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Abstract
Oligopeptides are important markers of protein metabolism, as they are cleaved from larger polypeptides and proteins.
Genetic association studies may help elucidate their origin and function. In 1,552 European Americans and 1,872 African
Americans of the Atherosclerosis Risk in Communities study, we performed whole-genome and whole-exome sequencing
and measured serum levels of 25 peptides. Common variants (minor allele frequency>5%) were analysed individually. We
grouped low-frequency variants (minor allele frequency�5%) by a genome-wide sliding window using region-based aggre-
gate tests. Furthermore, low-frequency regulatory variants were grouped by gene, as were functional coding variants. All
analyses were performed separately in each ancestry group and then meta-analysed. We identified 22 common variant asso-
ciations with peptide levels (P-value<4.2�10�10), including 16 novel gene-peptide pairs. Notably, variants in kinin-kallikrein
genes KNG1, F12, KLKB1, and ACE were associated with several different peptides. Variants in KLKB1 and ACE were associated
with a fragment of complement component 3f. Both common variants and low-frequency coding variants in CPN1 were
associated with a fibrinogen cleavage peptide. Four sliding windows were significantly associated with peptide levels
(P-value<4.2�10�10). Our results highlight the importance of the kinin-kallikrein system in the regulation of serum peptide
levels, strengthen the evidence for a broad link between the kinin-kallikrein and complement systems, and suggest a role of
CPN1 in the conversion of fibrinogen to fibrin.

Introduction

Oligopeptides are short peptides consisting of two to twenty
amino acids. Circulating peptides are generally formed when
they are cleaved from larger polypeptides, and as a conse-
quence they are important markers of protein metabolism.
Although numerous peptides have documented biological
roles (1), many others remain poorly characterized. Genetic
association studies may help elucidate their origin and
function.

Several studies have examined the association of serum
peptides with common genetic variants characterized using
genotyping arrays and subsequent imputation (2–4). These
studies have resulted in important insights into the genetic fac-
tors regulating the production and degradation of peptides as
well as the metabolic systems underlying disease (5). Further
resolution in examining the genetic determinants of peptides
may be gained through sequencing. Although several studies
involving genotyped or sequenced exomes have been per-
formed (6,7), much of the causal genetic variants associated
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with quantitative traits such as peptides are thought to reside
in noncoding regions, meaning that exome sequencing studies
may miss important effects. This limitation can be overcome
by using whole-genome sequencing, although the analysis of
whole-genome sequencing data in association studies remains
at an early stage compared to that of genotyping array data
(8–14).

In this study, we thus aimed to identify new associations be-
tween common, low-frequency, and rare genetic variants and
serum levels of 25 peptides using whole-genome and whole-
exome sequencing data from 3424 participants of the
Atherosclerosis Risk in Communities (ARIC) study.

Materials and Methods
Study population

We used the ARIC study, a prospective epidemiological study
designed to investigate the etiology and predictors of cardiovas-
cular disease. At the baseline exam (1987–1989), 15,792 middle-
aged men and women were recruited from four communities
across the United States: Forsyth County, North Carolina;
Jackson, Mississippi; northwest suburbs of Minneapolis,
Minnesota; and Washington County, Maryland. The partici-
pants were mostly of European (EA) or African American (AA)
ancestry. The design of the ARIC study has been described in
further detail elsewhere (15). The ARIC study has been approved
by the Institutional Review Board at all participating institu-
tions. All participants included in this study provided written
informed consent. Participants were excluded if they did not
give consent for use of DNA information.

Peptide profiling

Non-targeted metabolomic profiling was performed on fasting
serum samples using a protocol based on both gas and liquid
chromatography mass spectrometry (Metabolon Inc., Durham,
USA)) (16,17). The samples had been stored at -80 �C between
the time of collection (1987–1989) and the analysis. Metabolites
were measured in two phases: a total of 1,880 AA samples were
analysed in 2010 and 2,170 EA and AA samples were analysed in
2014. Among metabolites that were measured both in 2010 and
2014, the subset of 49 metabolites classified as peptides were in-
cluded in the present study. Peptides were excluded if over 25%
of the values were below the detection limit were excluded, as
well as if there was a low correlation between 2010 and 2014
measurements (Pearson correlation coefficient< 0.3). After this
quality control, 25 were peptides and were included primary
analyses in the present study. In secondary exploratory analy-
ses, we go beyond these 25 peptides and also use the 24 pep-
tides did not pass quality control. The reason that each of these
peptides was excluded is listed in Supplementary Material,
Table S1. Levels below the detectable limit were imputed with
the lowest detected value for that peptide in all samples.
Peptide levels outside the 1st–99th percentile were winsorized.
Finally, all peptide levels were natural-log transformed in order
for their distribution to approximate the normal distribution.

Whole-genome sequencing

Methods for the whole-genome sequencing of ARIC study par-
ticipants have been described in detail in Morrison et al. (8). In
brief, Hiseq 2000 instruments (Illumina Inc., San Diego, CA)
were used to successfully sequence the genomes at a 7.4-fold

average depth. The sequencing was performed by the Baylor
College of Medicine Human Genome Sequencing Center. As de-
scribed previously (13,18), 72.8 million genetic variants were
called using goSNAP, which employed three calling algorithms
(GATK, SNPTools, and GotCloud), each in joint calling mode,
and a consensus approach was used to generate a high-quality
variant call set (18). Variants with site-level inbreeding
coefficient< 0.9 were excluded, as were variants not in
Hardy-Weinberg equilibrium in ancestry-specific groups
(P-value< 1� 10�14). Principal-component analysis was used to
identify 40 individuals as outliers within their ancestry group,
and these individuals were excluded. 1,458 EA and 1,679 AA par-
ticipants with both whole-genome sequencing data and serum
peptide levels were included in this study. Whole-genome se-
quencing variants were annotated to functional domains using
the Whole Genome Sequencing Annotation (WGSA) pipeline
based on the reference genome GRCh37 (19). The 3’ and 5’ UTRs
of genes were determined using ANNOVAR (20) annotations
based on the RefSeq gene model (21). Promotors were defined
based on the overlap between 1) the permissive set of CAGE
peaks reported by the FANTOM5 project and 2) the 5 kb up-
stream region determined by the ANNOVAR annotation based
on the RefSeq gene model (22). Enhancers and the target genes
of the enhancers were defined based on the permissive set of
enhancers and enhancer-promoter pairs reported by the
FANTOM5 project. We assigned undesignated enhancers to the
nearest gene. Association between significant variants and
expression levels of nearby genes were obtained from the GTEx
portal (GTEx Analysis Release V6p, dbGaP Accession
phs000424.v6.p1). We used the single nucleotide polymorphism
annotator (SNiPA) tool to identify associations of our lead vari-
ants (along with correlated variants with r2> 0.8) with serum
metabolite levels (mQTLs) and protein levels (pQTLs) (23,24).

Whole-exome sequencing

Whole-exome sequencing was performed on 8,544 individuals
from the ARIC study, including 5,718 EA and 2,836 AA partici-
pants. DNA sequencing was performed using Hiseq 2000 instru-
ments (Illumina Inc., San Diego, CA) after exome capture with
VCRome 2.1 (NimbleGen, Inc., Madison, WI). Sequence align-
ment and variant calling were carried out via the Mercury pipe-
line (25). Variant-level quality control steps excluded variants
outside the exon capture regions, multi-allelic sites, missing
rate>20%, and mean depth of coverage>500-fold. Variants not
meeting Hardy-Weinberg equilibrium expectations in ancestry-
specific groups (P-value< 5x10�6) were also excluded. A sample
was excluded for missingness>20%, or if compared to the other
samples in the same ancestry group it fell outside of 6 standard
deviations (SD) from the mean depth, mean singleton count,
mean heterozygote to homozygote ratio, or mean Ti/Tv ratio.
After quality control, the mean sequencing depth of the in-
cluded variants was 87x.

We included 1,330 EA and 1,850 AA participants with both
whole-exome sequencing and serum peptide levels. Variants
were annotated using ANNOVAR (20) and dbNSFP v2.0 accord-
ing to the reference genome GRCh37 and RefSeq (26).

Statistical analysis

Both single variant and burden test analysis were performed us-
ing the R package ‘seqMeta’ (27). EA and AA participants were
analysed separately and then meta-analysed. Associations
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were classified as consistent across the two ethnicities when
the P-value was below 0.05 and the effect direction was the
same in both ethnicities. All analyses were adjusted for age,
sex, estimated glomerular filtration rate (28), and the first three
ancestry-informative principal components. The analyses in AA
participants were additionally adjusted for phase, a variable in-
dicating whether measurements took place in 2010 or 2014. All
EA participants were profiled in 2014, so analyses in EA partici-
pants were not adjusted for phase. Whole-genome sequencing
data was used for the single variant analysis, and only genetic
variants with a minor allele frequency (MAF) greater than 5% in
the meta-analysis of EA and AA participants were included. Out
of 8,434,536 common variants, 7,567,083 were present in both
EA and AA participants were included in the meta-analysis of
the two ancestry groups.

Three approaches were used to define the regions used to
aggregate genetic variants. For all approaches, only regions with
a cumulative MAF> 1% were included. First, a sliding window
approach involved windows of physical distance of 4 kb in
length, beginning at position 0 bp for each chromosome and
sliding 2 kb onwards with each step (8), leading to 1,336,946 slid-
ing windows across the genome. Secondly, we defined 18,575
regulatory regions using information on the position of en-
hancers, promotors, and 3’ and 5’ UTRs around each gene.
Thirdly, 11,551 protein-coding regions were investigated. The
analysis of sliding windows and regulatory regions was based
on whole-genome sequencing data, while the analysis of
protein-coding regions was based on whole-exome sequencing
data. These data were thus not aggregated, but were used in
separate analyses. Only nonsynonymous, stop-gain, stop-loss,
splicing, and frameshift variants were included in aggregate
tests of protein-coding regions based on whole-exome sequenc-
ing data. On each of the sliding windows and regulatory regions
we conducted a unidirectional aggregate test of association, the
T5 (29), and a bidirectional aggregate test of association, the se-
quence kernel association test (SKAT) (30). The T5 burden was
defined as the total number of minor alleles among variants in
the window with a MAF less than or equal to 5%. As previously
estimated using 1000 genomes data (31,32), we considered the
single common variants to correspond to 2 million independent
variants after accounting for linkage disequilibrium. The single
variant analysis thus consisted of 50 million independent tests
(2,000,000� 25), while the region-based aggregate tests con-
sisted of 68,353,600 independent tests (1,367,072� 2� 25). We
therefore used a unified Bonferroni-corrected P-value threshold
of 4.2� 10�10.

In order to study the clinical relevance of the 25 peptides, we
used linear regression models to examine the association of the
peptides with five quantitative cardio-metabolic phenotypes:
high-density lipoprotein (HDL) cholesterol, low-density lipopro-
tein (LDL) cholesterol, triglycerides (TG), systolic blood pressure
(SBP), and diastolic blood pressure (DBP). These phenotypes
were modeled as the dependent variable. Analyses were strati-
fied by ancestry group and adjusted for age, gender, measure-
ment phase, estimated glomerular filtration rate, body mass
index, current smoking, prevalent diabetes, antihypertensive
medication, and cholesterol-lowering medication. Ancestry-
specific results were then meta-analysed using fixed effects
inverse-variance weighted meta-analysis as implemented in
the ‘meta’ R package. We used a Bonferroni-correct P-value
threshold of 4.0� 10�4.

Although 24 of the 49 peptides did not pass quality control
for inclusion in our primary analyses, we performed an explor-
atory analysis to examine the association between levels of

these peptides and the lead variants at loci identified in our pri-
mary single variant analysis of common variants. Statistical
methods described for the primary analyses were also used in
this exploratory analysis. We used the same Bonferroni-
corrected P-value as in the primary analysis.

Additional analyses that were undertaken specifically to fur-
ther explore the identified associations are described in the
Supplementary Methods.

Results
Baseline characteristics

Baseline characteristics of the 1552 EA and 1872 AA participants
from the ARIC study having peptide levels and either whole-
genome or whole-exome sequence data are shown in
Supplementary Material, Table S2. The mean age was 53.6 years
old, 60.0% percent of the participants were female, and the
mean body-mass index (BMI) was 28.7. We used a Bonferroni-
corrected significance threshold of P-value< 4.2� 10�10 for all
discovery analyses.

Common variant analyses

In the meta-analysis of EA and AA participants, 22 independent
single variant associations between genetic variants and peptides
were identified (Table 1), of which all but one were consistently
associated (P-value< 0.05 in both ethnicities and same effect di-
rection) across the two ethnicities (Supplementary Material, Fig.
S1). Even for the inconsistent association (variants at SRSF12/
PM20D2 and N-acetylcarnosine) the effect direction was consis-
tent across the ethnicities, but the allele frequency in EA partici-
pants was very low (MAF¼ 7� 10�4). Functional annotations of
the 22 lead variants, including associations with expression of
nearby genes obtained from the GTEx portal are shown in
Supplementary Material, Table S3 (33). Of these associations, six
have previously been reported (2,4). Out of the 25 peptides that
were included in this study, eleven were affected by at least one
genetic variant. A heatmap representing the correlations among
these eleven peptides is shown in Supplementary Material,
Figure S2. Most peptides were only moderately correlated with
each other (Pearson’s r< 0.6), although a cluster of peptides in-
cluding alanylleucine, arginylphenylalanine, histidylleucine, leu-
cylalanine, and leucylasparagine showed stronger pairwise
correlations (Pearson’s r¼ 0.6 - 0.8). Several loci in the kinin-
kallikrein pathway were related to more than one peptide: the
KLKB1 locus contributed to levels of six peptides, the ACE locus
was associated with five peptides, the F12 locus influenced four
peptides, and the KNG1 locus was associated with two peptides.
There was considerable overlap among the peptides related to
each these genes, as shown in Figure 1.

The lead variants in the F12 and ACE genes influenced ex-
pression levels of F12 and ACE respectively (Supplementary
Material, Table S3). The ACE-increasing alleles A of rs4335 and
rs4363 were increased levels of glycylphenylalanine, leucylala-
nine, phenylalanylserine, and serylleucine, but lowered levels
of HWESASLLR. The F12-increasing G allele of rs1801020 was as-
sociated with higher levels of alanylleucine, arginylphenylala-
nine, histidylleucine, and leucylasparagine. Lead variants at all
of the identified loci were associated with serum levels of multi-
ple metabolites by previous studies, and several were also asso-
ciated with serum protein levels (Supplementary Material,
Table S4). Notably, variants at the KNG1 locus were associated
with serum levels of kininogen-1, coagulation Factor XI, and
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kallikrein levels. Variants at the KLKB1 locus were similarly as-

sociated with levels of kallikrein and coagulation factor XI.

Variants at the ABO locus were associated with levels of 20

different proteins.

Low-frequency and rare variant analyses

Using SKAT tests we identified four significant associations
between peptides and sliding windows (Table 2). All four of these
associations overlap with loci from the single variant analysis.

Figure 1. Overlap between the peptides associated with KLKB1, F12, KNG1, and ACE.

Table 1. Single variant associations

Meta-Analysis European Americans African Americans

Variant rsID Chr:Pos Peptide Closest Genes Alleles MAF Beta P-value Beta P-value Beta P-value

rs3733402 4:187158034 Alanylleucine KLKB1 A/G 0.37 0.19 3.6� 10�27 0.22 5.7� 10�20 0.15 1.8� 10�9

rs1801020 5:176836532 Alanylleucine F12 G/A 0.35 0.12 1.7� 10�12 0.13 2.5� 10�6 0.12 1.4� 10�7

rs3733402 4:187158034 Arginylphenylalanine KLKB1 A/G 0.37 0.16 7.0� 10�20 0.16 1.1� 10�10 0.16 1.1� 10�10

rs1801020 5:176836532 Arginylphenylalanine F12 G/A 0.35 0.15 9.0� 10�19 0.16 4.2� 10�8 0.15 3.8� 10�12

rs11592631 10:101878219 DSGEGDFXAEGGGVR CPN1/ERLIN1 A/G 0.22 0.28 7.4� 10�12 0.24 4.0� 10�6 0.34 2.1� 10�7

rs4335 17:61565025 Glycylphenylalanine ACE A/G 0.38 �0.14 1.7� 10�20 �0.13 6.7� 10�11 �0.16 2.5� 10�11

rs3733402 4:187158034 Histidylleucine KLKB1 A/G 0.37 0.25 1.6� 10�44 0.29 7.3� 10�31 0.21 1.8� 10�16

rs1801020 5:176836532 Histidylleucine F12 G/A 0.35 0.17 1.6� 10�22 0.18 1.3� 10�9 0.17 2.0� 10�14

rs4363 17:61574492 HWESASLLR ACE* A/G 0.48 0.31 1.5� 10�23 0.32 7.5� 10�10 0.31 3.1� 10�15

rs4253311 4:187174683 HWESASLLR KLKB1 G/A 0.44 0.22 9.8� 10�13 0.19 2.7� 10�4 0.24 5.9� 10�10

rs3733402 4:187158034 Leucylalanine KLKB1 A/G 0.37 0.15 2.4� 10�26 0.14 2.9� 10�14 0.15 1.1� 10�13

rs4363 17:61574492 Leucylalanine ACE* A/G 0.48 �0.11 2.1� 10�17 �0.10 1.7� 10�7 �0.12 1.5� 10�11

rs5030081 3:186458910 Leucylalanine KNG1 A/G 0.44 0.09 4.2� 10�12 0.10 5.7� 10�8 0.08 1.4� 10�5

rs3733402 4:187158034 Leucylasparagine KLKB1 A/G 0.37 0.33 3.2� 10�36 0.37 2.1� 10�21 0.30 6.8� 10�17

rs1801020 5:176836532 Leucylasparagine F12 G/A 0.35 0.24 2.1� 10�20 0.31 1.6� 10�11 0.20 3.8� 10�11

rs5030082 3:186458949 Leucylasparagine KNG1 G/A 0.44 0.16 4.8� 10�11 0.15 1.7� 10�4 0.17 6.0� 10�8

rs9524869 13:95913675 N-acetylcarnosine ABCC4* G/C 0.43 0.08 1.4� 10�13 0.10 1.5� 10�11 0.06 2.2� 10�4

rs144330743 6:89852656 N-acetylcarnosine SRSF12/PM20D2* A/T 0.08 �0.15 3.0� 10�13 �0.46 0.052 �0.15 8.6� 10�13

rs6800284 3:30758956 N-acetylcarnosine TGFBR2/GADL1* T/C 0.37 �0.07 1.7� 10�12 �0.08 6.5� 10�10 �0.07 5.6� 10�4

rs4363 17:61574492 Phenylalanylserine ACE* A/G 0.48 �0.15 5.2� 10�24 �0.12 3.2� 10�9 �0.16 9.7� 10�17

rs4363 17:61574492 Serylleucine ACE A/G 0.48 �0.21 8.7� 10�50 �0.22 3.4� 10�25 �0.20 2.3� 10�26

rs2519093 9:136141870 Serylleucine ABO T/C 0.16 �0.14 4.1� 10�13 �0.13 1.2� 10�7 �0.15 5.4� 10�7

*Locus-Peptide association found by previous studies.

For each significant locus only the most significant variant per peptide is shown. The Alleles column shows the coded allele/non-coded allele. MAF refers to the minor

allele frequency in the meta-analysis of European and African American participants.
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No sliding windows reached the significance threshold using T5
tests. No significant associations were detected by focusing on reg-
ulatory regions with either SKAT or T5 tests. Additionally, we ap-
plied gene-based SKAT tests to whole-exome sequencing data and
identified an association between CPN1 and DSGEGDFXAEGGGVR
levels, which overlapped with the findings from the single variant
analysis (Table 2). No significant genes were found using T5 tests.
Lachesis plots for these five loci are shown in Supplementary
Materials, Figures S3–S7. Lachesis plots are regional association
plots that provide a comprehensive view of the association of
common variants, sliding windows, regulatory regions, and
protein-coding regions in a given region (8,18). The contribution of
single low-frequency and rare variants within these five regions to
levels of the relevant peptides is shown in Supplementary
Materials, Tables S5–S9. Most SKAT associations appeared to be
driven by one or more low-frequency variants. In particular, the
SKAT association involving CPN1 was driven by rs11592631, a sin-
gle low-frequency variant that was more significant than the lead
common variant. Because the minor allele frequency of
rs11592631 was over 5% in EA participants, this variant was not in-
cluded in the SKAT test when the analyses were restricted to EA
participants. Even though the results of the SKAT test between
CPN1 and DSGEGDFXAEGGGVR were therefore not consistent
across the ancestry groups, the driving variant rs11592631 had a
consistent direction and magnitude of effect (BetaEA¼ 0.80, P-
valueEA¼ 3.9� 10�11, BetaAA¼ 0.59, P-valueAA¼ 0.0019). Except for
the association between chr4: 187114119 -187118118 and leucylas-
paragine, the remaining significant windows were nominally sig-
nificant in both ancestry groups.

Since all five regions overlapped with loci identified in the
analysis of common variants, we adjusted the analyses of these
regions for the lead common variant. Four of the SKAT
associations were attenuated after adjustment for the lead
common variant (Table 3), but they remained significantly asso-
ciated (P-value< 0.013). The SKAT test between CPN1 and
DSGEGDFXAEGGGVR became more significant upon adjustment
for the lead common variant.

Association of peptides with cardio-metabolic
phenotypes

Out of the 25 peptides, 22 were associated with one or more of
the cardio-metabolic phenotypes (Supplementary Material,
Table S10). Of the eleven peptides for which we identified ge-
netic loci, nine were associated with one or more of the cardio-
metabolic phenotypes. The two most significant associations
among these nine peptides were N-acetylcarnosine with HDL

cholesterol (Beta¼�0.17, P-value¼ 3.1� 10�21), and alanylleu-
cine with TG (Beta¼ 0.13, P-value 9.6� 10�23) (34).

Association of identified loci with levels of peptides that
did not pass quality control

As an exploratory analysis, we examined common variant asso-
ciations between lead variants of loci identified in the primary
analysis and levels of the 24 peptides that did not pass quality
control, and hence were not included in the primary analysis
(Supplementary Material, Table S11). There were 26 peptide-
locus associations below the 4.2� 10�10 significance level. These
associations included 15 of the 24 peptides, and five loci: ten as-
sociations mapped to the KLKB1 locus, eight to F12, five to ACE,
two to KNG1, and one to ABO.

Bradykinin

Many of the identified genes were from the kinin-kallikrein
pathway, which leads to the production of bradykinin. As de-
scribed in the Supplementary Methods, bradykinin levels were
available in a subset of 1,432 participants. As an exploratory
analysis, we evaluated the association between the seven lead
variants in kinin-kallikrein genes and bradykinin levels. As
shown in Supplementary Material, Table S12, lead variants in
ACE and KLKB1 were significantly associated with bradykinin
levels (P-value< 0.01). We therefore examined whether bradyki-
nin mediated the association between these variants and pep-
tide levels. While the associations of lead variants in ACE with
glycylphenylalanine, leucylalanine, and phenylalanylserine
were not mediated by bradykinin, the associations with
HWESASLLR and serylleucine were partially mediated
(Supplementary Material, Table S13). For KLKB1, only the associ-
ation with HWESASLLR was partially mediated by bradykinin.

Fibrinopeptide A

DSGEGDFXAEGGGVR, which was associated with low-frequency
variants in CPN1, is a derivative of fibrinopeptide A, which in
turn is cleaved from fibrinogen during conversion to fibrin by
thrombin. To investigate whether variants in CPN1 broadly af-
fect the formation of fibrinopeptide A and derivatives, or
whether it specifically affects the conversion of fibrinopeptide A
to DSGEGDFXAEGGGVR, we examined the association of the
common and low-frequency lead variants in CPN1 with
DSGEGDFXAEGGGVR, ADSGEGDFXAEGGGVR, and their ratio
(Supplementary Methods). The minor allele of rs61751507, the

Table 2. Significant SKAT associations with peptides in the meta-analysis of European and African American participants

Meta-analysis European Americans African Americans

Region* Peptide Genes in region cMAF P-value cMAF P-value cMAF P-value

Whole-genome sequencing - Sliding windows
chr4: 187114119 – 187118118 Histidylleucine CYP4V2 0.40 4.3� 10�12 0.08 0.0033 0.27 1.4�10�9

chr4: 187114119 – 187118118 Leucylasparagine CYP4V2 0.40 6.5� 10�14 0.08 0.60 0.27 6.2�10�11

chr6: 89814009 – 8981800 N-acetylcarnosine SRSF12 0.21 7.9� 10�11 0.06 1.2� 10�4 0.21 3.8�10�8

chr17: 61152052 – 6115605 Serylleucine TANC2 0.31 2.1� 10�11 0.21 1.2� 10�7 0.18 0.0047
Whole-exome sequencing – Genes
CPN1 DSGEGDFXAEGGGVR CPN1 0.03 1.4� 10�14 0.003 0.22 0.02 2.0�10�7

*For each significant locus only the most significant region per peptide is shown. SKAT refers to sequence kernel association test. cMAF refers to the cumulative minor

allele frequency of all variants within the region that were included in the analysis.
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low-frequency lead variant in CPN1, was associated with both
increased DSGEGDFXAEGGGVR and ADSGEGDFXAEGGGVR
(Supplementary Material, Table S14). However, it was also asso-
ciated with a higher DSGEGDFXAEGGGVR to ADSGEGDFXAEG
GGVR ratio. The common variant was not associated with any
of the phenotypes in this subset.

Discussion
Using single variant analysis, we identified 22 peptide-locus
pairs of which 16 were novel. Five of these associations were ac-
companied by low-frequency variant signals. Genes involved in
the kinin-kallikrein system, including KLKB1, F12, KNG1, ACE,
and CPN1 were strongly represented among the associated loci.
Several associations reveal new insights into biological pro-
cesses, including the association of DSGEGDFXAEGGGV with
CPN1, as well as the association of HWESASLLR with KLKB1.

Several associations between kinin-kallikrein genes and the
25 peptides included in our analysis have been previously de-
scribed beyond those that we identified, including KLKB1 and F12
for glycylphenylalanine (14). Previous studies have also identified
associations between kinin-kallikrein genes and peptides that
were not included in our analysis. Suhre et al. identified KLKB1 for
bradykinin, des-arg (9) and ACE for aspartylphenylalanine (3).
Shin et al. identified the ACE locus for aspartylphenylalanine to
phenylalanylleucine ratio and alpha-glutamyltyrosine, as well as
the KNG1 and F12 loci for bradykinin, des-arg (2,9). Yu et al. linked
the ACE locus to threonylphenylalanine (4). Finally, Long et al.
identified the ACE locus for alpha-glutamylglycine, glycylglycine,
KLKB1 for isoleucylvaline, leucylphenylalanine to isoleucylpheny-
lalanine ratio, and prolylproline, and F12 for isoleucylvaline,
leucylphenylalanine to isoleucylphenylalanine ratio, and prolyl-
proline (14). These results reinforce our finding that variants in
kinin-kallikrein genes have widespread effects on serum peptide
levels.

The kinin-kallikrein pathway is an enzymatic cascade re-
lated to coagulation and inflammation (Fig. 2). Kinin-kallikrein
genes accounted for 16 of the 22 reported associations. In fact,
when we expanded our analyses beyond the 25 peptides that
passed quality control to the 24 peptides that did not pass qual-
ity control, we identified an additional 25 associations involving
kinin-kallikrein genes. Prekallikrein, encoded by KLKB1, is con-
verted into active kallikrein by factor VII, encoded by F12. The
high molecular weight (HMW) form of kininogen, encoded by
KNG1, interacts with factor VII and kallikrein to initiate the con-
tact activated (also called intrinsic) coagulation pathway.
Kallikrein also enhances the conversion of plasminogen into
plasmin, which is required for the degradation of fibrin clots.
Additionally, kallikrein breaks down HMW kininogen to form
bradykinin, a peptide that dilates the blood vessels, decreasing

blood pressure. The proteins encoded by ACE and CPN1, angio-
tensin I converting enzyme and carboxypeptidase N, both inac-
tivate bradykinin (35).

Previous genetic association studies have identified variants
for bradykinin in KLKB1, F12, and KNG1 (2). While the identifica-
tion of these genes for bradykinin was expected based on
known biology, our study identified novel associations between
these genes and levels of a range of other peptides, including di-
peptides alanylleucine, arginylphenylalanine, histidylleucine,
leucylalanine, and leucylasparagine, as well as oligopeptide
HWESASLLR. The biology underlying these associations is less
clear, although two patterns emerge from our results. First, all
peptides associated with KNG1 and F12 were also associated
with KLKB1. While some peptides affected by ACE were also re-
lated to these genes, others were not. This suggests that KNG1,
F12, and KLKB1 may affect peptide levels through a shared
mechanism. Secondly, lead variants in these genes tended to af-
fect peptides in the same direction: all associations with vari-
ants in KLKB1, F12, and KNG1 were positive, while most
associations with variants in ACE were negative. The only ex-
ception was the relationship between HWESALLR and the lead
variant in ACE.

HWESASLLR is derived from complement component 3 (C3).
C3 is initially cleaved into C3a and C3b, and the C3b fragment is
then further cleaved to produce both iC3b and C3f (36).
HWESALLR makes up the final eight amino acids on the C-ter-
minal of the C3f fragment. Our results thus suggest a link be-
tween the kinin-kallikrein system and the complement system.
Such a link has been suggested by previous research:

Table 3. Conditional analysis of significant SKAT associations adjusting for the lead common variants

Region Common variant Peptide cMAF Unadjusted P-value Adjusted P-value

Whole-genome sequencing - Sliding windows
chr4: 187114119 - 187118118 rs3733402 Histidylleucine 0.40 4.3� 10�12 1.4� 10�4

chr4: 187114119 - 187118118 rs3733402 Leucylasparagine 0.40 6.5� 10�14 5.9� 10�6

chr6: 89814009 - 8981800 rs144330743 N-acetylcarnosine 0.21 7.9� 10�11 1.3� 10�5

chr17: 61152052 - 6115605 rs4363 Serylleucine 0.31 2.1� 10�11 1.0� 10�6

CPN1 rs11592631 DSGEGDFXAEGGGVR 0.03 2.0� 10�12 6.2� 10�16

SKAT refers to sequence kernel association test. cMAF refers to the cumulative minor allele frequency of all variants within the region that were included in the

analysis.

Figure 2. Interactions among proteins within the kinin-kallikrein system (shown

in green) and their interactions with other pathways. Kininogen, kallikrein, and

coagulation factor XII participate in the coagulation cascade by initiating the

contact activation (intrinsic) pathway. CPN may play a role in coagulation

through its interaction with fibrinogen. CPN interacts with the complement

system by inactivating anaphylatoxins, which are derived from complement

components. Our study suggests that kallikrein and ACE also interact with com-

plement components. Finally, bradykinin and ACE play important roles in the

regulation of blood pressure through their roles in the renin-angiotensin system

and vasodilation.
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complement component 1 is known to inhibit the activation of
Factor XII and kallikrein (37), and carboxypeptidase N, the same
protein that inactivates bradykinin is also known to inactivate
anaphylatoxins derived from complement components, includ-
ing C3a (38). However, the association of HWESALLR with ACE
and KLKB1 suggests that the link is much broader than previ-
ously described, while the mediation by bradykinin levels spe-
cifically implicates bradykinin.

Besides its role within the kinin-kallikrein and complement
systems, carboxypeptidase N also appears to bind to both fibrin
and fibrinogen (39). This function may be particularly relevant
to the identified association with DSGEGDFXAEGGGV, which is a
fibrinogen cleavage peptide derived from fibrinopeptide A
(ADSGEGDFLAEGGGV) (40). When thrombin converts fibrinogen
into fibrin, fibrinopeptide A is cleaved off as a by-product (41).
Fibrinopeptide A is therefore used as a marker of thrombin activ-
ity (42). The association between variants in CPN1 and increased
DSGEGDFXAEGGGV levels suggests that carboxypeptidase N may
have a role in regulating the cleavage of fibrinogen by thrombin.
Although no further evidence for such a role exists, there is evi-
dence for involvement of carboxypeptidase N in fibrinolysis, the
degradation of fibrin clots. After activation through proteolytic
cleavage, carboxypeptidase N gains the ability to inhibit fibrinoly-
sis (43). It is doubtful that this mechanism explains the effect of
CPN1 on DSGEGDFXAEGGGV, however, because fibrinopeptide A
is cleaved from fibrinogen prior to the formation of fibrin clots.
Although carboxypeptide N may cleave fibrinopeptides (44), it is
equally unlikely that carboxypeptidase N cleaves the N-terminal
alanine from fibrinopeptide A to form DSGEGDFXAEGGGV, since
carboxypeptidase N specifically cleaves C-terminal arginine and
lysine. Our additional analyses do not support an effect on con-
version since the lead variant was related to increased levels of
both DSGEGDFXAEGGGV and fibrinopeptide A, and these associa-
tions were more significant than the association with the ratio of
DSGEGDFXAEGGGVR to fibrinopeptide A. Instead, it may be that
upon binding to fibrinogen, carboxypeptidase N influences the
rate at which fibrinogen is cleaved by thrombin. CPN1 specifically
codes for the small subunit of carboxypeptidase N, which con-
tains the enzymatic domain, and of which two are present in
each protein. The lead variant, rs61751507, that appears to be
driving the association of CPN1 with DSGEGDFXAEGGGV, is a
nonsynonymous variant known as Gly178Asp. The minor allele
of this variant has been implicated in carboxypeptidase N defi-
ciency, most likely in combination with further rare variants (45).

ACE cleaves COOH-terminal dipeptides from larger peptides,
and is therefore not a surprising locus for serum dipeptide lev-
els. Most famously, it cleaves histidylleucine from angiotensin I
to form angiotensin II (46). In our study, the lead variant in the
ACE gene was only suggestively associated with histidylleucine
(P-value¼ 3.9� 10�5). Several other associations between vari-
ants in ACE and dipeptide levels have previously been described
(2,4), and in this study we uncovered associations with two
more dipeptides: glycylphenylalanine and serylleucine. The
comparative prominence of these other associations reinforces
the idea that ACE cleaves broad range of peptides, and suggests
that the cleavage of other, so far unknown, peptides may belong
to its core functions (47).

The loci did not overlap with those that we or others have pre-
viously identified for amino acids, suggesting that these peptides
are primarily produced through protein catabolism rather than
amino acid metabolism (2,13,14). In addition to the loci that we
identified for peptides, several more have been described by pre-
vious studies. Suhre et al. identified the FUT2 and ABO loci for
ADpSGEGDFXAEGGGVR to ADSGEGDFXAEGGGVR ratio as well as

the ALPL and ENPEP loci for ADpSGEGDFXAEGGGVR to DSGE
GDFXAEGGGVR ratio (3). Long et al. found additional associations
between ENPEP and leucylalanine and between HIF1AN and phe-
nylalanylserine (14).

In conclusion, our results provide novel insight into the ori-
gin and function of serum peptides, revealing genes in the
kinin-kallikrein system to be the predominant genetic determi-
nants of serum peptide levels. In addition to highlighting the
important role of the kinin-kallikrein system in the regulation
of serum peptide levels, this study provides additional evidence
for a broad link between the kinin-kallikrein and complement
systems, as well as an interaction between carboxypeptidase N
and fibrinogen.
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