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Abstract

Behavioral evidence has shown that humans automatically develop internal representations 

adapted to the temporal and spatial statistics of the environment. Building on prior functional 

magnetic resonance imaging (fMRI) studies that have focused on statistical learning of temporal 

sequences, we investigated the neural substrates and mechanisms underlying statistical learning 

from scenes with a structured spatial layout. Our goals were twofold: (1) to determine discrete 

brain regions in which degree of learning (i.e., behavioral performance) was a significant predictor 

of neural activity during acquisition of spatial regularities and (2) to examine how connectivity 

between this set of areas and the rest of the brain changed over the course of learning. Univariate 

activity analyses indicated a diffuse set of dorsal striatal and occipito-parietal activations 

correlated with individual differences in participants’ ability to acquire the underlying spatial 

structure of the scenes. In addition, bilateral medial temporal activation was linked to participants’ 

behavioral performance, suggesting that spatial statistical learning recruits additional resources 

from the limbic system. Connectivity analyses examined, across the time-course of learning, 

psychophysiological interactions with peak regions defined by the initial univariate analysis. 

Generally, we find that task-based connectivity with these regions was significantly greater in 

early relative to later periods of learning. Moreover, in certain cases, decreased task-based 

connectivity between time points was predicted by overall post-test performance. Results suggest a 

narrowing mechanism whereby the brain, confronted with a novel structured environment, initially 

boosts overall functional integration, then reduces interregional coupling over time.

CORRESPONDING AUTHOR: Elisabeth A. Karuza (ekaruza@sas.upenn.edu), Department of Psychology, Center for Cognitive 
Neuroscience, Richards Building, University of Pennsylvania, Philadelphia PA 19104. 

HHS Public Access
Author manuscript
J Cogn Neurosci. Author manuscript; available in PMC 2018 April 05.

Published in final edited form as:
J Cogn Neurosci. 2017 December ; 29(12): 1963–1976. doi:10.1162/jocn_a_01182.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

spatial statistical learning; fMRI; functional connectivity

Introduction

Statistical learning is a powerful mechanism that operates by mere exposure to extract 

structure from the environment in a variety of domains, species, and developmental periods. 

Although statistical learning was initially directed to studies of the acquisition of various 

linguistic structures, there is now substantial evidence that statistical learning is domain-
general and supports the acquisition of non-linguistic structures (see Aslin & Newport, 2012 

for a review). While language contains a high degree of statistical regularity, the visual 

world is also richly patterned. A host of behavioral studies have demonstrated that human 

learners exploit not only the regularities embedded in temporally-ordered sequences (Fiser 

& Aslin, 2002a; Kirkham, Slemmer, & Johnson, 2002), but also those present in spatially 

structured scenes (Fiser & Aslin, 2001, 2002b, 2005). Since spatial information is abundant 

in visual input (e.g., characterizing features within objects and objects within scenes), 

learners must be equipped with neural machinery capable of generating internal 

representations of its structure. In the present work, we examine the nature of the neural 

mechanism that supports the learning of configurations of elements in complex spatial 

arrays. By exploring univariate activity and functional connectivity approaches, we 

simultaneously probe functional specialization (i.e., discrete regions of the brain that 

increase in BOLD response during a spatial learning task) and functional integration (i.e., 

the networks of brain areas that interact throughout this process; Büchel, Coull, & Friston, 

1999).

Recently, functional neuroimaging methods have been employed to examine mechanisms of 

statistical learning in the brain, but most of this work has focused on temporally-ordered 

(sequential) input (e.g., Plante, Patterson, Gomez, Almyrde, & Asbjornsen, 2015; Tremblay, 

Baroni, & Hasson, 2013; Karuza et al., 2013; Tobia, Iacovella, Davis, & Hasson, 2012; 

Tobia, Iacovella, & Hasson, 2012; Gheysen, Van Opstal, Roggeman, Van Waelvelde, & Fias, 

2010, 2011; Turk-Browne, Scholl, Johnson, & Chun, 2010; Turk-Browne, Scholl, Chun, & 

Johnson, 2009; Cunillera et al., 2009; Abla & Okanoya, 2008; Abla, Katahira, & Okanoya, 

2008; McNealy, Mazziota, & Dapretto, 2006). While these studies vary widely (e.g., in 

terms of stimulus modality, complexity of the material to be learned, and duration of 

exposure), they generally implicate some combination of sensory-specific cortical areas and 

downstream association areas such as prefrontal cortex (e.g., inferior frontal gyrus, IFG), the 

basal ganglia (e.g., the dorsal striatum: caudate and putamen), and medial temporal lobe 

(e.g., the hippocampus). Indicating some degree of sensory-specific involvement, linguistic 

and non-linguistic auditory learning tasks have been observed to elicit responses in the 

temporal lobe, including portions of the superior temporal gyrus (Plante et al., 2015; 

Tremblay, Baroni, & Hasson, 2013; Karuza et al., 2013; Cunillera et al., 2009; McNealy, 

Mazziota, & Dapretto, 2006), while visual learning studies have been associated with 

activation in non-primary regions such as the Lateral Occipital Complex (LOC; Turk-

Browne et al., 2009) and middle occipital areas (Gheysen et al., 2011; Turk-Browne et al., 
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2010). Though some have proposed that hippocampus and striatal areas can be dissociated 

by their timecourses (rapid versus gradual; Gheysen et al., 2010; 2011), another possibility is 

that they diverge according to their sensitivity to input modality (auditory versus visual). In 

particular, hippocampal involvement is less commonly observed in auditory sequence 

learning studies (but see Schapiro, Gregory, Landau, McCloskey, & Turk-Browne, 2014). 

Importantly, while we are beginning to disentangle patterns of neural activity underlying 

statistical learning of sequential information, the architecture supporting the acquisition of 

spatial regularities remains somewhat less defined. The present study addresses this gap by 

determining whether the prefrontal (particularly left IFG), dorsal striatal, and medial 

temporal structures that have been implicated in prior studies of sequence learning also 

support spatial statistical learning, or whether these substrates are instead specialized for 

regularities that unfold over time.

In addition to using univariate approaches to localize regions involved in learning, we 

employ functional connectivity measures to ask how these discrete areas interact with the 

rest of the brain as learning unfolds (we henceforth refer to these interactions as whole-brain 
connectivity). Specifically, we examine whether interregional coupling changes over the 

course of exposure to structured stimuli and probe whether these time-dependent shifts in 

connectivity are correlated with learning outcomes (e.g., overall post-test performance). We 

also probe shifts in connectivity at the item-specific level, asking whether interregional 

coupling is modulated by trial-by-trial learning within-subjects. Relatively few studies have 

simultaneously investigated activity and functional connectivity during the learning phase, 

and results range from an inverse relationship between activity and connectivity (e.g., 

Büchel et al., 1999; McIntosh, Rajah, & Lobaugh, 1999), to a complementary relationship 

(e.g., Yang, Gates, Molenaar, & Li, 2015), to no clear relationship between the two (e.g., 

Manelis & Reder, 2012; Sun Miller, Rao, & D’Esposito, 2007). By integrating the results of 

both univariate activity and functional connectivity approaches, we offer insight into the 

neural mechanisms underlying the learning process during the acquisition of spatial 

statistics.

Materials and Methods

Participants

A total of 31 participants ages 18−30 were originally tested in this study (all were right 

handed). Eleven of those participants were excluded on the following grounds: excess head 

motion (> 4 mm absolute motion, n = 3), incomplete or corrupted data (n = 4), or failure to 

respond to a minimum of 70% of test trials (n = 4). Because these analyses are built on the 

relationship between neural response during learning and behavioral performance at test, it 

was essential to include only those subjects with a complete posttest dataset. Data from the 

remaining 20 participants (14 female, 6 male) were analyzed. All participants had normal or 

corrected-to-normal vision and no history of neurological dysfunction. They were recruited 

from the Dartmouth College community, provided informed consent, and were compensated 

according to institutional guidelines.
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Stimuli

Following the method of the behavioral experiment of Fiser & Aslin (2001), participants 

were presented with a series of visual displays: 3 × 3 grids each containing three base-pairs 

drawn from a possible inventory of six. Base-pairs were defined as two shapes consistently 

positioned in the same relative arrangement (Figure 1). They were created using a total of 

twelve individual shapes. Note that while the position of a base-pair within the grid changed 

from trial to trial, the spatial relationship between the items within a pair was perfectly 

predictable across the course of the experiment. Two of these base-pairs were oriented 

vertically, two horizontally, and two diagonally. Shapes appeared only within a base-pair and 

never in isolation. Base-pairs were combined exhaustively such that participants were 

exposed to the 144 possible scenes that fit within the 3 × 3 grid, each containing a unique 

arrangement of 3 different pairs, one from each orientation. The only information that 

participants could use to discern the underlying base-pair structure was the co-variation of 

the relative position of shapes within a scene.

Procedure

Exposure—In an event-related design, each scene was presented for 2.5 s, and the 

interstimulus interval was jittered so that a baseline fixation cross appeared on the screen for 

2.5, 5, or 7.5 seconds. All 144 scenes were distributed across 3 exposure runs so that 

subjects saw 48 scenes per 6-minute run. Participants were instructed to attend to whichever 

scene was on the screen and were told that they may notice patterns or regularities within the 

grids. These instructions represent a slight departure from the canonical passive viewing 

paradigms used in other visual statistical learning studies. We elected to give participants a 

slightly more explicit task instruction given the challenges associated with obtaining 

behavioral evidence of learning in the scanner.

Test—After the exposure phase, participants underwent a testing phase in which they were 

shown two shapes on each trial: individual base-pairs or non-base-pairs (combinations of 

familiar shapes they had not seen previously). They were instructed as follows: “The 

displays that you just saw were made by taking pairs of shapes and combining them in the 

grid. Now you’ll see the grid with just one pair of shapes in it. Half of the pairs of shapes 

will have been included in the practice displays, half are new. Decide whether the pair that 

you see is made up of two shapes that went together, in that arrangement, in the first three 

runs. Respond when the stimulus is on the screen.” Participants indicated whether or not 

each pair looked familiar by pressing a button in one hand for “yes” and in the other for “no” 

(counterbalanced across participants). Responses were recorded during the 2.5 s presentation 

of each base-pair and non-base-pair. ISI was again jittered at 2.5−7.5 s. Over the course of 

two randomized testing runs, 6 base-pairs and 6 non-pairs were presented in 4 different 

positions within the grid, each twice. Base-pairs were presented in configurations that had 

been seen previously in the exposure phase, while non-pairs were presented in previously 

unseen configurations. As a result, the testing phase contained 96 items (48 base-pairs and 

48 non-base-pairs) and had a total duration of 12 minutes. Neuroimaging data collected at 

test are not presented here. All stimulus displays were created using one of 2 lists, with order 

counterbalanced across subjects.
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Stimulus presentation and data collection—Visual stimuli were presented using an 

Apple G3 computer (Apple Computer Inc., Cupertino, CA) interfaced with an Epson (model 

ELP−7000) LCD projector (Epson America, Inc., Long Beach, CA). Stimuli were projected 

onto a screen located in the back end of the magnet bore. Participants viewed the screen 

through a rearview mirror mounted to the head coil. The experiment was programmed using 

PsyScope 1.0 presentation software (Cohen, MacWhinney, Flatt, & Provost, 1993). 

Behavioral responses were recorded with hand-held button-boxes.

Images were acquired using a 1.5-T scanner (General Electric Medical Systems Signa 

CV/Nvi LX8.4, Waukesha, WI), equipped with a one-channel head coil. Anatomical images 

were obtained with a high-resolution 3D SPGR sequence (124 slices, TR = 25 ms, TE = 6 

ms, flip angle = 25°, voxel size = 1.0 × 1.0 × 1.2 mm). Functional data were collected using 

a gradient spin-echo echo-planar sequence (TR = 2500 ms, TE = 35 ms, flip angle = 90°, 

voxel size = 3.75mm in-plane resolution). For the 3 functional scans (144 time points each), 

25 T2*-weighted slices of 5.5 mm thickness were collected in an interleaved order.

Analysis

Image preprocessing and nuisance regression—Preprocessing was performed 

using FEAT v. 6.0 (fMRI Expert Analysis Tool) a component of the FSL software package 

(Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012). To prepare the functional 

images for analyses, we performed the following steps: skull-stripping with BET (Brain 

Extraction Tool) to remove non-brain material, motion correction with MCFLIRT (FMRIB’s 

Linear Image Registration Tool; Jenkinson, Bannister, Brady, & Smith, 2002), slice timing 

correction (interleaved), spatial smoothing with a 8-mm 3D Gaussian kernel (approximately 

twice the size of a single voxel), and high pass temporal filtering to reduce low frequency 

artifacts. Moreover, each participant’s individual anatomical image was segmented into grey 

matter, white matter, and CSF using the binary segmentation function of FAST v. 4.0 

(FMRIB’s Automated Segmentation Tool; Zhang, Brady, & Smith, 2001). The white matter 

and CSF masks for each participant were then transformed to native functional space and the 

average timeseries was extracted. These values were included as confound regressors in our 

statistical modeling along with 6 translation and rotation parameters as estimated by 

MCFLIRT. Finally, native image transformation to a standard template was completed using 

FSL’s affine registration tool, FLIRT (Jenkinson et al., 2002). Subject-specific functional 

images were co-registered to their corresponding high-resolution anatomical images, which 

were then registered to the standard MNI-152 structural template via a 12-parameter linear 

transformation.

Within-subject univariate activity analyses: Item-specific learning—We began by 

performing within-subject analyses for each of the three functional runs (“first-level 

analysis” carried out using FMRIB’s Improved Linear Model). The waveform corresponding 

to stimulus presentation was modeled by first specifying, for each timepoint, a value of 1 

corresponding to each event. We also included a second, orthogonalized regressor capturing 

fluctuations in activity related to behavioral performance on a scene-by-scene basis (see 

description below). Both waveforms underwent gamma-convolution in order to best match it 

to the measured hemodynamic response function (SD = 3 s; mean lag = 6 s). To reduce 
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unexplained noise, we also added in a fraction of the temporal derivative from the original 

waveform and applied a temporal filtering process.

Generation of the scene-by-scene learning regressor: Though our task involved a 

continuous, passive viewing phase, it could be broken into discrete events, or scenes 

containing a unique combination of 3 base-pairs. In evaluating post-test performance, we 

observed considerable inter- and intra-participant variability in the acquisition of base-pair 

structures (i.e., some base-pairs were better learned than others). Therefore, we constructed a 

scene-by-scene learning regressor to allow us to map behavioral performance as measured 

after exposure onto each of the scenes presented during exposure (Figure 2). Capitalizing on 

this variability in base-pair learning, we generated the scene-by-scene regressor by 

calculating, for each participant, the hit rate for each of the 6 base-pairs (this was possible 

because each base-pair was presented a total of 8 times during the post-test). For each 

combination of 3 base-pairs in a given scene during the learning phase, we then computed an 

average accuracy score time-locked to each one of the 144 scenes displayed throughout 

exposure. Therefore, despite the absence of a canonical on-line measure of performance 

(such as reaction time), we could still capture the neural correlates of learning that emerged 

as scenes were presented during each of the three exposure runs. We were forced to exclude 

from this particular analysis two subjects with perfect scores on all base-pairs at post-test, as 

the inclusion of their behavioral performance would have led to a rank-deficient model 

(because the task and scene-by-scene regressors were perfectly collinear).

Group-level univariate activity analyses—Next, we performed a series of group-level 

analyses designed to reveal (1) regions exhibiting an effect of scene-by-scene learning across 

the entirety of exposure, as well as (2) regions exhibiting a stronger/ weaker effect 

depending on the phase of exposure. One might, for example, expect behavioral 

performance to be associated with different patterns of neural activations early in the process 

of learning (e.g., run 1) compared to later in the learning phase (e.g., run 3). In the first 

group-level analysis, we combined across all 3 runs within-participant by inputting the first-

level parameter estimates of the scene-by-scene learning regressor into a fixed effects 

Generalized Linear Model (GLM). This analysis was intended to reveal which regions were 

activated on average, in contrast to subsequent analyses, which were intended to tease apart 

activity patterns that might differ between runs. After this intermediate step, we combined 

across participants, modeling the overall group effect via FMRIB’s Local Analysis of Mixed 

Effects (FLAME). All results presented below were first thresholded at the single voxel level 

using a Z-statistic of 1.96 (corresponding to an uncorrected two-tailed p-value of 0.05). 

Resulting clusters’ significance levels, as estimated by Gaussian Random Field theory 

(Worsley, 2001), were then compared to a cluster-forming probability threshold of 0.05.

To delineate differences in learning-related activity between runs, the intermediate across-

run concatenation step was not performed. Instead, we performed a “tripled t-test,” or a 

Repeated Measures ANOVA containing one fixed and one random factor. In this case, the 

fixed factor contained three levels corresponding to each of the three exposure runs, plus 

random subject intercepts. First-level estimates of the scene-by-scene learning effect were 
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entered directly into a FLAME mixed effects model. We specified 6 run-to-run contrasts 

(run 1–run 3; run 3–run 1, etc.).

Functional connectivity analyses: Psycho-physiological interactions—We next 

explored whether functional connectivity with learning-related regions changed throughout 

the course of exposure. There are a variety of approaches to investigating the functional 

context in which regions of the brain operate. We opted to examine psycho-physiological 

interactions (PPI); that is, to ask where in the brain correlations between regions strengthen 

(or weaken) during a specific condition (O’Reilly, Woolrich, Behrens, Smith, & Johansen-

Berg, 2012). The benefit of this approach is that it focuses on regions that exhibit a tighter 

functional association during the task of interest (in this case stimulus exposure relative to 

baseline) as opposed to those regions that are correlated in general, irrespective of task and, 

perhaps, due only to robust anatomical connections or close physical proximity.

Generation of the timeseries regressors: We performed a whole-brain PPI analysis using 

seed regions that showed an effect of learning in the univariate activity analysis (scene-by-

scene learning). As we found no significant differences in univariate activity when 

comparing runs, we chose to define all seeds based on learning-related activation peaks 

when concatenating across all three exposure runs (Figure 3). From that map, we selected 

the top two activation peaks from each significant cluster, resulting in 4 seed ROIs (in order 

of intensity): mid precuneus (x = 0, y = −66, z = 32), right amygdala (x = 22, y = −8, z =

−16), right thalamus (x = 8, y = −28, z = 0), and left lingual gyrus (x = −22, y = −56, z = 0). 

With so few studies examining spatial statistical learning, we selected these seed regions, 

defined purely functionally and limited to 2 per cluster, in order to offer a general snapshot 

of connectivity patterns uninfluenced by related literature on temporal statistical learning. In 

addition to this approach, we also chose peak intensity voxels in the dorsal striatum (left 

putamen: x = −28, y = −16, z = −4), the lateral occipital complex (left LOC: x = −46, y = 

−66, z = 18), and the right hippocampus1 (x = 30, y = –22, z = –10), as these areas have 

previously been implicated in one or more studies of temporal statistical learning (Karuza et 

al., 2013; McNealy et al., 2006; Turk-Browne et al., 2009; 2010). Finally, we also generated 

two “control” seed regions in cortical areas uninvolved in this spatial statistical learning task. 

As prior work has indicated right hemisphere dominance for visual statistical learning 

(Roser, Fiser, Aslin, & Gazzaniga, 2011), we focused here on left hemisphere seeds 

localized to Heschl’s gyrus (x = –42, y = –24, z =12) and primary motor cortex (i.e., 

precentral gyrus: x = –36, y = –20, z = 48)2. Thus, we examined connectivity using 7 

functionally defined regions of interest: 4 regions that were found to be most strongly related 

to the time-course of learning and 3 regions that were active, albeit less so, and were 

previously observed in statistical learning tasks. In addition, we explored connectivity 

patterns involving two control regions in presumably unrelated cortical areas.

1Given the close spatial proximity of activation peaks in the right amygdala and right hippocampus (Table 2), we probed connectivity 
with the latter using the most distant activation peak with at least 50% probability of being classified as hippocampal according to the 
Harvard-Oxford subcortical atlas.
2We thank our reviewer for drawing our attention to this control option. A similar pattern of results was also observed when 
examining connectivity with right Heschl’s gyrus.
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Implementation of the PPI models: All seeds were defined in 2-mm MNI space and then 

transformed back to each subject’s native functional image via their anatomical scan. Peak 

voxels were dilated using a spherical kernel with a 5 mm radius resulting in a 5-voxel ROI 

centered on the peak activation. To reduce noise in the signal, the mean time-course within 

the ROI was extracted from each subject’s filtered functional image after it had been motion-

corrected and preprocessed. Separate first-level models were generated for each seed, and 

preprocessing/ registration steps were performed exactly as previously described.

In the task-based version of the PPI analysis, we input for each of the 20 participants three 

explanatory variables: (1) a psychological regressor specifying stimulus event timing that 

was gamma-convolved with a hemodynamic response function. This regressor was centered 

such that the zero point fell halfway between each event and the baseline period; (2) a 

physiological regressor consisting of the filtered (pre-processed) time-course of our seed 

spheres, centered by subtracting the mean intensity across the timeseries from the intensity 

value at each TR; and (3) an interaction regressor modeling the relationship between the 

psychological regressor and the physiological regressor. While some approaches to PPI 

analysis (particularly in the case of event-related designs) recommend deconvolving the 

physiological timeseries, then reconvolving its interaction with the real-time task regressor 

(Gitelman, Penny, Ashburner, & Friston; 20033), we took the approach described in 

O’Reilly et al. (2012). We first convolved the task regressor, then combined it with the 

physiological timeseries extracted from the filtered neural data. Neither this physiological 

regressor nor the resulting interaction term was then convolved, nor did they undergo 

additional temporal filtering. This approach enabled us to examine broad shifts in task-based 

connectivity patterns over time while also relating them to between-subject variability in 

overall learning outcomes.

To make contact with our initial univariate analysis (i.e., where we examined activity 

associated with learning at the within-subject level), we ran a second, nearly identical 

version of the PPI analysis that additionally included a scene-by-scene learning regressor. 

An interaction regressor was then generated by combining this measure of item-specific 

variability with the physiological timecourse drawn from each participant’s seed spheres. 

We were again required to exclude two subjects displaying no scene-by-scene differences in 

behavioral performance. Thus, we investigated here a different type of shift in connectivity, 

asking whether interregional correlations modulated by item-specific learning changed over 

the course of exposure.

Group-level connectivity analyses—At group-level, parameter estimates for the PPI 

effects corresponding were contrasted by run, exactly as in the “tripled t-test” used to 

compare activity patterns across runs (described above for the univariate analyses). For both 

PPI model implementations, first-level interaction estimates for each participant were 

entered into separate FLAME mixed effects models comprised of random subject intercepts 

3More specifically, Gitelman, Penny, Ashburner, & Friston (2003) have cautioned against the assumption that the hemodynamic 
response function approximates the neuronal response in the context of functional connectivity analyses. While we cannot rule out that 
certain brain areas may have differing neuronal response functions, those differences should not account for changes in the strength of 
PPI effect over time, and would be more of a concern if our first-level models included and contrasted multiple timeseries from 
different regions.
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and a fixed factor containing three levels corresponding to each of the three exposure runs. 

We specified 6 run-to-run contrasts (run 1 – run 3; run 3 – run 1, etc.). We focus on the 

comparisons between the first and last exposure runs, as they represent maximally dissimilar 

phases of learning (early and late).

Finally, we evaluated whether broad shifts in task-based connectivity represented a potential 

mechanism of successful knowledge acquisition at the between-subject level. To this end, we 

investigated whether differences in connectivity between the first run and the last exposure 

runs might be modulated by individual differences in overall post-test performance. Task-

based PPI estimates from run 1 and run 3 were entered into a group-level FLAME model 

containing a fixed categorical factor with two levels corresponding to each of the two 

exposure runs, a numeric post-test regressor for each of the 20 participants (scores centered 

with respect to the group mean), and random subject intercepts. All connectivity maps were 

thresholded at Z > 1.96 using a cluster probability threshold of 0.054.

Results

Behavioral Results

Participants successfully discriminated structured base-pairs from two-shape combinations 

lacking statistical coherence (non-base-pairs), replicating the findings of Fiser & Aslin 

(2001). When categorizing pairs as “familiar” or “unfamiliar,” participants’ overall 

percentage correct was significantly greater than chance (mean % correct = 68.07%, SD = 

19.97; t(19) = 4.05, p = 0.0007). We also calculated a non-parametric sensitivity measure 

(A; Zhang & Mueller, 2005) to confirm that the hit rate for base-pairs differed significantly 

from the false alarm rate. Results indicated that A differed significantly from chance (mean 

A = 0.71, SD = 0.21, t(19) = 4.40, p = 0.0003).

Neuroimaging Results

Univariate activity results: Item-specific learning—In the scene-by-scene analysis 

we examined brain areas in which signal change during stimulus presentation in the learning 

phase was modulated by average base-pair learning per scene, as indicated by behavioral 

performance in the test phase. In this way, we capitalized on within-subject variability in 

learning of individual base-pairs. When combining across all runs, we observed a significant 

effect of this scene-by-scene regressor in two clusters: (1) a bilateral occipito-parietal cluster 

with a peak in the medial precuneus (extent = 3400 voxels; Z-max = 3.48 at x = 0, y = −66, z 

= 32, p < 0.0001); and (2) a bilateral subcortical cluster with a peak in the right amygdala 

(extent = 1581 voxels; Z-max = 3.35 at x = 22, y = −8, z = −16, p = 0.0086). For a detailed 

breakdown of all active regions, refer to Table 1. In line with our hypotheses, we found that 

learning recruited a network of subcortical and medial temporal structures (Figure 3), with 

engagement of bilateral hippocampus (R: x = 22, y = −8, z = −20, Z-max = 2.96; L: x = −24, 

y = −14, z = −14, Z-max = 2.09) and bilateral putamen (R: x = 32, y = −16, z = −6, Z-max = 

2.13; L: x = −28, y = −16, z = −4, Z-max = 2.46). Interestingly, however, some of the 

4Given that connectivity analyses are likely to be particularly sensitive to the lowered signal to noise ratio and resolution of 1.5 T MRI 
data, we repeated this analysis with control seeds from white matter and lateral ventricles, verifying that no relationship was found 
between PPI effects and learning.
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strongest learning effects in the bilateral medial temporal lobe (including the peak voxels in 

cluster 2) extended beyond the hippocampus, specifically left and right amygdalae (R: see 

above; L: x = −24, y = −14, z = −12, Z-max = 2.14). A tripled t-test comparing the runs 

revealed no significant differences in either learning-related or overall task-based activation 

between any of the exposure runs.

Functional connectivity results: Task-based effects

The first PPI analyses examined how the dynamics of interregional correlations change over 

the course of learning (i.e., does connectivity with regions associated with learning increase 

or decrease as a function of exposure to structured stimuli?). The results of the run 

comparison analysis were largely consistent: for all but two seeds we found significantly 

greater whole-brain connectivity for the first exposure run relative to the third exposure run 

(Figure 4 displays this result for each of our functionally defined seeds). That is, the strength 

of the PPI effect was most robust early in learning, except for the right thalamus and right 

motor cortex, which showed no changes in connectivity between the first and third runs. As 

further illustrated in Figure 4, the root of this connectivity difference was a positive PPI 

effect in run 1 (greater connectivity at task relative to baseline) and a negative PPI effect in 

run 3 (weaker connectivity at task relative to baseline). In other words, it was not the case 

that the PPI effects converged to zero over the course of exposure, but rather that the initial 

positive interaction between task and seed timecourse transitioned to a negative interaction 

later in learning. Table 2 summarizes all clusters exhibiting this significant decrease in 

connectivity across runs.

We also asked whether differences in connectivity between the earliest and latest exposure 

runs was modulated by overall accuracy on the base-pair judgment task (i.e., which regions 

displayed a significant interaction between time and post-test performance). This second 

analysis enabled us to probe the functional role of connectivity patterns specifically as they 

relate to between-subject learning outcomes. Of our 7 functionally defined seed ROIs, we 

found for 2 of them a significant interaction between time (early v. late) and overall post-test 

performance. For both the precuneus and LOC seeds, a greater drop-off in connectivity from 

run 1 to run 3 was associated with higher learning outcomes. For the LOC seed, learning-

related connectivity decreases were observed in two anterior frontal clusters extending from 

the frontal pole to the inferior frontal gyrus (right cluster extent = 1615 voxels, Z-max = 3.08 

in right frontal pole at x = 38, y = 44, z = 2, cluster p = 0.0204; left cluster extent = 2369 

voxels, Z-max = 3.79 in left frontal pole at x = –28, y = 42, z = –16, p = 0.0020; peak 

coordinates in LIFG: Z-max = 2.71 at x = –48, y = 18, z = 6). For the precuneus seed, this 

pattern was observed in a single bilateral cluster in anterior frontal cortex (extent = 3808, Z-

max = 3.54 in left frontal pole at x = –24, y = 44, z = –14, p < 0.0001). However, with regard 

to left LOC seed we also found evidence in the anterior cingulate for an additional negative 
interaction between connectivity decreases and post-test performance (extent = 2611 voxels; 

Z-max = 3.32 in right anterior cingulate at x = 2, y = 4, z = 34, p = 0.0010).

Finally, we found that decreases in connectivity with our two cortical control areas were also 

predictive of learning outcomes. For the seed in primary motor cortex, learning-related 

connectivity decreases were observed in a right fronto-temporal cluster (extent = 2214 

Karuza et al. Page 10

J Cogn Neurosci. Author manuscript; available in PMC 2018 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



voxels, Z-max = 3.41 in right frontal operculum at x = 46, y = 16, z = –4, p = 0.0034). A 

similar pattern was observed for the left auditory seed (right cluster extent = 2991 voxels, Z-

max = 3.55 in right frontal orbital cortex at x = 28, y = 14, z = –22, p = 0.0003; left cluster 

extent = 2596 voxels, Z-max = 3.62 in left amygdala at x = –18, y = –2, z = –18, cluster p = 

0.0010).

Functional connectivity results: Item-specific learning

Unlike the parallel univariate activity analysis, in which we found no significant differences 

in scene-by-scene learning between runs, we observed varying timecourses of item-specific 

connectivity dependent upon seed. This result also stands in contrast to our task-based 

connectivity analysis, which overwhelmingly revealed that connectivity was stronger during 

stimulus presentation in the first exposure run relative to the final exposure run. Note that the 

generation of a PPI regressor based on scene-by-scene variability answers a very different 

sort of question; namely, at what point in exposure is connectivity most strongly modulated 

by item-specific learning (i.e., within-subject)? Results are summarized in Table 3. Early in 

learning, we observed stronger item-specific connectivity with functionally defined seeds in 

left LOC and right amygdala. However, for functionally defined seeds in the left lingual 

gyrus, mid precuneus, and right thalamus, we found the opposite pattern: stronger item-

specific connectivity in the third exposure run relative to the first exposure run. The left 

putamen seed displayed both trends (i.e., stronger or weaker connectivity for the first relative 

to the third exposure runs, depending on which regions cohered with the seed). This same 

bi-directional pattern of connectivity was observed in our left primary motor and auditory 

cortex control seeds. We found no differences in early/late connectivity for the right 

hippocampal seed.

Discussion

The results presented here further inform our understanding of the neural basis of statistical 

learning, specifically for the learning of spatial patterns of shapes that comprise visual 

scenes. Similar to prior sequence learning studies, we found diffuse activation associated 

with the learning of base-pair structure that engages the basal ganglia, the medial temporal 

lobe, as well as sensory-specific cortical areas such as the lateral occipital complex. In 

contrast to these studies, however, the observed medial temporal activation encompassed 

bilateral amygdalae in addition to the hippocampus. Second, functional connectivity 

analyses revealed that whole-brain integration with active regions was significantly reduced 

over time, and, for some seeds (including our cortical controls), this reduction in task-based 

connectivity was predictive of overall behavioral performance. Interestingly, this trend did 

not extend to the timecourse of item-specific connectivity; we instead observed considerable 

variation across seeds in the pattern of interregional coupling modulated by scene-by-scene 

learning.

The representation of spatial information

We begin by situating our findings with respect to neurophysiological studies of spatial 

processing and topographical learning. There has been considerable investigation into the 

representation of spatial information in the brain (e.g., in natural scenes, faces, or objects). 
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Reports of both monkey physiology and human brain activity have implicated the inferior 

temporal cortex in processing complex visual objects and scenes (e.g., Sato et al., 2013; 

Zhang et al., 2011; Li & DiCarlo, 2010; Haxby et al., 2001; Op de Beeck & Vogels, 2000; 

Miyashita, Kameyama, Hasegawa, & Fukushima, 1998; Miyashita, 1993), and studies of 

topographical learning have implicated the hippocampal and parahippocampal regions (e.g., 

Epstein, DeYoe, Press, Rosen, & Kanwisher, 2001; Aguirre, Detre, Alsop, & D’Esposito, 

1996). However, less work has been dedicated to understanding how internal spatial 

representations are acquired, and topographical learning involves navigation through both 

space and time, making it difficult to disentangle the potential contributions of the system 

that learns distal spatial patterns from the system that learns temporal changes or 

associations between egomotion and visual input. Contextual cueing tasks, which measure 

learners’ ability to predict the location of an element based on its surrounding array, also 

involve a spatial memory component (Chun & Jiang, 1998). FMRI studies of this type of 

visual search task tend to implicate hippocampal regions (Giesbrecht, Sy, & Guerin, 2012; 

Manelis & Reder, 2012; Greene, Gross, Elsinger & Rao, 2007), prefrontal cortex (Pollmann 

and Manginelli, 2009), and the temporo-parietal junction (Manginelli, Baumgartner, & 

Pollman, 2013). In sum, despite key differences between the current paradigm and the afore-

mentioned approaches, our results are supported by related work on the processing and 

acquisition of different types of spatial information.

Domain-general learning substrates

Overall, we observed recruitment of regions similar to those engaged in sequential statistical 

learning tasks, suggesting that attunement to spatial regularities in the environment has a 

domain-general neural component. Specifically, results of the scene-by-scene univariate 

analysis revealed activation in the dorsal striatum and hippocampus. Hippocampal and 

parahippocampal regions are commonly associated with visual statistical learning of 

temporally structured patterns (e.g., Schapiro et al., 2014; Gheysen et al., 2010, 2011; Turk-

Browne et al., 2009, 2010), and evidence suggests that the basal ganglia, in certain cases 

along with prefrontal cortex, are similarly recruited during sequence segmentation tasks, 

regardless of the modality of the input (auditory: Plante et al., 2015; Karuza et al., 2013; 

McNealy et al., 2006; visual: Turk-Browne et al., 2009). However, here we found only weak 

evidence of left prefrontal recruitment: connectivity patterns indicated that interregional 

coherence with prefrontal cortex (i.e., LIFG) was predictive of learning, but this region was 

not revealed by the univariate activity analyses. An examination of whether prefrontal areas 

would be more strongly activated during recognition of learned test items, as has been 

demonstrated by McNealy et al. (2006), constitutes an important area of future study. 

Moreover, the bilateral nature of the univariate activation observed here differs from other 

accounts, based on split-brain patients, that the earliest stages of statistical learning are 

mediated by the right hemisphere (Roser et al., 2011). This finding did, however, motivate 

the choice of hemisphere for our connectivity control seeds.

Closer scrutiny of activation that covaried with learning revealed a final difference between 

studies of temporal learning and the results of this experiment: bilateral amygdalae 

activation. In humans, this region has been traditionally associated with emotional 

processing, typically exhibiting the greatest activity for stimuli with negative valence (e.g., 
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Phelps, 2006; Bechara, Damasio, & Damasio, 2003). However, within the animal literature, 

the amygdala has been shown to work in concert with hippocampus and prefrontal cortex in 

spatial tasks requiring exploration of a novel environment, and it shares an anatomical as 

well as functional relationship with these same brain areas (for a review, see Richter-Levin 

& Akirav, 2000). In fact, injection of the stimulant amphetamine into rat amygdalae 

improved their performance on a water maze task (Packard, Cahill, & McGaugh, 1994). 

Moreover, lesioning the amygdala has the opposite effect, severely impairing the ability of 

rats to complete spatial learning tasks (Galliot, Levaillant, Beard, Millot, & Pourie, 2010).

Taken together, these results suggest that dorsal striatum and hippocampal areas are 

recruited regardless of the type of statistical information to be learned (sequential vs. 

spatial). This observation is consistent with behavioral findings supporting a domain-general 

statistical learning mechanism, though of course, any domain-general learning substrate 

must rely on information transmitted from sensory cortex (e.g., the learner recruits early 

occipital cortex in initially sampling from visual displays). Moreover, we propose a unique 

contribution of the limbic system, specifically bilateral amygdalae, in supporting spatial 

statistical learning. To be clear, the absence of an experimental control condition matched 

for basic perceptual features of the input makes it challenging to disentangle the 

contributions of cortical and subcortical areas selectively involved in the learning process 

from areas that might more indirectly support this process. This issue is further highlighted 

by the observed pattern of connectivity results, discussed below, which revealed a 

relationship between behavioral performance and changes in interregional coordination with 

cortical areas apparently unrelated to the present task.

Patterns of functional connectivity in learning

Within the growing literature on task-based functional connectivity, results are beginning to 

converge on a view that across many different learning tasks, there is reduced interregional 

connectivity after learning or when encountering well-learned, well-practiced information. 

Consistent with these observations, we found for 6 of our 7 functionally defined seeds 

stronger task-based connectivity early relative to later in exposure. From the first to the third 

exposure runs, a pronounced reduction in connectivity with occipital, precuneal, medial 

temporal, and subcortical seeds was evident, and this reduction was driven in part by an 

inverse PPI effect in run 3. Relative to baseline fixation, interregional links became 

increasingly decoupled as participants viewed the exposure scenes. For 2 posterior seeds, the 

mid precuneus and left LOC, weakened connectivity with frontal cortex was specifically 

correlated with learners’ accuracy at discriminating base-pairs from non-base pairs. This 

result is consistent with findings that the “release” of high-level association areas predicts 

reaction times on a visuomotor sequence learning task (Bassett, Yang, Wymbs, & Grafton, 

2015). However, the opposite effect was found when comparing occipito-cingulate 

connectivity patterns, suggesting that functional integration with learning systems may 

operate at different time scales. Further work is needed to tease apart the factors mediating 

this effect, especially given that learning-related decreases in connectivity were associated 

with control seeds not recruited during exposure (i.e., primary motor and auditory cortex, 

though this pattern was not observed for seeds placed in white matter and cerebral spinal 

fluid). One possible explanation for this finding is related to the proposal that learners 
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decrease sampling from the environment as a function of exposure to structured stimuli 

(Karuza et al., 2016)– if such a narrowing mechanism indeed subserves the learning process, 

it might follow that dissociation over time from unneeded sensory-specific areas (i.e., motor 

and auditory cortex) would relate to increased behavioral performance.

We further suggest that considering the impact of within-subject, item-specific learning (in 

addition to between-subject variation in composite measures) might prove to be an 

especially useful method for increasing our understanding of the functional role of 

interregional communication. Indeed, while the present analyses reveal a consistent decrease 

in task-based connectivity over time, connectivity modulated by trial-by-trial measures of 

learning varied across the course of exposure. In particular, item-specific connectivity with 

LOC and the amygdala was strongest early in the learning phase, while the opposite effect 

was observed for seeds in the lingual gyrus, precuneus, and thalamus. Importantly, 

converging evidence from both our within and between-subject measures of spatial 

statistical learning indicate that changes in functional integration, at least to the extent that 

they relate to measures of behavioral performance, are a potential mechanism of learning, 

not solely the by-product of prolonged stimulus exposure or task adaptation.

Previous studies have found similar decreases in task-based connectivity associated with 

better learning outcomes or the later stages of learning. After a several-day training period, 

Lewis, Baldassarre, Committeri, Romani and Corbetta (2009) found that visual and frontal 

cortices became anti-correlated when participants were at rest, and that the extent of this 

anti-correlation was predictive of behavioral performance on a shape identification task, 

suggesting a consolidation of network specialization. Coynel et al. (2010) measured 

functional integration over a 4-week course of motor skill learning and observed a decrease 

in connectivity between downstream association cortices and premotor areas as participants 

executed well-practiced sequences. Similarly, Sun, Miller, Rao and D’Esposito (2007) 

demonstrated greater interregional connectivity when participants were in the earliest phases 

of learning a novel bimanual motor pattern. Drawing parallels to the current findings, it 

appears that task-based connectivity bolsters early phases of learning and narrows as 

learning progresses. More general cognitive processes related to learning also show this 

pattern. For example, You et al. (2013) noted that functional connectivity in pre-adolescent 

children narrowed as participants transitioned from resting state to a sustained attention task.

One potential explanation for this decrease in task-based connectivity, a “plumbing model” 

of learning in the brain, arises from the observation that low levels of activity are sometimes 

accompanied by a high degree of functional connectivity (e.g., Kelly & Garavan, 2005; 

Büchel et al., 1999; McIntosh et al., 1999). Here we examined whether the burden of early 

computation of statistical regularities was shared by a highly integrated network of regions, 

and whether, after further exposure, these interregional connections were no longer required, 

resulting in lower levels of connectivity but greater BOLD activity in specialized 

downstream regions. From our univariate analyses, we do not find strong support for this 

plumbing hypothesis: run comparisons revealed no significant differences in activity over 

time. However, the divergence between the present findings and previous findings that do 
support the plumbing hypothesis might be traced to key differences in the nature of learning. 

Specifically, those studies that have dissociated activity and connectivity tend to involve 
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learning tasks that resulted in explicit representations of regularities in the environment 

(Büchel et al., 1999; McIntosh et al., 1999). By contrast, we have shown that while task-

based connectivity clearly fluctuated, activity levels in a more implicit learning context (i.e., 

one that did not result in explicit representations) did not differ. Above all, our results 

suggest a complex learning process involving mechanisms operating at different timescales: 

while we did not observe stark differences in the magnitude of learning-related BOLD 

activity across runs, we did find a unique connectivity relationship that shifted as exposure 

to patterned visual stimuli progressed, as well as a correlation between changes in 

connectivity over time and ultimate learning outcomes. In the future, advances from the field 

of network neuroscience (Bassett & Sporns, 2017), which involve the use of graph 

theoretical tools to formalize properties of interregional communication, might be leveraged 

to shed light on the precise mechanisms underlying both the broad-scale and item-specific 

shifts in connectivity observed here.
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Figure 1. 
Left panel: Example of a scene viewed by participants during the exposure phase. Each 

scene contained a variable configuration of 3 base−pairs, where base-pairs were defined as 

two shapes in a fixed spatial relation. Each pair has been color-coded to illustrate the 

underlying structure, but this coding was not visible to the participant during exposure. 

Right panel: the full inventory of base-pairs.
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Figure 2. 
Sample scene scores for a hypothetical participant. Because participants learned base-pairs 

to varying degrees, it was possible to calculate an average learning score for each scene. 

Recall that each scene contained 3 base-pairs. In this example, the learning score for scene 1 

was calculated by averaging 75%, 100%, and 62.5%, or correct endorsement of base-pairs 1, 

4, and 5 at post-test. In our model, the time point for this scene would thus be assigned a 

value of 79.2. The time point associated with Scene 2, which contains base-pairs, 1, 3, and 6 

would be assigned a score of 54.2.
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Figure 3. 
Axial views (z = –32 mm to z = 32 mm) for the univariate scene-by-scene (item-specific) 

learning analysis, collapsed across all three exposure runs.
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Figure 4. 
Top panel: For each functionally defined seed region, axial views of areas exhibiting a 

significant decrease in task- based connectivity over the course of exposure (L LOC = Left 

lateral occipital complex). Slices were selected to illustrate peak voxels. Bottom panel: 

Strength of task-based connectivity in individual runs. From the set of regions exhibiting a 

significant decrease in connectivity over time (i.e., each map above), we extracted for each 

seed region mean PPI effects for run 1 (dark grey) and run 3 (light grey).
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