases. In Case I, an elastic 

material of modulus G0 is filled with dispersed rigid particles. The effective shear modulus 

will diverge as the percolation threshold is approached from below with a power law 

exponent s

GI = G0 1 − ϕ
ϕc

−s
(13)

where we have generalized the Krieger-Dougherty exponent [G]ϕc = s > 0. Case II is an 

elastic material with modulus G1 where a volume fraction (1 − ϕ) of deformable voids are 

added and the solid volume fraction ϕ decreases. The resulting effective modulus will be of a 

similar form to eq 11 with a negative intrinsic shear modulus as we approach the critical 

percolation threshold

GII = G1
ϕ − ϕc
1 − ϕc

t
(14)

with a scaling exponent t > 0. This model is similar to equations for the Young’s modulus of 

porous elastic materials over a wide range of microstructure [69]. Equations 13 and 14 

describe idealized cases that have an asymptote in GI and ln GII at the critical percolation 

fraction.

If we had an intermediate case where particles of modulus G1 were added to a matrix of 

modulus G0 and G0 ≪ G1, we would expect the effective modulus to follow the scaling of eq 

13 for ϕ < ϕc and the scaling of eq 14 when ϕ > ϕc. Equations of a similar form are 

encountered in theories of the electrical conductivity of composites, and to address the issue 

of the asymptote at the critical threshold (for electrical percolation) a general effective 

medium equation has been proposed that interpolates across the percolation threshold [70]. 

We can construct a general effective medium equation for the elastic shear stress of such a 

material

1 − ϕ
G0

1/s − G1/s

G0
1/s + ApG1/s + ϕ

G1
1/t − G1/t

G1
1/t + ApG1/t = 0 (15)
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where Ap = (1−ϕc)/ϕc. This equation is proposed as a formula for the effective elastic 

modulus G as a function of ϕ. In the limit of G1 → ∞, the general effective medium 

equation yields the scaling of eq 13, and the limit as G0 → 0 yields eq 14. The shape of the 

modulus-crystallinity curve predicted by eq 15 is strongly dependent on the magnitude 

difference between the matrix modulus G0 and the particle modulus G1 as well as the fitting 

parameters ϕc, s, and t. Figure 7 shows examples of the general effective medium equation 

for various parameter values. Figure 7a shows that with increasing particle hardness (larger 

G1), the modulus-volume fraction curve appears more sigmoidal. Figure 7b demonstrates 

that that critical percolation fraction sets the inflection point in the sigmoidal curve for a 

single exponent q, and the exponent determines the sensitivity of the modulus to changes in 

the volume fraction near the critical percolation fraction (Figure 7c). Conditions where q is 

large approximate the logarithmic mixing rule eq 6. Conditions where the exponents s and t 
are not equal will generate more complicated modulus-volume fraction relationships as 

shown in the Supplementary Material. We note that the elastic moduli in eq 15 can be 

replaced with complex viscoelastic moduli through the use of the correspondence principle 

[52, 53]. For frequency-dependent conditions, the complex moduli G0
∗ and G1

∗ should be 

measured at the same oscillation frequency.

We can apply the general effective medium equation with viscoelastic moduli to our 

crystallization data by making two simplifying assumptions. Our first assumption is that we 

can replace the absolute volume fraction ϕ with the relative volume fraction of 

semicrystalline material ξ. The relative volume fraction is the relevant parameter for 

crystallizing polymers since the high modulus particles growing from the melt are not 

entirely crystalline, but a combination of crystalline lamellae separated by amorphous 

domains. This implies that the suspended particles have the same modulus as the 

semicrystalline polymer at ξ = 1; we therefore replace the value of G1
∗ with G0

∗. We will also 

assume that the exponents are equal (s = t = q) to obtain a general effective medium equation 

to relate crystallinity and the complex modulus across a percolation threshold at a critical 

relative crystallinity ξc,

1 − ξ
Gm

∗ 1/q − G ∗ 1/q

Gm
∗ 1/q + A G ∗ 1/q

+ ξ
G∞

∗ 1/q − G ∗ 1/q

G∞
∗ 1/q + A G ∗ 1/q

= 0, (16)

where A = (1 − ξc)/ξc. We fit eq 16 to the complex modulus by finding the best fit real 

values of A and the exponent q. The results in Figure 8 show that the model provides an 

acceptable fit to both the storage and loss moduli over the entire crystallization process (see 

Supplementary Material for fit results to other temperatures). Attempts to fit two separate 

exponents s and t yield an improved fit to the experimental results, however the uncertainty 

in the fitting parameters is large and so a three-parameter fit is not pursued here. We provide 

the average values of q and ξc based on measurements of three samples in Figure 9.

The exponent q remains approximately constant over the narrow isothermal crystallization 

temperature range studied (Figure 9a). The lack of a temperature dependence indicates that 
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the crystallization process proceeds through a similar average structure which we attribute to 

the narrow range of temperatures probed in this work. The measured values of the exponent 

are approximately 1.8, which is near the expected exponent of 2 for a suspension of 

arbitrary-shape particles in viscous liquids [58, 59] or polymer melts at low shear rates [71]. 

Our measurements are also well within the range of exponents (1.64 < t < 2.30 in eq 14) 

calculated for the linear elastic properties of porous solids with varying pore shapes [69]. 

This agreement indicates that the shear modulus above the percolation transition is 

dominated by the modulus of the semicrystalline domains with negligible contribution from 

the remaining melt fraction.

The critical percolation fraction ξc is also largely independent of temperature as shown in 

Figure 9b, however we note a slight increase in ξc with increasing temperature. The 

percolation transition occurs in the approximate range of 0.3 to 0.4, which is equivalent to 

mass fraction crystallinities in in the range of 0.09 < αc < 0.16. This mass fraction increases 

with temperature, which indicates that more crystallinity is needed for stress transfer across 

the crystallizing polymer at higher temperatures. Comparing these results with Figure 3 

indicates that the critical percolation fraction is approximately equal to the crystallinity 

where tan δ = 1 (at ω = 2π rad/s) during crystallization. This suggests that the formation of a 

spanning structural network coincides with the mechanical transition from liquid-like to 

solid-like. We note that the occurrence of this mechanical transition at tan δ = 1 is largely 

coincidental, since prior measurements of a larger molar mass PCL indicate that the liquid-

to-solid transition determined from the gelation point does not occur at tan δ = 1 [22]. 

Information on the shape of the suspended semicrystalline material is encoded in the critical 

relative volume fraction ξc. The critical percolation fractions in our measurements are well 

below the value of 0.64 expected in the random close packing limit of monodisperse hard 

spheres [62]. Values below the random close packing limit indicate that the semicrystalline 

domains are growing with a non-spherical shape, however the approximate shape cannot be 

determined by ξc alone. Theoretical calculations indicate that suspensions of rods [72], 

platelets [59], or fractal aggregates will have critical percolation fractions in the range of 0.3 

– 0.4. We also note that these calculations assume monodisperse structures in a suspension, 

which is clearly not observed in our optical images (Figure S3 of the Supplementary 

Material).

The relationship between s, ϕc, and [G] in eq 13 suggests that we should also be able to 

write an intrinsic parameter based on q and ξc from eq 16. We therefore define [G*] = q/ξc 

as an intrinsic modulus that describes the increase in the modulus due to small additions of 

crystalline material, which we can compare with the intrinsic viscosity of solid particles. For 

the crystallization measurement shown in Figure 8, [G*] = 4.95 ± 0.50. This is well beyond 

the upper limit of the intrinsic shear modulus of elastic materials predicted by eq 12 for 

spherical particles, which further indicates the growth of non-spherical structures. Raman-

based measurements of crystallinity are limited to relative volume fractions ξ > 0.04 which 

is near the limit where higher-order terms should be included in the expansion (eq 9). For 

non-spherical particles, the deviation from the linear relationship occurs at even smaller 

volume fractions.
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In comparison to the suspension-percolation model developed here, the rheology of the 

crystallization process has been suggested to proceed via physical gelation. In the physical 

gelation process, crosslinks are formed due to intermolecular associations that generate a 

network structure [73]. Evidence of this physical crosslinking was shown in the work of 

Pogodina and Winter on crystallizing isotactic polypropylenes [19] – at the gelation point, a 

frequency range of the relaxation spectrum exhibits power law dynamics. These dynamics 

are indicated by a frequency-independent tan δ, which has been observed previously in the 

isothermal crystallization of polycaprolactone [22]. Gelation models were previously used to 

analyze crystallizing polyolefins above the critical point [21] by using an empirical 

crystallinity-modulus relationship developed by Takayanagi et al. [74].

Physical gelation processes are characterized by a viscosity and elastic modulus that exhibit 

a power law dependence on ε = |p − pc|, where p is the extent of reaction and pc is the gel 

point. Given the functional similarities between the scaling for the viscosity and shear 

modulus in gelation processes [75] and the power law scaling with volume fraction shown in 

eqs 10 and 14, an argument could be made for analyzing our modulus-crystallization 

measurements using gelation theory (assuming ε = |ξ − ξc|). We can compare the well-

known scaling exponents for gelation processes [75] to our measured scaling exponent q. 

Our scaling exponent falls well below the values of the exponent for the elastic modulus 

predicted by classical mean field theory (t = 3) or Rouse-Zimm theory (t = 2.7) but is closer 

to the exponent predicted by electrical network theory (t = 1.94) [75]. Gelation theories for 

the viscosity below the percolation transition have exponents in the range of 0 to 1.35, which 

falls well below our average q. Based on these comparisons, we find that a suspension-based 

model applied across the percolation threshold provides a better explanation for the 

evolution of mechanical properties during polycaprolactone crystallization.

We note that the general effective medium equation can have up to three fitting parameters, 

which either requires a significant number of experimental points along the modulus-

crystallinity curve or an independent measurement of multiple parameters to simplify the 

fitting process. Fitting too few data points can result in large uncertainty in the fitting 

parameters; for example, attempts to apply the general effective medium model to previously 

published modulus-crystallinity measurements performed on a rheo-DSC instrument [18] 

exhibit large uncertainty in the fitting parameters due to a small number of data points 

between the melt state and the final semicrystalline state.

Although our measurements are performed at a single arbitrary frequency, the frequency 

dependence of the modulus during the crystallization process merits further study using this 

suspension-based analysis. A superposition of angular frequencies can be used to probe the 

evolution of the relaxation dynamics during the crystallization process [76]. Given the wide 

variety of crystallinity-modulus curves that can be generated with our model (Figure 7), we 

expect that the general effective medium equation can be applied over a broad frequency 

range if the fitting parameters q and ξc are assumed frequency-dependent. Frequency sweeps 

at various stages of the crystallization process would allow us to not only determine the 

frequency dependence of these parameters but also determine whether these parameters can 

be explained in context of the gelation model for polymer crystallization [19]. We note that 
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the “inverse quenching” technique of Acierno and Grizzuti [77] can be utilized to slow down 

the crystallization process to probe a wider frequency range at different crystallinities.

We expect that our measurement technique of combined rheology and Raman spectroscopy 

will work best in polymer samples that exhibit smaller crystalline domains similar to the 

birefringent granules that we have reported for PCL in our optical microscopy 

measurements. With these smaller structures, the laser scattering volume is more likely to 

contain an average of semicrystalline domains and amorphous melt domains. Polymers that 

crystallize via the growth of large spherulites, such as isotactic polypropylene [14, 19], 

might only occasionally grow spherulitic structures within the sampling volume of the laser. 

One potential solution is to perform a series of crystallinity measurements across the radius 

of the sample during the crystallization process, which would not only average the 

crystalline and melt domains but also indicate the spatial variation in crystallinity within the 

sample on the rheometer. This is outside the scope of the current manuscript.

The success in fitting the general effective medium equation to both real and imaginary parts 

of the complex modulus indicates that the rheological response of PCL crystallization can be 

explained via suspension-type models across the percolation threshold. Also, we have shown 

acceptable fits to the data with a single exponent q on both sides of ξc, although the scaling 

exponents above and below the percolation transition need not be so restricted.

Conclusions

Simultaneous measurements of rheology and crystallinity during the isothermal 

crystallization of polycaprolactone allow us to directly probe the relationship between 

structure and mechanics. The modulus-crystallinity relationship can be used as a critical 

probe of the various models used to relate these two properties. Our measurements reveal 

that neither rheology nor birefringence should be used as the sole quantitative indicator of 

crystallinity during the crystallization process. We find that neither empirically-derived 

mixing rules nor composite sphere models like those of Christensen and Lo [15] can 

adequately describe the crystallization results, however a suspension-type model applied 

across the percolation threshold is shown to fit the results remarkably well.

By analyzing the modulus-crystallinity data using our suspension model, we find that a 

critical percolation fraction and a single scaling exponent above and below the percolation 

threshold are sufficient to fit the data. Our results further the idea that the mechanics of 

polymer crystallization can be described using suspension-type models, and further 

theoretical and experimental work is required to determine the relationship between the fit 

parameters and molecular or crystal structure parameters. As it stands, the parameters from 

the general effective medium model should be used as empirical parameters that characterize 

the rheological response of crystallizing polymers. We further expect that this model will be 

beneficial in characterizing the effect of flow and nanoparticle additives on the 

crystallization process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Raman spectrum of PCL in the C=O stretch region of the spectrum and fits of basis spectra 

for two different conditions: a) “Melt” at 100 °C and b) “Semicrystalline” at 40 °C after 

crystallization for 1960 s. The measured crystallinity in the semicrystalline spectrum is αc = 

0.40 ± 0.02 where the uncertainty is due to the statistical uncertainty in the best-fit basis 

spectra to the measured spectrum.

Kotula and Migler Page 22

J Rheol (N Y N Y). Author manuscript; available in PMC 2019 January 01.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 2. 
Isothermal crystallization of PCL at various temperatures. a) Magnitude of complex 

modulus and tan δ versus time. Measurements were performed at an angular frequency of 

6.28 rad/s. b) Crystallinity measured from the Raman spectra versus time, with error bars 

based on the standard error in the fit of the basis spectra. c) Average polarized light intensity 

from polarized reflection microscopy versus time. The dashed line indicates the maximum 

intensity of detector. Error bars indicate uncertainty from the fits to the Raman spectra.
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Figure 3. 
Modulus |G*| and tan δ data from Figure 3 plotted as a function of crystallinity. The filled 

symbols correspond to the modulus, and the open symbols indicate tan δ. Error bars indicate 

propagated uncertainty from the fits to the Raman spectra.
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Figure 4. 
A comparison of the modulus-crystallinity data for crystallization at 44 °C with various 

mixing rules. Error bars indicate propagated uncertainty from the fits to the Raman spectra.
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Figure 5. 
The 44 °C crystallization measurements plotted with the fits from the model of Christensen 

and Lo[15], eq 8. The matrix modulus Gm
∗  and the semicrystalline modulus G∞

∗  are fixed, but 

the Poisson ratios νm and ν∞ are used as fitting parameters. The best fit results are at the 

upper bound νm = νs = 0.500. Error bars indicate propagated uncertainty from the fits to the 

Raman spectra.
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Figure 6. 
A comparison of the modulus-crystallinity data and the variational bounds for a suspension 

of hard spheres proposed by Christensen [56]. Error bars indicate propagated uncertainty 

from the fits to the Raman spectra.
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Figure 7. 
The generalized effective medium equation (eq 15) for G0 = 1 Pa and different values of G1, 

ϕc, and a single exponent q: a) varying G1 for ϕc = 0.5 and q = 2, b) varying ϕc for the 

condition q = 2 and G1 = 1000 Pa, and c varying q for ϕc = 0.5 and G1 = 1000 Pa.
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Figure 8. 
Modulus versus crystallinity at 44 °C fit to eq 16. The coefficients are ξc = 0.36 ± 0.01, q = 

1.78 ± 0.11. Error bars indicate propagated uncertainty from the fits to the Raman spectra.
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Figure 9. 
a) Scaling exponent q for the different isothermal crystallization temperatures and b) critical 

fraction. Error bars are the standard deviation of measurements on three different samples.
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