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Abstract

Rapid advances in high-throughput sequencing and a growing realization of the importance of 

evolutionary theory to cancer genomics have led to a proliferation of phylogenetic studies of 

tumour progression. These studies have yielded not only new insights but also a plethora of 

experimental approaches, sometimes reaching conflicting or poorly supported conclusions. Here, 

we consider this body of work in light of the key computational principles underpinning 

phylogenetic inference, with the goal of providing practical guidance on the design and analysis of 

scientifically rigorous tumour phylogeny studies. We survey the range of methods and tools 

available to the researcher, their key applications, and the various unsolved problems, closing with 

a perspective on the prospects and broader implications of this field.

Cancer is a genetic disease characterized by a progressive accumulation of genomic 

aberrations that are sometimes augmented by predisposing germline mutations1. In the 

1970s, Nowell2 and others proposed that this accumulation of mutations is guided by 

evolutionary principles via a process of diversification and selection for mutations that 

promote tumour cell proliferation and survival. The idea that evolutionary mechanisms 

underlie cancer progression has become a guiding principle in understanding, 

predicting, and controlling cancer progression3, metastasis4, and therapeutic responses5,6. 

Models of tumour evolution have incorporated advanced evolutionary theory7–9 and 

complex evolutionary mechanisms that have been revealed by modern genomic 

technologies10,11. The application of evolutionary principles to cancers has blossomed into a 

field in its own right, with a rich foundation of theory and methods for interpreting tumour 

evolution12,13. Here, we survey one influential thread: the use of phylogenetics — that is, 

evolutionary tree building — to understand tumour progression.

Although evolutionary theory has proven to be powerful for understanding cancer 

progression, evolutionary processes are quite different in cancers versus in species14 in ways 
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that are important to phylogenetic inference. These differences manifest in at least four 

areas: first, the types of aberration that commonly arise; second, the rates of mutation; third, 

the extent and intensity of selection; and fourth, the typically high heterogeneity of tumour 

cell subclones. One frequent feature of cancer evolution is hypermutability15, often 

associated with types of mutation that are rare in species evolution. Hypermutability 

phenotypes include chromosome instability (CIN) phenotypes that are characteristic of p53 

dysfunction16, microsatellite instability (MIN)17, and elevated point mutation phenotypes, 

such as those arising from dysregulation of the APOBEC family of deaminase proteins17,18. 

Some variant types, such as copy number variants (CNVs), may be induced by multiple 

mechanisms — including breakage–fusion–bridge (BFB) cycles, missegregation of 

chromosomes, and genome doubling — each producing distinct scales and locations of 

aberrations19–22. Other tumour-specific mutational mechanisms include the following: 

kataegis23, in which single nucleotide variants (SNVs) occur at a high rate in a small 

chromosomal region; chromothripsis24, in which a single chromosome shatters and 

reassembles in a seemingly random manner; and chromoplexy25, a complex structural 

variation characterized by chains of BFB-induced chromosome rearrangements occurring in 

successive mitoses.

Likewise, patterns of elevated SNV accumulation can differ widely by tissue of origin or 

from patient to patient. Alexandrov et al.26 characterized dozens of ‘mutation signatures’ 

defining the nucleotide biases exhibited in subsets of cancers, some with known 

environmental triggers27, others attributable to specific sources of somatic 

hypermutability18, and some of unknown cause. Mechanisms of hypermutability may vary 

by tumour and over time in ways that are not observed in species evolution21,28–31. 

Treatment creates another complication, as chemotherapy or radiation therapy can 

themselves cause double-strand breaks in the DNA32 or other forms of hypermutation33,34, 

inducing new mutation signatures26,30. Conversely, prophylactic therapies can suppress 

hypermutability35.

The predominant mechanisms of selection in cancers also differ from those in species 

evolution. Most studies of tumour evolution have assumed selection for mutations that 

promote survival, proliferation, or other phenotypic hallmarks of cancer36. Selection, like 

diversification, can be dynamic, as cell populations adapt to or change their 

microenvironment11. However, recent work has suggested that selection often plays only a 

minor part in tumour evolution, in contrast to its role in Darwinian evolution of species. The 

repeated observation of substantial intra-tumour heterogeneity21,37–44 runs counter 

to the idea that only the fittest subclones survive. Some recent studies have suggested that 

some tumours evolve by effectively neutral processes without selection, at least 

pretreatment45–47. It has been suggested that strong versus weak selection might be 

reconciled by a ‘punctuated equilibrium’ model9, in which long periods of slow mutation 

under weak selection are interrupted by short bursts of rapid evolution under strong 

selection, although this model cannot explain the evidence for a lack of selection in some 

tumours48.

Therapy must also be considered when modelling selection49,50. In contrast to the 

disagreement about whether tumour evolution is non-Darwinian at the pretreatment stage, 
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there is general agreement that treatment leads to selection which can alter the dominant 

clones10,14,34,51. Single-agent treatment can lead to relapse49,52 by selecting for non-

responsive clones29,53. Durable targeted therapies may require the identification of driver 

mutations in all tumour subclones and the design of patient-specific drug 

combinations8,11,54,55.

High heterogeneity is another characteristic feature of tumour evolution. Higher intra-

tumour heterogeneity has been associated with poorer prognosis8,56–58 and linked with the 

ability of the tumour to resist immune surveillance and therapy3,59,60. Progression, 

metastasis, and therapeutic resistance frequently proceed from clones that were rare at 

earlier progression stages41,43,49,61. Interactions among distinct clones may also drive 

tumour progression, for example through tumour self-seeding4,62 and cooperation 

between clones63,64.

This Review examines one important direction in which evolutionary models are shaping 

cancer research: the use of phylogenetic methods in interpreting genomic data from cancers. 

We specifically seek to provide guidance to the users of phylogenetic methods in cancer 

research and to those critically reading about those uses, especially those lacking formal 

training in phylogenetics. To accomplish that, we give a short overview of the field, we 

review past uses of tumour phylogenetics, and we explain some relevant principles of 

phylogenetic inference. We conclude with speculation about the challenges and 

opportunities for realizing the potential of phylogenetics in cancer research.

Overview of tumour phylogenetics

The recognition that cancer is an evolutionary phenomenon led to the insight that 

computational methods for reconstructing evolutionary processes — that is, phylogenetics 

— might prove valuable for making sense of tumour progression processes. Tsao et al. were 

among the first to suggest that variations in microsatellite markers could be used to infer a 

tree model of the evolution of tumour cells65. The idea was subsequently put into practice 

for bulk comparative genomic hybridization (CGH) data by Desper et al.66. After 

percolating for a decade within a specialist community of evolutionary and computational 

biologists, this type of analysis has exploded to become a new field known as tumour 

phylogenetics, which aims to reconstruct tumour evolution from genomic variations. In 

almost all cases, the goal of such work is to produce evolutionary trees, potentially allowing 

for uncertainty among the space of possible trees explaining a data set21,67,68.

Within that basic framework, tumour phylogenetics encompasses diverse methods. This 

diversity includes various data types, referring both to the basic study design (cross-cohort 

studies of many tumours, single-patient studies of regional bulk genomic assays, or studies 

of single-cell variability in single tumours) (FIG. 1) and the type or types of genomic data 

profiled (initially, pre-sequencing marker types such as large-scale CGH66 or fluorescence in 
situ hybridization (FISH)69; now, predominantly next-generation sequencing (NGS)-derived 

SNVs70 or CNVs71, and sometimes more exotic variant types such as gene expression, DNA 

methylation, or histone marks10,14,32,72,73). The diversity also includes variation by 

mathematical model; that is, the mathematical representation of the kinds of mutational 
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processes one intends to study. The model may capture both the kind of mutations 

considered (for example, SNVs versus structural variants (SVs)20,74) and basic questions 

such as whether those mutations are assumed to be under selection2,7,11,14,17,72,75 or 

selectively neutral4,76–79. Furthermore, this diversity of methods includes variation in the 

algorithms applied; that is, the computational instructions used to find an optimal tree or 

trees consistent with both the data and the model. The importance and utility of in silico 
models to study various phenomena in cancer goes far beyond tumour phylogenetics, and 

other kinds of models have been reviewed elsewhere12,13. Many of the papers cited therein 

take a traditional mathematical modelling approach with emphasis on the mathematics, on 

simulation studies, on parameter estimation, and on validating the model. As tumour 

phylogenetics has gained in popularity, phylogenetics now tends to show up as a small part 

of high-impact studies. These studies are understandably focused on data sets that were 

derived from human subjects and were expensive and complicated to collect. One of the 

main messages of this Review is that when mathematical models are used in these studies, 

the importance of validating the models against simulated and observed data should not be 

forgotten.

Most studies of tumour phylogenetics to date have adapted standard algorithms that were 

developed for species phylogenetics (for example, maximum par-simony21,61, minimum 

evolution73, neighbour joining71,80, UPGMA21, or various maximum likelihood or Bayesian 

probabilistic inference methods81,82), occasionally comparing multiple standard approaches 

in a single study21,83 (TABLES 1,2). Only recently have new phylogeny algorithms emerged 

to deal with the peculiarities of tumour versus species evolution84–88. In the next section, we 

survey the diversity of methods available, with particular focus on those suited to modern 

sequencing technologies.

This variety of phylogeny methods has corresponded to a variety of applications. Tumour 

evolutionary trees, which were once merely conceptual models2, are now central in the 

results of many studies11. Early uses of phylogeny methods often focused on applying the 

new tool of tumour phylogenetics to old problems, such as using evidence of evolutionary 

selection to separate driver mutations from passenger mutations29,50, or using novel 

algorithms to find the order and timing of driver mutations89–91 or to determine how these 

driver mutations associate with progression stages92. Other key results have emerged 

organically, for example from studies addressing the still controversial question of whether 

tumour evolution follows the expectations of classical clonal evolution theory93–95 in 

producing predominantly linear phylogenies54,76,96,97, whether it exhibits predominantly 

branched evolution exemplified by the early divergence of subclones30,33,40,42,49,73,83,98–100, 

or whether it occupies some continuum encompassing both extremes in different 

tumours34,101. Researchers continue to find new applications for phylogeny models, such as 

the use of phylogenies prognostically to predict the likely future progression of a 

tumour43,58,85,92,102; such applications are an evolution of older approaches that have been 

used to predict progression from simpler measures of tumour heterogeneity38,58,59,102–105.

One worrisome trend among these studies is their seemingly conflicting conclusions about 

the evolutionary trajectories of cancers, such as on the questions of linear versus branched 

evolution or Darwinian selection versus no selection. The distinctions may be traced to 
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differences in the application of phylogenetics, such as looking at distinct marker types (for 

example, SNVs versus CNVs) or using distinct evolutionary models or phylogeny 

algorithms. For example, the studies that concluded that there was little selection in some 

tumours looked mostly at SNVs and CNVs, but perhaps there is selection in those tumours 

via evolutionary mechanisms that would be apparent only when looking at other marker 

types, such as karyotypes or methylation patterns. Few studies have tested whether the 

phylogenetic inferences made are robust to a change of methods, with notable 

exceptions68,106.

Variations on tumour phylogenetics

Recent years have seen a rapid proliferation of methods for tumour phylogenetics. In this 

section, we categorize some of the seminal advances made. We can roughly distinguish three 

classes of method, based on the kind of phylogeny study for which they are designed: cross-

sectional methods, which use data on many tumours to build trees describing the common 

progression pathways across a population; regional bulk methods, which build trees for 

single patients through bulk genomic assays of distinct tumour sites or regions; and single-

cell methods, which build trees from the cell-to-cell variations in single tumours (FIG. 1). 

Not all methods fit neatly within one category, but the categories provide a crude 

organization for the description of methods below.

Within these high-level categories, we see a diversity of genomic data types (TABLE 3), 

evolutionary models, and phylogeny algorithms. Below, we consider a subset of methods 

that were of particular importance in introducing new techniques to the field or were of 

unique value to likely users. TABLE 1 and the extended version, Supplementary information 

S1 (table), provide a more comprehensive list of important methods. TABLE 2 and the 

extended version, Supplementary information S2 (table), list important studies that have 

made use of tumour phylogeny methods.

Cross-sectional tumour phylogenetics

Key ideas behind cross-sectional tumour phylogenetics originate in the pre-phylogenetic 

work of Fearon and Vogelstein, who proposed that bulk analysis of collections of tumours 

from multiple patients could allow one to infer the likely orders of aberrations and stages of 

progression (for example, from adenoma to carcinoma) so that each aberration is associated 

with progression to a specific stage93. They proposed a linear (event 2 follows event 1 

follows event 0) model for the progression of colorectal cancer. This Fearon–Vogelstein 

model, although a simplification107, has been highly influential on thinking about tumour 

evolution. Phylogenetic methods were first brought to the reconstruction of tumour 

progression pathways by Desper et al., who generalized the Fearon–Vogelstein linear 

progression model to allow branching in the form of a tree, sometimes called an oncogenetic 

tree66. FIGURE 1a provides an illustration of the oncogenetic tree model for interpreting 

cross-sectional data that has come from multiple patients. In the original oncogenetic tree 

model, each tree edge corresponds to a possible aberration with an associated probability of 

occurrence. Paths in the tree correspond to possible sequences of accumulating aberrations.
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Many methods have since applied this basic strategy of inferring trees or graphs of possible 

progression sequences from combinations of mutations observed across a patient cohort. We 

refer the reader to a general phylogenetics text82 for more background on the basic classes of 

phylogenetic models and algorithms summarized in TABLE 4 and their trade-offs. The 

original Desper et al. method66 was a character-based phylogeny method, meaning that it 

modelled evolution from a discrete set of phylogenetic markers (variant loci), and it was 

specifically a kind of maximum parsimony method, meaning that it was a combinatorial 

optimization method that sought to explain a data set with the smallest number of distinct 

mutations possible. Character-based methods tend to be most informative for reconstructing 

the sequence of mutations and unobserved ancestral states, but they become computationally 

infeasible on large marker sets. Parsimony methods are the most computationally efficient of 

the character-based methods, but they depend on the assumption that mutations are rather 

rare, which is a questionable assumption for tumours. The field later moved largely towards 

more sophisticated probabilistic character-based methods108,109, which seek either the most 

probable tree (the maximum likelihood method) or some measure of the space of possible 

trees and tree parameters (Bayesian sampling). Compared with the earlier approaches, such 

models better handle high mutation rates, noisy data, and uncertainty in tree inferences, but 

can be more computationally demanding than parsimony methods. Beerenwinkel et al.
110,111 introduced an important class of probabilistic model that enables the joint inference 

of several possible trees for binary mutation data, via the Mtreemix tool, an approach that 

was later generalized to CNV data112,113 and became the basis of the newer Rtreemix 

package114–116. More recent approaches include making better use of the detailed 

information specifically offered by DNA sequencing (for example, as in the RESIC117 

approach and a later pathway-level variant118). Algorithmically, most such methods rely on 

comparatively faster maximum likelihood techniques113. However, more advanced Bayesian 

models commonly use variants of Markov chain Monte Carlo (MCMC) sampling, which is a 

statistical technique for exploring the ranges of possible tree models and evolutionary 

parameters but at a much greater computational cost than maximum likelihood 

methods90,119. The recurring theme of trade-offs between more realistic and more 

computationally tractable models has inspired a great deal of research into more exotic 

algorithmic techniques in this domain91,120,121.

The major alternative to character-based methods are distance-based methods, which use 

mutation data to estimate evolutionary distances between samples, and these distances then 

serve as the basis for tree inference. Such methods can handle much larger marker sets at the 

cost of losing the fine-scale modelling of mutational events achieved by character-based 

methods. Desper et al. extended their approach to distance-based methods122 and later 

extended those from DNA to RNA expression data123. Riester et al.124 developed a similar 

approach specifically for RNA sequencing data using minimum evolution phylogenies, 

which is a distance-based analogue of parsimony methods. Liu et al.125 applied cross-

sectional distance-based methods to CNVs using several off-the-shelf distance-based 

phylogeny tools.

Oncogenetic tree methods in recent years have been primarily used to analyse DNA 

sequencing-derived SNV or CNV data43,70,85, but they have also been used for methylation 

data73,79. They have proven to be valuable primarily for the original purpose of identifying 
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combinations and orders of recurring driver mutations. In hindsight, the cross-sectional 

tumour phylogeny methods are domain-specific clustering methods that happen to use 

phylogenetics tools on the assumption that distinct tumours can share common evolutionary 

trajectories. However, this was not clear until sequencing studies revealed both inter-tumour 

and intra-tumour heterogeneity, and this finding is part of the ‘evolution’ of tumour 

phylogenetics alluded to in the title of this Review.

Given the diversity of methods available, though, one should be aware that simulation 

studies126,127 have shown that qualitative results may depend considerably on the model 

used to generate the data. Furthermore, most methods for cross-sectional data were 

developed before the extent of intra-tumour heterogeneity in observed data was 

appreciated37, and tree inferences from cross-sectional data can be unreliable in the presence 

of intra-tumour heterogeneity128. These latter observations help motivate the trend towards 

phylogenetic studies of single tumours, discussed below.

Regional bulk tumour phylogenetics

A major step forwards was the recognition that one could produce phylo-genies for single 

patients, initially through sampling multiple regions or tumour sites. One treats each site 

sequenced as if it were a species and infers a tree connecting those species. FIGURE 1b 

provides an illustration of a regional bulk phylogeny built from samples of multiple tumour 

sites and multiple regions within a tumour site for a single patient. The earliest such tools 

used data types that predate NGS, such as large-scale CNVs used by TuMult, a parsimony-

based combinatorial algorithm129. Similar ideas have since been brought to DNA 

sequencing-derived data types, including SNVs (as used in rec-BTP130, AncesTree131, and 

LICHeE132) and CNVs (as used in TITAN133 and MEDICC85). Given the variations in the 

rates and mechanisms of SNV versus CNV evolution, some methods have found particular 

power in combining data types, as is done by GRAFT134, PhyloWGS135, SPRUCE136, and 

Canopy137. The available methods also cover a range of models and algorithmic techniques, 

including various combinatorial (parsimony-like) character-based methods130,131,134,138, 

probabilistic character-based methods133,135, and distance-based minimum evolution85.

An important variation on regional bulk tumour phylogenetics is the combination of 

phylogenetics with clonal deconvolution from bulk sequence139. Here, deconvolution means 

the inference of clonal subpopulations from one or more bulk genomic samples. Numerous 

tools are now available for clonal deconvolution (for example, SciClone140, PyClone141, and 

Clomial142). Some tumour phylogeny methods listed in TABLE 1 explicitly depend on 

clonal deconvolution either as a preprocessing step or integrated into the phylogenetic 

inference strategy. These include some early approaches to deconvolution that were 

motivated explicitly by the application to tumour phylogenetics139, tumour phylogeny 

methods such as SCHISM143, which require a third-party clonal deconvolution program to 

generate their input data, and tools such as cITUP144 and LICHeE132, which fully integrate 

deconvolution and phylogenetics into a single inference.

Regional bulk phylogenetics has been used in several seminal studies, building on earlier 

work on multi-region progression without explicit phylogenetics104. Early, pre-NGS 

examples of true multi-region tumour phylogenetics include the use of microsatellite 
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markers by Khalique et al.96 and of array CGH (aCGH) by Navin et al.145. Regional bulk 

tumour phylogeny methods using DNA sequencing-derived markers have since seen 

extensive use (TABLE 2). Many studies that apply regional bulk phylogenetics approaches 

have relied on standard methods or phylogeny programs derived from species 

evolution42,61,73,79,146. Others have developed custom heuristic phylogeny 

approaches28,50,98,147,148 or relied on manual phylogeny-like inferences33,52. Only recently 

have mature third-party tools become available (TABLE 1) and begun to appear in case 

studies (TABLE 2). Examples include the studies by Schwarz et al.43, which applied the 

MEDICC software to ovarian tumours to demonstrate that relapse tumours typically show 

early divergence from the primary tumour, by Sottoriva et al.47, which also used MEDICC 

applied to colorectal tumours, resulting in the ‘big bang model’ of evolution without 

apparent selection, and by Sottoriva et al.59, which utilized TuMult129 to help demonstrate 

the role of intra-tumour heterogeneity in promoting resistance in glioblastomas.

Single-cell tumour phylogenetics

The advance that most raised awareness of tumour phylogenetics among non-computational 

cancer researchers was its application to single-cell data, allowing the generation of a 

phylogenetic tree based on individual tumour cells extracted from a single patient (FIG. 1c). 

Single-cell tumour phylogenetics predates single-cell sequencing (scSeq), as it was applied 

through various older methods offering more limited profiling of single cells via 

microsatellite76 or FISH69 markers; such approaches remain valuable owing to their ability 

to examine much larger numbers of cells than scSeq39,84,149 (TABLE 3). Nevertheless, the 

introduction of scSeq to tumour phylogenetics by Navin et al.71 deserves much of the credit 

for bringing tumour phylogenetics into the mainstream of cancer research. Since that work, 

methods for and applications of scSeq in tumour evolution have proliferated, along with 

related analyses on the data needs of robust scSeq-based phylogenetic analysis150.

The majority of published tools for single-cell phylogenetics are still based on pre-scSeq 

technologies84,148,151–153, with just a handful having been developed specifically for scSeq. 

Kim and Simon89 introduced the muttree program, which uses a custom combinatorial 

inference to find trees optimized for a specialized probabilistic model that differs from the 

models used by other tools which accept the same input. Ross and Markowetz154 and Jahn et 
al.87 developed sophisticated Bayesian probabilistic models for scSeq-derived SNVs, and 

these models were implemented in OncoNEM and SCITE, respectively.

Most applications of scSeq phylogenetics to date have thus relied on tools for general 

species phylogenetics or on phylogenies that have been manually constructed without an 

explicit model or algorithm (for example, see REF. 39). Navin et al.71 relied on neighbour 

joining155, which had earlier been used by Frumkin et al.76 with microsatellite data, to infer 

phylogenies from scSeq-derived CNVs. Neighbour joining was also used by Xu et al.80 for 

application to renal cancers and by Wang et al.156 for what was, until recently157, the largest 

scSeq study of tumour evolution.
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An illustrative tutorial

Data, models, algorithms

As more cancer research groups embrace phylogenetic methods, it becomes important to 

understand what goes into a phylogenetic analysis and how to interpret its results. 

Phylogenetics is a complicated subject for which tools can easily be misused. In this section, 

we provide guidance to aspiring users of tumour phylogenetics and those who want to read 

such work critically.

Our primary take-away message is this: there is no such thing as a generically ‘correct’ 

approach to phylogenetics. Phylogenetic inference, like many problems in bioinformatics, 

depends on a model representing the biological processes we seek to explain, a data source 

that we seek to explain in terms of that model, and an algorithm to fit the data to the model. 

Effective use of phylogenetics involves making appropriate choices of model, data, and 

algorithm so that all three are mutually consistent and suited to the question at hand.

To frame this discussion, we present it in terms of a hypothetical research study. Let us 

suppose we have a general scientific question: what are the common recurring sequences 

and timings of CNVs over the progression from healthy breast tissue to breast cancer? We 

further suppose that we have gathered data to address that question: whole-genome DNA 

sequencing at 50× coverage from 200 single cells from a tumour and matched normal 

control. We then imagine that we built a phylogeny using an off-the-shelf neighbour joining 

phylogeny program152, as was done in several prominent studies71,76,80,97,145,158. This is a 

qualitatively similar plan to the pioneering work of Navin et al.71,157. How can we evaluate, 

and perhaps improve upon, this initial plan?

Is our model consistent with our data?

If we carry out the study described above, it will yield a phylogenetic tree, and we can 

expect that tree to be qualitatively similar to those of Navin et al.71 and Wang et al.156: an 

early split of clones into ploidy classes (diploid, pseudodiploid, and tetraploid) followed by 

later separation by more fine-scale CNVs. This may indeed be the true evolutionary history 

of the tumour, but we also need to consider that it may be an artefact of the approach. In fact, 

the study as described will yield this outcome regardless of the actual evolutionary history of 

the tumour for reasons implicit in the model of evolution that our strategy assumed.

The described approach uses a phylogeny model designed primarily for SNV data; such a 

model assumes that evolution occurs by mutations independently accumulating one at a 

time, with roughly equal rates. This happens to be a reasonable simplification for species 

evolution82, and probably even for tumour evolution — provided that we are tracking 

evolution in which SNVs accumulate largely without selection8,46–48. However, it is a 

questionable model for CNVs, as CNVs violate the model assumption that changes in 

distinct variant regions accumulate independently; instead, CNVs accumulate at multiple 

scales, from localized gene-scale variants to variation at the scale of large chromosome 

segments, whole chromosomes or even whole-genome ploidy17,74,159. The mismatch 

between model and data can lead to discrepancies between evolutionary distance measures. 

For example, a 3 billion bp change induced by a whole-genome duplication will yield the 
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same estimated evolutionary distance as 300,000 independent 10 kb changes, even though 

genome duplications are common events21,22,147,160 and far more likely to occur than 

300,000 independent 10 kb changes. That discrepancy will lead to large-scale changes being 

misinterpreted as being older than they actually are relative to localized changes, which 

could radically skew our trees.

If we recognize this issue, it would be logical to propose that we fix the model. There are 

models for representing the more complex nature of evolution by CNVs versus evolution by 

SNVs51, and there are some custom-designed phylogeny tools for specific variants of CNV 

evolution43,69,84,85,151,152. A Bayesian probabilistic model, as has been used in many 

tumour phylogeny approaches47,79,86,135, can handle arbitrarily complex evolutionary 

scenarios and is well suited to learning the complicated lineage-specific rate parameters one 

would need for such a model78,101,152, given the diversity of CNV hypermutability 

mechanisms any given tumour might exhibit20,25,94,161. Let us suppose, then, that we 

replace the Euclidean distance model with a Bayesian probabilistic model that captures the 

multi-scale nature of CNV evolution, thus bringing our model in line with our data. Are we 

now finished?

Aligning algorithm and model

Unfortunately, the change to a Bayesian model is insufficient because we cannot change the 

model without also changing the algorithm. In principle, one could use neighbour joining 

with a more nuanced probabilistic model of evolutionary distances. However, a distance-

based method such as neighbour joining will work poorly if we lack large numbers of 

mutations of each type to average out uncertainty over the mutation frequencies and relative 

orders, and will therefore be likely to fail for important but rarer CNVs, such as ploidy 

changes.

Recognizing that problem, we can adopt a more appropriate algorithm for a probabilistic 

model, such as the MCMC approach of the BitPhylogeny program86. Although other classes 

of algorithm can be used with such probabilistic models108,112,113,143,162,163, MCMC 

sampling is the standard for accurately fitting a complicated probabilistic model for which 

we do not yet have a specialized body of theory87. Let us suppose, then, that we have 

replaced the neighbour joining algorithm with an MCMC Bayesian sampler, making our 

algorithm consistent with our model. Having synchronized algorithm to model, and model to 

data, are we finished?

Aligning model and data

Unfortunately, the algorithm change is insufficient, because in synchronizing our algorithm 

to our model, we selected an algorithm that is not appropriate to our data. Algorithms, like 

models, carry assumptions and limitations. One limitation of MCMC is computational 

cost82: the number of steps for which one must run an MCMC algorithm to get accurate 

results generally grows exponentially with the number of species (or cells) in the data. This 

limitation is perilous to the novice user because an MCMC algorithm can still generate a tree 

as an output, even if it has not run for long enough to identify the right tree. MCMC 

phylogeny algorithms were therefore traditionally used only for the order of 10–20 species, 
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although somewhat larger numbers are now possible85. State-of-the-art Bayesian methods in 

tumour phylogenetics are commonly accelerated with a technique called approximate 

Bayesian computation (ABC)164, as used in two recent investigations47,79; with this 

technique, one accelerates sampling by collapsing sets of solutions that appear to be similar 

by one or more summary statistics. However, the curse of exponential blow-up (in which the 

number of possible trees an algorithm must consider grows exponentially with the number 

of ‘species’ they contain) is that better algorithms will allow us only a few more species, not 

the order-of-magnitude increase we need to handle 200 cells. In short, the algorithm we have 

chosen is probably unsuitable for our single-cell data.

A logical next step, then, would be to ask whether we might use a different kind of data 

more appropriate to our approach. There are other marker types that we could consider — 

such as SNVs87,154, expression123, methylation73, or microsatellites165. However, as we are 

interested in evolution by CNVs, we must keep the marker type unchanged and instead 

change only the study design. We might propose to use a regional bulk method, replacing 

our 200 single cells with bulk sequencing of 10 regions from each of 20 tumours. Each of 

the twenty resulting trees is on a scale an MCMC sampler can handle. Similar regional 

MCMC strategies for regional bulk sequencing have yielded important insights into tumour 

evolution in prior studies47,59,79 and have been used successfully for CNV data86,129. We 

will then have a model appropriate to our data, an algorithm appropriate to our model, and a 

data set appropriate to our algorithm, harmonizing the three components of our method. Are 

we now finished?

Aligning method and questions

We are unfortunately still not finished because by changing the data collection strategy to 

smaller sets of ‘species’ per tree, we have ended up with data sets that are too small to 

resolve the fine-scale trajectories of CNV evolution. Most solid tumours have chromosome 

replication defects that lead to rapid accumulation of CNVs20, and progression can happen 

via clones that are minor or rare in the earlier tumour stages11,41,50,53,54,166,167 and that may 

lay dormant through much of the clinical progression168. We can expect that there are too 

many CNVs among ten tumour regions to have hope of resolving the orders or timings of 

CNV events157. Our study design might be fine for other questions about CNV evolution, 

but not for the question we are asking. We still have not managed to find a model, algorithm, 

and data source that are consistent with one another and with the question we are asking.

FIGURE 2 provides a simplified overview of the pitfalls in this process, as we seek to infer a 

true tree (FIG. 2a) but struggle with erroneous inferences induced by a mismatch between 

the evolutionary model and data type (FIG. 2b), between the algorithm and the model (FIG. 

2c), and between the data type and the research question (FIG. 2d).

That does not mean that we are out of options. We could try a wholly different approach, 

perhaps reverting to our original scSeq study design but using a parsimony model with a 

faster algorithm that might be better able to handle the scale of data. That is essentially what 

was done in a recent scSeq study of breast cancer157. TABLES 1,2 give examples of 

available methods and prior studies that may be helpful for finding an existing tool or 

strategy that has been successfully applied to similar questions. We could try to bring in 
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more exotic algorithms (for example, integer linear programming (ILP)120,131,144,169) or 

completely different marker types (for example, FISH69,84,151,152). However, we should be 

aware that we might run through every existing option for a model, an algorithm, and the 

data type and still fail to find a combination that is mutually consistent and appropriate to 

our questions. What, then, is the cancer researcher to do?

A final important point is that posing a computational problem is not the same thing as 

solving it, even if we have perfect data and a perfect model of the relevant biological 

mechanisms. Many reasonable phylogenetics problems are classified as ‘intractable’ (REF. 

170), which informally means that for even moderately large data sets, we may not have any 

method for finding a good tree efficiently. Often, we will need to develop new computational 

theory to find an adequate explanation of the data within the models of evolution that we 

believe describe them. The answer to the question above — what, then, is the cancer 

researcher to do? — is often to recognize that there is no standard off-the-shelf technique 

available for many important questions and that developing one is a research problem which 

will require time and significant expertise in computational biology. BOX 1 provides a few 

examples of important unsolved methodological problems in tumour phylogenetics.

Conclusions and discussion

The use of phylogenetic techniques in cancer research is growing, as is evidenced by the 

large body of work completed in the past 3 years and referred to herein. Studies of cancer 

phylogenetics have advanced far beyond the theoretical evolutionary model of Nowell2 to 

reveal the enormous complexity of the actual processes of tumour evolution14,20,26,171, and 

to uncover the heterogeneity of those processes both patient to patient101,110,172 and lineage 

to lineage in a single patient3,8,21,40,73,145. Such studies have revealed mechanisms 

underlying this heterogeneity21,85,145,173, the dynamics by which these mechanisms 

themselves evolve over tumour progression47, and possibilities for novel prognostic 

indicators43,56,57,105. As our knowledge of tumour evolution has expanded, tumour 

phylogenetics has itself evolved from a new tool for asking old questions, such as 

distinguishing driver from passenger mutations13,174, to a source of new questions on topics 

such as how the evolutionary landscapes of tumours are shaped by environmental 

factors16,21,26,61 and treatment32 and how they can reveal the past and possibly the future of 

the progression of a tumour27–30,47,59 in ways that are tangential to the specific driver 

mutations dominant in a given tumour at some time. In this Review, we have sought to 

survey key methods used and results obtained to date and to provide insight into how best to 

harness phylogenetic tools for new applications. We conclude by considering where tumour 

phylogenetics might go next.

Most uses of tumour phylogenetics to date have been in retrospective studies; a major 

opportunity is moving to prospective studies in research clinics. Looking ahead to this 

opportunity, we consider what happened in clinical cancer research with the advent of gene 

expression microarrays and NGS. Both technologies were expected to have an impact on 

cancer diagnosis and treatment, but they have had different outcomes. Gene expression 

microarrays were shown to have prognostic value in hundreds of research studies, but are not 

currently widely used in the clinic. By contrast, NGS is being used in the clinic and has led 
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to the phenomenon of ‘tumour boards’ formed by multidisciplinary scientists and clinicians 

who study mutation profiles, determine which mutations are ‘actionable’ on the basis of 

approved drugs, and develop ‘precision medicine’ treatment plans. We hypothesize that the 

difference is primarily due to the type of output that these two technologies produce. NGS 

generates lists of discrete mutations that can be validated and evaluated individually. By 

contrast, microarrays yield patterns of expression changes, sometimes called gene 

expression signatures, that are conceptually similar to the nucleotide variant mutational 

signatures of cancer genomes26. Similarly, so far the prognostic value from tumour 

phylogenetics has come from analysing the patterns of e v olut ion43,58, not from analysing 

discrete events.

Tumour phylogenetics is far from achieving the reproducibility that is needed for clinical 

work. The field will need to overcome resistance to complex data and dynamic analysis, and 

must develop principled, robust methods of analysis implemented in software that is used in 

many laboratories. Tumour phylogenetics is itself evolving, but not as quickly as 

biotechnologies to measure aberrations in tumours. In the future, new phylogeny methods 

will need to be tested on more data sets and compared head to head. The head-to-head 

comparisons will be very complicated if new methods address one of the key unsolved 

problems in the field: the integration of different data types beyond CNVs and SNVs (BOX 

1). The analysis methods that are deemed most fit will be selected by more research groups 

and gain wider usage. After some specific methods are used in hundreds of studies, we hope 

that the results will be sufficiently robust and interpretable to aid in patient prognosis and 

treatment planning. Similarly, clinicians interpreting phylogenetic analyses should insist that 

different methods be tried and that results are actionable only when different methods of 

analysis lead to the same qualitative understanding of a patient’s tumour68,106.

Finally, one cannot comprehensively discuss the future prospects of tumour phylogenetics 

without considering the education of cancer researchers, or biomedical researchers in 

general. We have provided guidance on how someone new to tumour phylogenetics might 

evaluate and carry out research in this domain, but such basic principles can only go so far. 

As we have shown here, effective use of even well-developed tools requires some 

understanding of their mathematical and algorithmic underpinnings. Finding or developing 

the appropriate phylogeny tools for a given application will often involve difficult problems 

of model selection (as reported by Yuan et al.86) and algorithm design that lie far beyond 

what we can discuss here. Furthermore, by the time one has identified a study cohort and 

planned data collection, the questions it is possible to ask with these tools are already 

constrained. In addition, there are limits to what one can ask at all with the available 

computational tools. Some important questions require new tool development or theoretical 

advances before they can be answered. It is crucial to involve computational biologists early 

in the study design phase, to ensure that it will be possible, in principle, for the study to 

resolve the questions that motivate it. More specifically, these specialists can determine that 

analysis tools appropriate to the data, evolutionary models, and questions do currently exist 

or that there is a plausible path to developing appropriate tools. Even the casual user must be 

able to recognize these situations. Actually posing and solving new data-driven questions, 

within the constraints of the limits of biotechnology and human cohorts, are demanding 

skills that will be needed by the leaders of future research efforts in cancer evolution. Few 
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life scientists today are adequately trained in the fundamentals of computational thinking to 

handle these questions, and not many computational scientists are adequately trained in the 

challenges of genomic data and research involving human subjects. If we are to realize the 

full potential of cancer phylogenetics, we will require a sea change in the training of cancer 

researchers to inculcate a sophisticated understanding of how to reason about data-driven 

research. The required changes in education practice are likely to face institutional obstacles, 

but resolving them is as important to the future progress of cancer research as any purely 

scientific question considered here.
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Glossary

Selection
An evolutionary process in which one population (or subclone, in the context of cancer) is 

favoured for growth or survival over another

Cancer progression
A change of cancer from a less serious to a more serious state, typically in a manner 

recognizable by pathologists

Metastasis
A progression in which cancer cells spread to a location in the body that is physically distant 

from the primary tumour site

Subclones
Subpopulations of cells in a tumour the cells in each subclone are almost or completely 

genetically identical for all measured cancer-related variants

Hypermutability
An elevated mitotic mutation rate, relative to that in healthy cells this is often specific to a 

given mutation type (for example a single nucleotide variant or a copy number variant)

Intra-tumour heterogeneity
Variation in the genomes of different cells in the same tumour

Tumour self-seeding
A process by which descendants of cells that escaped the primary tumour re-enter 

circulation and return to the primary site
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Mathematical model
A formal mathematical abstraction of a physical or biological process, such as a set of 

evolutionary mechanisms
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Box 1 | Outstanding problems in tumour phylogenetics

Novel or heterogeneous data sources

There are many tumour phylogeny methods for common forms of DNA variation (such 

as single nucleotide variants (SNVs) and copy number variants (CNVs)), some methods 

for other genomic data (for example, karyotypes, expression data or methylation data), 

and a few methods integrating multiple forms of data29,73. The field is just beginning to 

make sense of other sources of information, such as spatial distributions of cell 

populations70,79,83, and to make productive use of heterogeneous data10,134.

Comprehensive evolutionary models

We are currently lacking the quantitative models that are required for phylogenetic 

inference of complex evolutionary events, particularly for recently discovered 

mechanisms such as chromothripsis or kataegis. However, models are also lacking even 

for SNVs, which exhibit nuanced combinations of mutational signatures26,27 and 

selective pressures8 that vary by tumour type, patient, and time9,21,48,146,175 and may 

require extensive sampling to estimate46.

Tumour-specific phylogeny algorithms

Most tumour phylogeny work to date has relied on a handful of conventional phylogeny 

algorithms (neighbour joining, maximum parsimony, maximum likelihood or Markov 

chain Monte Carlo), and it remains unclear which, if any, are sufficiently accurate for 

tumour evolution for any given data type and tumour type. Phylogenies including more 

exotic tumour-specific mechanisms will require new classes of algorithms, which is a 

largely unexplored topic.

Beyond ‘species’ trees

Models drawn from species trees themselves may be inadequate descriptions of clonal 

evolution of tumours10 for such reasons as cooperation between clones, seeding of 

metastases by multiple clones, reseeding of primary tumours8, or co-evolution with the 

microenvironment176. More specialized tree models, generalizations to non-tree-based 

evolution, and methods informed by more sophisticated population genetics and 

ecological models are just beginning to emerge47.

Statistical analysis, study design and reproducibility

Few studies examine enough subjects to draw statistically sound conclusions in the 

presence of extensive inter-tumour heterogeneity14, particularly for single-cell 

sequencing studies, which usually involve at most a few tumours150. Questions that 

depend on finding reproducible features across many tumours — for example, whether 

tumour evolution is linear or branched, or whether it branches early or late — have 

largely been addressed anecdotally rather than by adequately powered analyses. There are 

currently no accepted methods to judge whether a phylogenetic tree provides a well-

supported fit to a single tumour86,89. The field has barely explored the problem of how to 

plan a study to ensure that informative and robust phylogenetic tree building will even be 

possible.
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Figure 1. Classification of tumour phylogeny methods by study design
a | Cross-sectional tumour phylogeny methods model distinct tumours (coloured circles) 

sampled from multiple patients as though they are species. These methods infer phylogenies 

(also known as oncogenetic trees) in which tumours are grouped approximately into 

subtypes, with tree edges corresponding to common recurring mutations that identify a 

subtype. b | Regional bulk tumour phylogeny methods are applied to bulk genomic samples 

from a single patient, typically subregions of a tumour or distinct tumour sites (coloured 

circles). Trees provide a coarse model of the major cell lineages developing over the course 

of progression in the single patient. c | Single-cell tumour phylogeny methods build 
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phylogenetic trees using variations between single cells (coloured circles) in one or more 

tumour sites. Trees group cells into major clonal subgroups and infer shared ancestry and 

mutation events at the level of single clones.
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Figure 2. Some challenges in synchronizing data, models and algorithms when applying tumour 
phylogenetics to a scientific question
An illustration of a hypothetical scenario described in the main text, in which we seek to 

infer a phylogenetic history of copy number variant (CNV) events in the progression of a 

single tumour. Each tree shows the potential evolution of genomic copy number profiles for 

a set of observed clones (blue lines) and computationally inferred intermediate states (red 

lines) for a single tumour. a | The hypothetical ‘true’ tree describing the evolution of a set of 

clones from a diploid root via a series of CNVs: gain or loss of copy number in a localized 

region, as well as whole-genome duplication, leading to a doubled copy number genome-

wide. b | Incorrect inference due to the use of a model designed for single-base changes, 
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leading to a substantially incorrect phylogeny involving various biologically ‘impossible’ 

evolutionary events, such as partial (non-integer) gain, loss, or whole-genome duplications, 

leading to fractional copy numbers. c | Improved but still inaccurate inference after 

correcting to an evolutionary model cognizant of the type of variation occurring with CNVs; 

this eliminates impossible events and leads to a more accurate tree topology, but still fails to 

identify the correct tree because the analysis is using an algorithm that identifies biologically 

plausible but still sub-optimal phylogenies for this kind of evolutionary model. d | Still 

inaccurate inference after changing to a more sophisticated model and algorithm that are 

well suited to CNV evolution but make it impractical to use single-cell sequence data; this 

forces a change to a bulk genomic data type, leading to inadequate sampling of extant clones 

to capture the rapid mutation process typical of CNV-driven evolution and observed in the 

true tree.
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Table 1

Software tools available for tumour phylogenetics

Tool* Data type Model type Algorithm type Refs

Cross-sectional data

TO-DAG Bulk, presence/absence of 
any aberrations

Probabilistic Combinatorial optimization 91

ct-cbn CNVs Probabilistic (non-standard) Specialized 113

NAM CNVs Probabilistic (non-standard) Maximum likelihood (EM) 112

N/A CNVs Distance-based (various) Several off-the-shelf 125

N/A CNVs Maximum parsimony Combinatorial optimization 177

RESIC 
(generalized 
from genes to 
pathways)

DNAseq-based SNVs and 
CNVs, and gene 
expression

Probabilistic (pathway 
generalization of RESIC)

Specialized (simulation-based) 118

RESIC DNAseq-based SNVs and 
CNVs or gene expression

Probabilistic Specialized (simulation-based) 117‡,§

N/A Gain/loss events Probabilistic (non-standard) Statistical hypothesis testing and 
PCA

109

METREX Gene expression Distance-based (various) WLS via Fitch (from Phylip), 
neighbour joining, and FASTME

123

N/A Gene expression Distance-based (WLS minimum 
evolution)

Fitch (from Phylip) 124

unmix Gene expression Distance-based (minimum 
spanning tree)

Combinatorial optimization (with 
deconvolution)

139‡,§

Rtreemix Generalized binary 
mutation array, cross-
sectional

Probabilistic (mixture model) Maximum likelihood (EM) 115

Mtreemix Generalized mutation array Probabilistic (mixture model) Maximum likelihood (EM) 111§

oncotrees Large CNVs or 
cytogenetic breaks

Statistical (non-standard) Combinatorial optimization 66§

oncotrees Large CNVs or 
cytogenetic breaks

Distance-based (non-standard) Combinatorial optimization 122

DiProg Large CNVs or 
cytogenetic breaks

Probabilistic Combinatorial optimization (ILP) 120

oncomodel Large CNVs or 
cytogenetic breaks

Probabilistic Maximum likelihood 108

N/A Large CNVs or 
cytogenetic breaks

Statistical (non-standard) Custom heuristic optimization 178

BML Mutational array Probabilistic Bayesian sampling (MCMC) 90

CAPRI, 
TRONCO, and 
PiCnic

Mutational array Specialized probabilistic (PiCnic 
is a general pipeline)

Custom heuristic optimization 121,179,180

Single-patient, bulk data

PhyloSub SNVs Probabilistic Bayesian sampling (MCMC) and 
maximum likelihood (EM)

119§

BitPhylogeny Methylation, WGS Probabilistic Bayesian sampling (MCMC) 86§

GRAFT DNAseq-based SNVs, 
CNVs, and rearrangements

Specialized Combinatorial optimization 134

Nat Rev Genet. Author manuscript; available in PMC 2018 April 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Schwartz and Schäffer Page 30

Tool* Data type Model type Algorithm type Refs

Single-patient, multiple-site, bulk data

cITUP DNAseq-based SNV VAFs Probabilistic (joint deconvolution 
and phylogenetics)

Combinatorial optimization 
(quadratic programming)

144

MEDICC DNAseq- or CGH-based 
CNVs

Minimum evolution Combinatorial optimization 85§

TuMult CNVs (large-scale) Maximum parsimony Combinatorial optimization 129§

Clomial DNAseq-based SNV VAFs Probabilistic Maximum likelihood (EM) 142‡

PhyloWGS DNAseq-based SNV and 
CNV VAFs

Probabilistic Bayesian sampling (MCMC) 135§

Canopy DNAseq-based SNV and 
CNV VAFs

Probabilistic Bayesian sampling (MCMC) 137

SPRUCE DNAseq-based SNV and 
CNV VAFs

Specialized (joint deconvolution 
and phylogenetics)

Combinatorial enumeration 136

SubcloneSeeker Any variant with a VAF Specialized (joint deconvolution 
and phylogenetics

Combinatorial enumeration 138

AncesTree SNVs Weighted parsimony Combinatorial optimization (ILP) 131

rec-BTP SNVs Specialized (joint deconvolution 
and phylogenetics)

Combinatorial optimization 130

LICHeE SNVs Specialized (joint deconvolution 
and phylogenetics)

Combinatorial optimization 132

SCHISM Output of a clone 
prediction program such as 
PyClone or SciClone

Probabilistic Maximum likelihood (genetic 
algorithm)

143

Single-patient, single-cell data

N/A FISH Probabilistic Maximum likelihood (EM) 181

N/A FISH Probabilistic Maximum likelihood (EM) 69

N/A FISH Weighted maximum parsimony 
(with constraint satisfaction)

Combinatorial optimization (ILP) 169

FISHtrees FISH Maximum parsimony (with 
several different formulations of 
the optimization problem)

Combinatorial optimization 84§,149§,151§,152§

N/A FISH Maximum parsimony (rectilinear) Combinatorial optimization 153

N/A qPCR and FISH Maximum parsimony Combinatorial optimization (PAUP) 182

OncoNEM scSeq-based SNVs Probabilistic Maximum likelihood (specialized 
heuristic)

154§

SCITE scSeq-based SNVs Probabilistic Bayesian sampling (MCMC) 87

muttree SNVs Probabilistic Maximum likelihood (specialized 
optimization)

89

CGH, comparative genomic hybridization; CNV, copy number variant; DNAseq, bulk DNA sequencing; EM, expectation maximization; FISH, 
fluorescence in situ hybridization; ILP, integer linear programming; MCMC, Markov chain Monte Carlo; MST, minimum spanning tree; N/A, not 
applicable; PCA, principal components analysis; qPCR, quantitative PCR; scSeq, single-cell sequencing; SNV, single nucleotide variant; VAF, 
variant allele frequency; WGS, whole-genome sequencing; WLS, weighted least squares.

*
Additional related tools, including tools that identify subclones by deconvolution, are listed in Supplementary information S1 (table), which also 

contains more information, including the URLs, for the tools listed here. For consistency with the text, the order of tools is sorted primarily by 
study type and secondarily by data type. Supplementary information S1 (table) is provided in Excel and includes an explicit study type column to 
allow the reader to sort the rows in the same way or in other ways.

‡
These studies have some phylogenetic aspects, but do not produce phylogenies as their primary output.
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§
These studies use some of the more important or innovative software packages.
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Table 2

Case studies using tumour phylogenetics

Data type* Method Refs

WGS Bayesian 183

WES and FISH cytogenetics Bayesian 101

Binary SGAs BEAST and PAUP 35‡

WES Broad Institute custom heuristic (parsimony, branch sibling model, and 
grafting at tips)

98‡

WES Broad Institute custom heuristic (parsimony, branch sibling model, and 
grafting at tips)

147

WES-based SNVs and SNP-based CNVs Broad Institute custom heuristic (parsimony, branch sibling model, and 
grafting at tips)

22

DNAseq REFS 23,53 67‡

WGS and targeted deep sequencing Custom heuristic in three stages 50

WES Custom heuristic in three stages 148

Ultra-deep multi-region DNAseq-based SNVs Custom heuristic in three stages 28

FISH FISHtrees 41

FISH FISHtrees 102

FISH FISHtrees 58

DNAseq, methylation, and CNVs Minimum evolution and third-party tool for some CNVs 73‡

CNVs MEDICC 43‡

DNAseq, aCGH, and FISH MEDICC 47‡

SNP-based CNVs, and LOH MEDICC 184

Cross-sectional DNAseq Mtreemix 110

Karyotyping Mtreemix and REF. 114 92

aCGH Neighbour joining 56

Regional aCGH Neighbour joining 145

scSeq-based CNVs Neighbour joining 71‡

WGA scSeq Neighbour joining 156

scSeq Neighbour joining 80

scSeq Neighbour joining 185

CNVs, RNA expression, and methylation Neighbour joining and RESIC 186

Single-cell microsatellite Neighbour joining using L1 distance between alleles 78‡

Targeted methylation Neighbour joining using methylation Hamming distance and ABC 
parameter inference

79‡

Targeted methylation Neighbour joining using methylation Hamming distance and ABC 
parameter inference

187

Targeted DNAseq Neighbour joining from ape with clones from PyVCF 100

Single-cell microsatellite Neighbour joining with Manhattan distance 76

Separate SNVs and CNVs with blood normal Neighbour joining, maximum likelihood, and ultrametric 83‡
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Data type* Method Refs

20 poly(G) tracts, regional Neighbour joining with bootstrapping, and MrBayes 106

Deep DNAseq Not documented 54

CNVs Not documented 188

WES-based SNVs and CNVs Not documented 64

Ultra-deep multi-region DNAseq Not documented 40‡

WES, and genotyping for SNVs Not documented 46‡

Regional WES-based VAFs, and aneuploidy Maximum parsimony 146

Microsatellites Maximum parsimony (Camin–Sokal) from Phylip (using MIX) 172

DNAseq-based SNVs, CNVs, and gene-fusion VAFs Maximum parsimony (manual) 158

WES Maximum parsimony (Wagner) from Phylip 61

WES Maximum parsimony (Wagner) from Phylip 99

SNVs and CNVs Maximum parsimony from Phylip (using B&B) 42

Deep DNAseq-based SNVs and indels Maximum parsimony from Phylip (using Dnapars) 49

Microsatellites Maximum parsimony from Phylip (using penny) 96

Regional WES-based SNVs Maximum parsimony in phangorn (in Bioconductor) 30

scSeq-based CNVs Maximum parsimony in phangorn (in Bioconductor) 157

WES, with verification by ultra-deep NGS Maximum parsimony, with a third-party max-mini tool 167

WES Maximum parsimony, maximum likelihood, and Bayesian 68‡

Targeted deep sequencing Maximum parsimony from Phylip with bootstrapping 189

WGS and WES Maximum parsimony and UPGMA using MEGA5 21‡

WES, FISH, and targeted deep sequencing PyClone and neighbour joining on three FISH loci 70

WGS-based SNVs and CNVs, and a custom targeted 
method for clonality

PyClone, EXPANDS and BIoNJ 53

WES PyClone and customized maximum likelihood 190

WGS- or array-based CNVs, and scSeq TITAN and PyClone for bulk data, and MrBayes for scSeq data 191

CNVs (and other data for non-phylogenetic analyses) TuMult 59‡

WES TEDGs 34

Microsatellites Statistical analysis of allele sizes 107‡

X chromosome microsatellites in males Statistical analysis of allele sizes 165

See Supplementary information S2 (table) for more information about each of these studies, and also for some comparable studies that did not use 
tumour phylogenetics but addressed similar problems by non-phylogenetic methods. ABC, approximate Bayesian computation; aCGH, array 
comparative genomic hybridization; CNV, copy number variant; FISH, fluorescence in situ hybridization; DNAseq, bulk DNA sequencing; indel, 
small insertions or deletions; LOH, loss of heterozygosity; NGS, next-generation sequencing (typically a mixture of WES and WGS); scSeq, 
single-cell sequencing; SGAs, somatic genetic abnormalities; SNV, single nucleotide variant; TEDGs, tumor evolutionary directed graphs; VAFs, 
variant allele frequencies; WES, whole-exome sequencing; WGA, whole-genome amplification; WGS, whole-genome sequencing.

*
DNA samples are bulk samples unless they are explicitly noted as coming from single cells.

‡
These studies are, in our opinion, the most important, innovative or controversial.
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Table 3

Experimental technologies and data types for tumour phylogenetics

Technology
and data type

Comments Refs

Pre-NGS technologies

Large-scale cytogenetic abnormalities Convenient before sequencing became ubiquitous, but superseded by more comprehensive 
genomic studies

66

Microsatellite markers Rapidly evolving, usually neutral markers 78

FISH Useful for probing small numbers of CNVs in single cells; largely displaced by scSeq, but 
still important owing to its practicality for much larger numbers of single cells

69

aCGH Early high-throughput method for bulk CNV profiling; still in use, although being displaced 
by DNAseq

145

Expression microarrays Convenient for high-throughput before RNAseq became widely available; not commonly 
used for phylogenetics, as it provides only a noisy and indirect measure of genetic evolution

123

SNP chips Designed initially for genotyping and association studies, but also used in many cancer 
studies to infer copy number profiles along the genome and to infer CNVs

Bulk sequence technologies

DNAseq SNVs Perhaps the most commonly used marker type, it provides whole-exome or whole-genome 
profiles of evolution by point mutations

117

DNAseq CNVs CNVs can be inferred by local changes in sequence coverage, instead of using aCGH or 
SNP arrays

117

RNAseq expression More precise and accurate replacement for expression microarrays; nonetheless remains a 
niche technology for phylogeny studies

124

DNA methylation Measured by bisulfite sequencing, provides unique information on the evolution of the cell 
state that is not apparent from conventional DNAseq methods; some methylation markers 
are neutral, others evolve to select for gene expression

79

scSeq technologies

DNAseq SNVs Uniquely powerful method for identifying large numbers of phylogenetic markers at the 
single-cell level; only recently making inroads as the technology has matured and data 
quality has improved

87,154

DNAseq CNVs Perhaps the dominant technology for single-cell tumour phylogenetics, offering coarse-
grained profiles of evolution by copy number change; robust to data quality issues in 
emerging scSeq technologies

71

Single-cell microsatellites Not a widely used technique but one important to early tumour phylogeny studies; offers 
important advantages in profiling a putatively selectively neutral marker type

76

aCGH, array comparative genomic hybridization; CNVs, copy number variants; DNAseq, bulk DNA sequencing; FISH, fluorescence in situ 
hybridization; NGS, next-generation sequencing; RNAseq, RNA sequencing; scSeq, single-cell sequencing; SNVs, single nucleotide variants.
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Table 4

Phylogeny models and algorithms

Model or algorithm name Description Refs

Evolutionary models and objective functions

Maximum parsimony (MP) Simplest phylogeny model; assumes that mutations are rare and so the tree with 
the fewest mutations is the most plausible

96

Minimum evolution (ME) Distance-based analogue of maximum parsimony; assumes that the tree with the 
least amount of evolution is the most plausible

85

Probabilistic Broad class of models well suited to complicated evolutionary scenarios, noisy 
data, and sampling over unknown evolutionary parameters; generally divided 
into maximum likelihood (ML), used to find one best-fitting tree for the data and 
model, and Bayesian, used to identify the space of plausible trees and parameters 
consistent with the model and data

86,110,111,135,137

Weighted least-squares (WLS) Distance-based model defining the most plausible tree as that most closely 
approximating an input set of distances between taxa by a mean-square measure

121

Phylogeny algorithms and algorithmic techniques

Combinatorial Broad class of methods frequently used for character-based phylogenies to 
optimize over a discrete set of possible topologies; generally the most efficient 
methods, but suitable only for simpler models; examples include B&B, in which 
one exhaustively searches a space of all possible solutions while avoiding 
provably unproductive subspaces, and integer linear programming (ILP) or 
quadratic programming (QP), in which one converts the problem to a special 
class of mathematical optimization for which efficient solver programs are 
available

89,131,144

Heuristic search Broad class of algorithms designed to approximately search a space of trees that 
are based on empirical effectiveness but are not proven to find the best possible 
trees; also used when solving for phylogeny models for which efficient, exact 
methods are unknown; a common generic heuristic is a genetic algorithm (for 
example, REF. 143), in which one generates a pool of possible solutions and 
‘evolves’ them under a model of mutation and mating; many phylogeny-specific 
heuristics have also been developed (for example, REF. 82)

121,143,176

Neighbour joining (NJ) Fast method for phylogenetics by successively refining subtrees, approximating a 
minimum-evolution tree while allowing a possibility of temporally impossible 
scenarios

76

Unweighted pair group with 
arithmetic mean (UPGMA)

Method for hierarchically constructing a tree by successively joining subtrees, 
yielding fast tree reconstruction but being dependent on the molecular clock 
hypothesis (that variation accumulates at equal rates in all tree branches)

21

Markov chain Monte Carlo 
(MCMC)

Class of algorithms that is suitable to many forms of probabilistic model and 
allows one to explore parameter ranges and uncertainty in assignments, but is 
generally too computationally costly to use on trees of more than a small number 
of nodes

87
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