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Abstract
Placental health is a key component to a successful pregnancy. Placental insufficiency (PI), inadequate nutrient delivery to
the fetus, is associated with preeclampsia (PE), a maternal hypertensive disorder, and intrauterine growth restriction (IUGR),
pathologically poor fetal growth. PI is more common in early-onset PE (EOPE) than late-onset PE (LOPE). However, the relation-
ship between these disorders remains unclear. While DNA methylation (DNAm) alterations have been identified in PE and
IUGR, these entities can overlap and few studies have analysed them separately. This study aims to utilize DNAm profiling to
better understand the underlying placental variation associated with PE and IUGR. Placental samples from a discovery (43
controls, 22 EOPE, 18 LOPE, 11 IUGR) and validation cohort (15 controls, 22 EOPE, 11 LOPE) were evaluated using the Illumina
HumanMethylation450 array. To account for gestational age (GA) effects, EOPE samples were compared with pre-term births
of varying etiologies (GA<37 weeks). LOPE and IUGR were compared with term controls (GA>37 weeks). While 1703 sites
were differentially methylated (DM) (FDR<0.05, Db>0.1) in EOPE, few changes were associated with LOPE (N¼5), or IUGR
(N¼0). Of the 1703 EOPE sites, 599 validated in the second cohort. Using these 599 sites, both cohorts clustered into three
distinct groups. Interestingly, LOPE samples diagnosed between 34 and 36 weeks with co-occurring IUGR clustered with the
EOPE. DNAm profiling may provide an independent tool to refine clinical/pathological diagnoses into subgroups with more
uniform pathology. Despite large changes observed in EOPE, there were challenges in reproducing genome-wide DNAm hits
that are discussed.

Introduction
Preeclampsia (PE) (OMIM 189800), a multi-system maternal
hypertensive disorder of pregnancy, is the leading cause of
maternal and perinatal morbidity and mortality worldwide,
occurring in 2–8% of pregnancies (1). PE is also a major cause of

intrauterine growth restriction (IUGR), defined as poor fetal
growth due to an underlying pathology. However, IUGR may
also occur in normotensive (non-hypertensive) pregnancies.
Infants from pregnancies complicated by PE and/or IUGR are at
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risk for immediate and long-term adverse health outcomes
(2,3). To date, there is no consistent test utilized to predict PE or
IUGR prior to the onset of clinical symptoms. Protein bio-
markers such as pregnancy-associated plasma protein A
(PAPPA) and placental growth factor (PlGF) have been used to
predict PE and/or IUGR (4); however, these methods may not be
generalizable to other populations, as studies consist predomi-
nantly of high risk and/or Caucasian populations (5). Another
limitation of current screening approaches is our poor under-
standing of the distinct pathological mechanisms and corre-
sponding placental changes that may underlie these conditions.

Both PE and IUGR are heterogeneous in etiology, with many
different factors contributing to these phenotypes (6–8). Risk
factors for PE include genetic abnormalities, such as triploidy,
trisomy 13 or 16, and point mutations, as well as maternal
health factors, such as obesity, pre-existing hypertension, and
diabetes (9–12). Normotensive IUGR (nIUGR, i.e no co-occurring
PE) can arise due to similar factors as PE as well as poor mater-
nal nutrition, smoking, stress, and other causes (12–14). Due to
both the heterogeneity within and overlap between the etiology
of PE and IUGR, the ability to sub-classify placentas into more
homogeneous groups should aid in our understanding of dis-
ease pathogenesis and it’s prediction. Abnormal placental find-
ings associated with IUGR and severe preeclampsia are similar
and include: placental infarcts of varying types, fibrin deposi-
tion, advanced villous maturation, villitis of unknown etiology
etc. (15). By defining ‘placental IUGR’ on the basis of a detailed
scoring system for placental pathology, Benton et al. showed the
most abnormal subset was associated with very low maternal
serum PlGF and also had the most severe perinatal and postna-
tal risks (16). In some cases, PE and nIUGR may represent two
facets of a common underlying etiology, while in others the
associated placental pathology and molecular changes may be
distinct. Enforcing stringent criteria for defining and grouping
samples may increase the reproducibility for reported molecu-
lar changes. For this study, we subdivide our samples into
early-onset PE (EOPE), late-onset PE (LOPE), and nIUGR based on
clinical obstetric criteria.

Molecular profiling has the potential to refine these
clinically-defined group definitions further by identifying the
heterogeneity within and the overlap between EOPE, LOPE, and
nIUGR. Placental transcriptome profiling from pregnancies
associated with PE and healthy controls provide evidence for
multiple subtypes of PE (17). DNA methylation (DNAm) profiling
is an alternative or complementary approach to gene expres-
sion profiling to identify subgroups of placental phenotypes.
DNAm is more stable than mRNA and hence is less subject to
changes in sample processing time (18); it may also retain a
‘memory’ of earlier in utero exposures and hence be linked to
early effects in the disease process.

We previously showed widespread DNAm alterations in
EOPE (19) using the Illumina Infinium HumanMethylation450
Array (450K), measuring>480 000 CpG sites across the genome
(20). We also demonstrated that placentas associated with con-
fined placental trisomy 16, a condition that can be associated
with PE, show some overlapping changes with chromosomally
normal EOPE, as well as a unique set of changes specific to the
presence of the trisomy (21). Other groups have similarly found
altered DNAm in PE and IUGR, though the differentially methy-
lated sites or ‘hits’ are not entirely consistent between studies
(22–29). This inconsistency may be due to i) how sample groups
are defined, ii) placental sampling differences, or iii) how vali-
dated hits are defined between the studies.

The aim of the present study was to evaluate DNAm changes
in the context of placental insufficiency due to PE and IUGR as
compared with other preterm and term placentas. Specifically,
we i) use an epigenome-wide association approach to identify
DNAm changes associated with EOPE, LOPE and nIUGR ii) vali-
date differentially methylated sites in an independent cohort
and iii) investigate the relationships between PE, IUGR, preterm
birth and term control placentas using hierarchical clustering
based on the validated hits. We also discuss challenges to vali-
dation and the relevance for other applications of epigenetics in
the placental biology field.

Results
Widespread DNAm changes are associated with EOPE
but not LOPE and nIUGR in our Discovery cohort

Our first goal was to confirm our previous report of widespread
changes in EOPE (19) and then to test for similar changes in
LOPE and nIUGR using the same approach. We chose less strin-
gent cutoffs for significance in this analysis (FDR< 0.05 &
Db> 0.1) as compared with Blair et al. (2013) (FDR< 0.01 &
Db> 0.125) (19) as our aim was to identify a larger number of dif-
ferentially methylated sites that could be used for further vali-
dation. Based on these criteria, a total of 1703 sites were
differentially methylated between EOPE and pre-term controls
(Fig. 1). As expected, the majority (261/286) of EOPE hits reported
in Blair et al. were also identified as hits in this analysis.
Differences between the two analyses are likely explained by
the use of different normalization methods, correction for fetal
sex in the present study, and the inclusion of a few additional
samples in this study compared with the previous one.

We used the same approach to identify differential methyla-
tion associated with LOPE or nIUGR as compared with the
healthy term control group. In contrast to the EOPE comparison,
only 5 sites were differentially methylated between LOPE and
term controls, and no sites were differentially methylated
between nIUGR and term controls (Fig. 1). The five differentially
methylated sites between LOPE and term controls were not
unique to LOPE, as they were also included amongst the 1703
sites identified as differentially methylated in EOPE. These few
differentially methylated sites in LOPE may therefore be
explained if a subset of the LOPE cases present with typical
EOPE pathology.

Validation of the EOPE hits in an independent cohort

We next investigated if the EOPE hits from our discovery cohort
could be validated in an independent cohort. We first tested
whether the Db values in the discovery and validation cohorts
were correlated using all sites that met an FDR< 0.05 in the dis-
covery cohort, without imposing an additional Db threshold on
the validation cohort. At these sites, the correlation was signifi-
cant (R¼ 0.62, P< 2.2e-16, Fig. 2A). This indicates that largely
similar changes in DNAm are being observed in the EOPE pla-
centas in both cohorts. However, it should be noted that the cor-
relation appeared to be much stronger for sites that had shown
a high Db in the discovery cohort, while reproducibility is much
poorer for sites that showed small methylation changes.
Amongst the most highly hypomethylated sites (Preterm con-
trols- EOPE Db> 0.15, N¼ 23) in both cohorts were CpGs associ-
ated with many of the genes that were previously observed as
differentially expressed in preeclampsia KRT15, FN1, TEAD3,
JUNB, ST3GAL1, PKM2, NDRG1, PAPPA2, CHI3L2, and INHBA.
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Amongst the most highly hypermethylated sites (Pre-term con-
trol- EOPE Db<�0.10, N¼ 502) in both cohorts were several sites
associated with FAM3B, SYNE1, and AGAP1.

To narrow down the original 1703 EOPE hits from the discov-
ery cohort to a high-confidence hit list, we first asked, how
many of these hits met similarly stringent criteria (FDR< 0.05
and Db> 0.1) in the validation cohort? We found that only 38
probes (2.2%) met these strict criteria.

Using such arbitrary cutoffs in both populations and a strict
definition for a ‘hit’ may not be a powerful approach to assess

the degree of overlap in the data. Furthermore, requiring assay-
wide correction for multiple testing in the validation cohort is
overly conservative and reduces power. Running the linear
regression on only the 1703 sites differentially methylated in
the discovery cohort reduces the number of multiple test cor-
rections needed in the validation cohort. Based on the distribu-
tion of nominal P-values among the 1703 EOPE associated sites
in the validation cohort, shown in Figure 2B, there are many
more sites that meet a nominal P-value< 0.05 than expected by
chance, even if these do not meet a multiple test correction.
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Figure 1. Volcano plots depicting differentially methylated sites between (A) early onset PE (EOPE) and pre-term controls (Pre-term - EOPE), (B) LOPE and term controls (Term -

LOPE), and (C) IUGR and term controls (Term- IUGR). –log10 of the adjusted P-value is plotted on the y axis and the change in DNAm (Db) is plotted on the x axis. Sites highlighted

in red are hypermethylated in the pathology compared with controls. Sites highlighted in green are those that are hypomethylated in the pathology compared with controls.
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Figure 2. (A) The correlation between the change in DNAm (Db values) between early-onset PE (EOPE) and pre-term controls, between the discovery and validation

cohorts. The sites highlighted are the top sites labeled by the gene associated with the CpG site. (B) P-value distribution of the 1703 EOPE hits from the discovery cohort,

in the validation cohort.
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Hence, we opted to use a nominal P-value< 0.05 and a change
in DNAm in the same direction as the discovery cohort to define
validated (i.e. high confidence) hits. Based on these criteria, 599
of the 1703 (35.1%) EOPE hits were considered to be validated
(Fig. 2B). This is higher than what we would expect by chance
(P¼ 0.0001). This reproducibility rate was similar to the rate
reported by Yeung et al. (2016), who validated their own differ-
entially methylated regions with our published cohort [Blair
et al. (2013)] (30). As PE and IUGR are heterogeneous conditions,
it is possible that the reproducibility rate may be affected by the
samples chosen for each cohort, as well as sample size. We
were interested in whether the samples in the cohorts were
similarly correlated (i.e. is one cohort more heterogeneous than
the other). We investigated these correlations in the control
samples (Term and Pre-term) (Supplementary Material, Fig. S1)
and the EOPE samples (Supplementary Material, Fig. S2). In both
pathology groups, samples in the discovery cohort were more
heterogeneous than the samples in the validation cohort. This
heterogeneity suggests that the pre-term birth control placentas
used may be different between the discovery and validation
cohorts and may explain some of the non-reproduced hits
between the two cohorts. This heterogeneity may be due to the
fact that the discovery PTB controls were purposely selected to
span a range of etiologies and GAs while some pathologies,
such as chorioamnionitis, were excluded as controls in the vali-
dation cohort.

These validated sites were not enriched for any gene ontol-
ogy terms using ermineJ, with a 450K array specific background
(31). Interestingly, 224/599 validated differentially methylated
sites are found in enhancer regions. These sites include ones
associated with genes known to be relevant to EOPE from gene
expression studies including CGA, INHBA, PAPPA2, and
ADAM12. A list of these sites and relevant gene information can
be found in Supplementary Material, Table S1.

Effects of varying the validation criteria

To evaluate the effect of varying FDR and Db cutoffs to establish
the most ‘reproducible’ results, we plotted the percentage of
probes that showed Db concordance in directionality between
the validation cohort and the discovery cohort using different
FDRs and Db thresholds in the discovery set (Supplementary
Material, Fig. S3A). Different FDR thresholds did not influence
DNAm concordance rate when the Db thresholds were above
0.2. FDR thresholds appear to be more important when trying to
identify small changes in DNAm. We also investigated the num-
ber of hits that each threshold would obtain. Supplementary
Material, Figure 3B plots the number of hits at each FDR and Db

cutoff. Allowing smaller changes in DNAm produces many
more hits, but with a lower reproducibility rate. This is likely
because this is in the range of normal variability for a site. This
highlights the importance of considering both the biological
and statistical thresholds depending on the magnitude of the
anticipated DNAm change and the overall research objective.

Hierarchical clustering

Next, we evaluated the degree to which the 599 validated sites
can discriminate EOPE from all other placentas in both cohorts,
using hierarchical clustering (Fig. 3). We applied hierarchical
clustering to both the discovery and validation cohorts on the
599 validated sites. Interestingly, both cohorts clustered into
three stable methylation clusters (determined by 1000

permutations with pvclust and sigclust2; see methods), rather
than just two as we had expected (Fig. 3). Methylation cluster 1
included almost all EOPE, suggesting a consistent ‘placental
mediated’ phenotype in this group. In the discovery cohort clus-
ter, 6 of the 18 LOPE samples clustered with the EOPE samples.
In the validation cohort, 7 of the 11 LOPE samples and 1 pre-
term control clustered with the EOPE samples. Additionally, in
both cohorts, stable and significantly different sub-clusters
were identified within the larger placental mediated phenotype
group (methylation cluster 1), suggesting that methylation clus-
ter 1 may be heterogeneous itself. However, we observed no
obvious difference between these subclusters clinically (includ-
ing sex, ethnicity, disease severity etc.). Gestational age was
decreased in the EOPE methylation subcluster 1 compared with
subcluster 2 (P< 0.01) in the validation cohort (Table 1). As we
could not identify a clinical reason why the subclusters existed
and that sample size in the subclusters was small within meth-
ylation cluster 1, we did not split them into separate groups for
further analysis.

The remaining non-EOPE samples also separated into two
methylation clusters in both cohorts. We refer to these clusters
as methylation clusters 2 and 3. Methylation cluster 3 in both
cohorts was predominantly composed of controls. Within the
discovery cohort, methylation cluster 2 consisted of the major-
ity of the nIUGR and LOPE cases, a few EOPE cases, and some
pre-term and term controls. Additionally, decreased birthweight
(P< 0.01) and a trend towards increased IUGR diagnosis (P< 0.1)
was observed in methylation cluster 2 compared with cluster 3.
In the validation cohort, methylation cluster 2 consisted of pre-
term controls and LOPE samples and was associated with
decreased gestational age (P< 0.01) (Table 1).

Cluster gene ontology

As it was unexpected that the control samples would split into
two distinct methylation clusters, we were interested in investi-
gating the differences between the two control methylation
clusters (methylation clusters 2 and 3). Between methylation
cluster 2 and methylation cluster 3, 244 sites were differentially
methylated in both cohorts. Information on these sites can be
found in Supplementary Material, Table S2. There was no gene
ontology enrichment by ermine or DAVID. Between EOPE meth-
ylation subcluster 1 and EOPE methylation subcluster 2, 207
sites were differentially methylated in both cohorts.
Information on these sites can be found in Supplementary
Material, Table S3. There was no gene ontology enrichment by
ermineJ and symporter activity was the only gene ontology term
in DAVID to meet multiple test corrections.

Discussion
We previously reported widespread changes in DNAm associ-
ated with EOPE (19). In the present study, we extend this analy-
sis to LOPE and nIUGR; however, using the same approach, we
were unable to identify DNAm changes that are unique to these
groups. While these latter comparisons were limited by small
sample size, we were able to obtain significant associations
with EOPE with similarly small sample sizes. The reduced num-
ber of changes in the LOPE and nIUGR groups can occur for two
main reasons: 1) there may be much more limited placental
pathology with these diagnoses and the phenotype is largely
driven by maternal factors, or 2) they may be more heterogene-
ous etiology thereby limiting power to detect changes in the
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Figure 3. Hierarchical clustering (Euclidean) on the 599 validated hits in both the discovery (left) and validation (right) cohorts. Numbers represent the percentage of

times these clusters formed when using 1000 iterations with pvclust. Those highlighted in green are considered stable, where clusters formed>75% of the time. Those

highlighted in red were unstable. P values signify clusters are significantly different from one another.

Table 1. Clinical information on samples assigned to methylation cluster 2 compared with methylation cluster 3 and samples assigned to
EOPE methylation subcluster 1 and EOPE methylation subcluster 2. *p-value<0.1, **p-value<0.05, ***p-value<0.01.

DISCOVERY COHORT

Methylation
Cluster 2

Methylation
Cluster 3

EOPE Methylation
Subcluster 1

EOPE Methylation
Subcluster 2

N¼ 43 27 8 16
IUGR Status (IUGR/Total) 10/43 (23%)* 2/27 (7%) 7/8 (88%) 14/16 (88%)
Fetal Sex (F/Total) 22/43 (51%) 11/27 (41%) 5/8 (63%) 3/16 (19%)*
Gestational Age (weeks) [range (mean)] 25.0–40.0 (36.0) 28.0–41.3 (35.7) 24.9–36.0 (31.7) 26.0-37.3 (32.6)
Fetal Birth Weight (SD) [range (mean)] �2.78–3.77 (�0.44)** �2.16–1.70 (0.18) �2.90–1.17 (�1.87) �8.19 - -0.58 (-2.26)
Chronic Hypertension (CH/Total) 7/43 (16%) 2/27 (7%) 2/8 (25%) 5/16 (31%)
Diabetes (Pre-existing or Gestational) (Diabetes/Total) 2/43 (5%) 0/27 (0%) 1/8 (13%) 1/16 (6%)
Chorioamnionitis (CA/Total) 7/43 (16%) 5/27 (19%) 0/8 (0%) 0/16 (0%)
Premature Rupture of Membranes (PPROM/Total) 3/43 (7%) 4/27 (15%) 0/8 (0%) 0/16 (0%)
Ultrasound Findings (Findings/Total) 7/43 (16%) 2/27 (7%) 3/8 (38%) 4/16 (25%)
Placental Pathology Noted (Notes/Total) 17/43 (40%) 7/27 (26%) 4/8 (50%) 10/16 (63%)

VALIDATION COHORT

Methylation
Cluster 2

Methylation
Cluster 3

EOPE Methylation
Subcluster 1

EOPE Methylation
Subcluster 2

N¼ 7 11 19 11
IUGR Status (IUGR/Total) 0/7 (0%) 0/11 (0%) 11/19 (58%) 7/11 (64%)
Fetal Sex (F/Total) 1/7 (14%) 5/11 (45%) 9/19 (47%) 7/11 (64%)
Gestational Age(weeks) [range (mean)] 30.0–37.0 (33.0)*** 37.0–40.0 (38.4) 27.0–37.0 (32.8)*** 26.0-34.0 (29.8)
Fetal Birth Weight (SD) [range (mean)] �0.48–0.50 (�0.06) �1.11–3.60 (0.34) �2.27–2.92 (�1.12) �2.46 - -0.86 (-1.59)
Chronic Hypertension (CH/Total) 1/7 (14%) 1/11 (9%) 7/19 (37%) 3/11 (27%)
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group as a whole. In fact, 6 of the 18 LOPE samples in the discov-
ery cohort and 7 of 11 in the replication cohort were later shown
by a clustering approach to have DNAm profiles similar to the
EOPE group, which illustrates the importance of having homo-
geneous pathology groups for detecting pathology-associated
DNAm changes. If we want to improve biomarker discovery in
these groups, we will need to identify more homogeneous sub-
groups using a combination of clinical parameters, pathology
reports and/or biomarkers themselves, along with larger sample
sizes.

The LOPE samples in the discovery cohort that clustered
with the EOPE samples all presented with PE between 34.0
weeks and 35.9 weeks gestation and had co-occurring IUGR.
While it is possible that PE symptoms were present but not
diagnosed until after 34.0 weeks, there may also be inaccuracies
in dating the pregnancy and/or there is simply a grey zone in
the distinction between EOPE (placenta-driven) and LOPE
(maternal-health driven). There were also four cases of EOPE
within the discovery cohort that did not cluster with other EOPE
cases. One was diagnosed with hemolysis elevated liver
enzymes and low platelet (HELLP) syndrome and delivered at
33.3 weeks gestation, one also had chorioamnionitis (which
may have contributed to early delivery); one had preexisting
hypertension and was diagnosed early but did not deliver until
37 weeks and hence may have been milder in presentation; the
fourth was delivered at 33.3 weeks with no other placenta or
maternal health notes. Of note, none of the EOPE cases that
clustered outside of the EOPE cluster had co-occurring IUGR and
they were generally diagnosed at close to the cutoff of 34 weeks
gestation. Thus, the presence of IUGR in PE cases specifically
diagnosed between 32 and 36 weeks may be the more defining
feature as to whether an altered placental DNAm profile is
observed or not. Our data suggest that PE that co-occurs with
IUGR is a distinct entity from both isolated PE (no IUGR) and iso-
lated IUGR (no PE). Powers et al. (2012) showed that there are
two types of PE pregnancies: those with and without altered
angiogenic factors (32). As alterations in angiogenic factors have
also been observed in IUGR cases (33,34), Myatt and Roberts sug-
gested that an imbalance in these factors may represent a
measure of placenta growth, development, and function (35). As
such, the EOPE cases clustering outside the EOPE methylation
cluster may be more likely related to other contributing factors
than placental dysfunction.

While we expected to see an EOPE methylation cluster using
the validated hits chosen based on being differentially methy-
lated between EOPE and pre-term controls, we were surprised
that both the EOPE and control groups each formed two sub-
clusters. The driving differences between these subclusters
were not clear, though the tendency to lower gestational ages
and fetal birth weights (Standard deviation; SD) in subcluster 2
could suggest features linked to preterm birth (Table 1). When
looking specifically at sites that were differentially methylated
between methylation cluster 2 and methylation cluster 3, and
between methylation cluster 1 and methylation cluster 3, we
noticed some genes with similar functions, some of which have
previously been associated with PE. FN1, PKM2, and KRT15 had
changes in DNAm> 0.1 and FDR< 0.05 in both the validation
and discovery cohorts between methylation cluster 1 and meth-
ylation cluster 3. FN1 is involved in cell adhesion (36) and pro-
tein levels in maternal blood have been reported increased in
EOPE and LOPE with IUGR pregnancies, but not in LOPE without
IUGR or nIGUR (37). PKM2 is involved in cellular metabolism,
gene expression levels on PKM2 have been reported increased in
placentas of PE and IUGR pregnancies (38). KRT15 encodes

keratin important to cellular structure and integrity (39). KRT15
has been reported absent from cytotrophoblast vesicles in preg-
nancies complicated by PE (40). Figure 4A–C show that methyla-
tion cluster 1, likely consisting of ‘placental mediated PE’ is
hypomethylated at sites within FN1, PKM2, and KRT15. DNAm
distributions at these sites show a clear division between meth-
ylation cluster 1 and the other clusters. IL7, MAF, and CXCL9
were differentially methylated between methylation cluster 2
and methylation cluster 3 in both cohort (FDR< 0.05, Db> 0.05)
and all have immune related functions (41–43). The beta value
distribution of methylation cluster 2 appeared to have an inter-
mediate DNAm distribution between methylation cluster 1 and
3 for all of these 6 sites (Fig. 4). Clustering on just these 6 CpG
sites, principal component analysis clearly distinguished our 3
methylation clusters (Supplementary Material, Fig. S5). The
presence of two distinct subclusters within the EOPE methyla-
tion cluster could reflect PE severity, or perhaps unmeasured
factors such as medical treatments given or duration of hyper-
tension. Unfortunately, we had insufficient information on the
treatment of each case to evaluate the influence of medical care
on the placental methylation profile. The two clusters would
also be a technical artifact as our current information cannot
identify a biological reason for the split in methylation cluster 1.

Our data show a correlation in the changes in DNAm
between EOPE cases in the discovery cohort compared with con-
trol cohort (Fig. 2A). However, it should be noted that there were
also many sites with a high Db in the discovery cohort that had
a much smaller or sometimes opposite direction Db in the vali-
dation cohort. These sites were not significantly enriched for
any genomic region, but lack CpG sites in enhancer regions
(Supplementary Material, Fig. S4). Lack of validation could be
due to i) differences between the cohorts; ii) violating statistical
assumptions, or iii) technical noise. For example, risk factors for
PE include maternal health, lifestyle factors, genetic ancestry
etc., which could differ between the Vancouver and Toronto
cohorts and influence DNAm. Additionally, when performing
an FDR analysis, we assume the distributions of DNAm for each
probe is similar and independent. In fact, many sites show cor-
related changes and so are not independent and some sites are
hypervariable and influenced by genetic factors that could differ
between populations. Our results also show that reproducibility
is greater in sites where the change in DNAm higher, with
changes in DNAm> 10% points being more robust. This empha-
sizes the need for validation of changes as there are multiple
unknown reasons why a strong result in one cohort may not
replicate in another.

While altered placental DNAm has been reported for preg-
nancies complicated by PE (22–24,26) and IUGR (25,27,28), only
one study validated their findings using the same technology in
an independent cohort (30). In this study, 35.1% (N¼ 599) sites
were found to be differentially methylated between EOPE and
pre-term controls in both the discovery and validation cohorts
using validation criteria of a nominal P< 0.05 and change in
DNAm in the same direction as the discovery cohort. The extent
of validation, however, is dependent on the initial criteria
chosen to define ‘hits’, the criteria for validation, the similarity
of the populations of samples, the size of the study populations
(power to detect changes), and the similarity in processing the
samples. In our study, the validation cohort was from a roughly
similar urban population (Vancouver vs. Toronto) from the
same country (Canada) (44). Cases with self-reported ancestry
in the discovery cohort (�35% of data) consisted of �60%
Caucasian, 30% Asian and 10% other. While this represents to
some extent the Vancouver population, there is likely an
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overrepresentation of Caucasians as they are more likely to con-
sent to study participation. From the self-reported ethnicity in
the validation cohort, 52% were Caucasian, 25% Asian, 15%
Black, and 8% other. We also tried to minimize technical factors
that may influence results by using similar placental sampling
protocols, processing the arrays with a subset of the discovery
and validation cohorts on the same microarray chips at the
same time, with the same technicians, and using the same pre-
processing methods on the raw data. Even with these consider-
ations, a significant number of our original hits were not vali-
dated. This may be because of chance variation in causes of PE
and IUGR in the two cohorts due to limited sample size.
Additionally, there are genetic, environmental, and maternal
factors that pre-dispose a pregnancy to developing placental
insufficiency, which may have varied between populations.

Changes in DNAm could mean i) an average change in
DNAm across a sample, or ii) a change in the cell type propor-
tions within a sample, as DNAm varies widely across different
cell types (45). In the context of EOPE, DNAm alteration may
reflect a combination of altered gene expression pathways asso-
ciated with PE [ex. related to known effects such as oxidative
stress and altered angiogenesis (7,32)] or altered cell type pro-
portions related to PE pathology [ex. decreased proliferation of
extravillous trophoblast cells or alterations to the rate of troph-
oblast proliferation (46)]. Therefore, correcting for cell composi-
tion in this context (PE and IUGR) may remove variance due to
pathology as pathology and cell composition may be con-
founded. As cell type-specific profiles have not been developed
for all placental cell types, it is not possible to use the DNAm
profile to estimate cell proportions, as it has been applied to
blood (47). While reference-free methods for deconvolution of
cell proportions have been developed (48), these methods
remove variance within the data attributed to cell composition
but cannot inform us of what cell types specifically are altered
in EOPE.

Summary
Our data demonstrate some of the challenges in identifying
changes specific to clinically defined etiologies. Heterogeneity
and milder phenotypes of LOPE and nIUGR likely limit the
power to detect differences using a differential methylation
type approach and mask the subset of cases that do exhibit
altered pathology (based on sample clustering using our EOPE
defined hits). An alternative approach may be to reduce the
dimensions in the data by i) removing non-variable probes
across all cell types (49), ii) focusing on alterations in pathway
modules, as in weighted gene co-expression network analysis
(50), or iii) evaluating differentially methylated regions (DMRs)
rather than individual CpG sites to combat multiple test correc-
tion (51,52). In contrast, the more severe pathology underlying
EOPE results in many readily detected DNAm changes.
However, even in the case of EOPE, where many large changes
in DNAm are identified and can be validated based on a nominal
P-value< 0.05 in an independent cohort, those sites selected for
having the highest magnitude of change rarely showed the
same degree of difference in the second cohort. Techniques to
reduce the dimensions in the data should be developed and uti-
lized, focusing on altered pathways instead of specific changes,
which may help in identifying subtypes of PE and IUGR to guide
and change management in a useful way.

In conclusion, whether in the context of PE, or other hetero-
geneous diseases, DNAm may be a useful tool to independently
and qualitatively classify pathological groups, after delivery.
This subclassification into more homogenous groups will assist
in better prediction of post-natal effects of in utero conditions,
and is a necessary precursor to develop predictive screening
tools specific to each phenotype to identify high-risk pregnan-
cies (53). The developmental origins of health and disease
(DoHaD) seeks to understand how in utero exposures affect long
term health of the infant, and many have associated IUGR with
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Figure 4. Beta value distributions by methylation cluster for (A) FN1, (B) PKM2, (C) KRT15, (D) IL7, (E) MAF, and (F) CXCL.

141Human Molecular Genetics, 2018, Vol. 27, No. 1 |



increased risk of adult onset diseases (54,55). Understanding the
cause of these more homogenous groups of PE and IUGR is
imperative to clinical management of subsequent pregnancies
and infants who may have an increased risk for adult onset
diseases.

Materials and Methods
Sample information

Discovery cohort
Chorionic villi samples were obtained from 2 to 3 sites in the
placenta, each from distinct cotyledons, as previously described
(19). Infarcts or necrotic regions of the placenta were avoided in
sampling and DNA was extracted from each site, using the
Qiagen blood and tissue kit and pooled together in equal
amounts to give a more accurate representation of the placen-
ta’s molecular profile.

The discovery (Vancouver) cohort consisted of 22 EOPE, 18
LOPE, 11 nIUGR and 43 control placentas (Table 2). Ethics appro-
val from both the University of British Columbia and BC
Women’s and Children’s Hospital ethics committees in
Vancouver, BC, Canada, was obtained (H04–704488). Placental
samples were obtained with consent from patients from the
Medical Genetics as well as the Obstetrics and Gynecology
departments. Clinical information, including gestational age at
delivery, fetal sex, fetal birth weight, and maternal age were col-
lected. Criteria for exclusion were multi-fetal pregnancies and
fetal and/or placental chromosomal abnormalities. A subset of
18 EOPE samples and 19 pre-term control samples in this study
was previously used in Blair et al. (2013) (19).

PE was defined according to the Society of Obstetricians and
Gynecologists of Canada (SOGC) criteria as one of i) hyperten-
sion (BP> 140/90mm Hg) and proteinuria (>300mg/day) arising
after 20 weeks gestation (56); ii) HELLP syndrome without hyper-
tension or proteinuria; or iii) eclamptic seizure without previous
hypertension or proteinuria. Preeclampsia was separated into
early and late onset given the clinical evidence that these may
be associated with distinct risk factors and outcomes (6). Early-

onset preeclampsia (EOPE) was defined as a diagnosis of PE prior
to 34 weeks gestation, while LOPE was PE diagnosed after
34 weeks (6). nIUGR was defined as fetal birth weight<3rd per-
centile accounting for both fetal sex and gestational age at
delivery or fetal birth weight<10th percentile accounting for
both fetal sex and gestational age at delivery, with additional
findings for poor fetal growth (56) and no hypertension. As
birthweight is strongly correlated with gestational age, we use
the standard deviation of the birth weight corrected for fetal sex
and gestational age (57). In majority of cases, gestational age
was dated using ultrasound measures which is standard prac-
tice in Canada.

Technical batch effects, related to the plate, microarray chip,
and sample position on the Illumina chip are potential con-
founding factors within our data. Our samples were run in vari-
ous batches over a 4 year period, and pathology and gestational
age were partially confounded with batch as EOPE and preterm
controls were largely run earlier. In this situation, correction for
batch effects can introduce spurious findings (58)
(Supplementary Material, Figs S6 and S7). We, therefore, instead
compared EOPE to pre-term birth controls and LOPE/nIUGR to
term controls only, which were relatively matched for batch,
and thus the confounding by GA and its interaction with batch
was minimized. We acknowledge that some of the differentially
methylated sites that we found may be due to technical arti-
facts, but focusing on those hits that are reproduced in the vali-
dation cohort largely eliminated these effects.

As placental DNAm changes with gestational age, the com-
parison groups included placentas from healthy term births
(�37 weeks) and pre-term births (<37weeks) with normally
grown babies and no evidence of maternal hypertension. EOPE
placentas were compared with 24 pre-term controls (as in Blair
et al. 2013). LOPE and nIUGR placentas were compared with a
separate set of 19 term control placentas. This was to test for
overlap between DNAm changes identified for LOPE and nIUGR
with those for EOPE, as we did not want the use of a control
group driving any potential overlap. To reduce the chance of dif-
ferences being driven by the preterm birth group, we used

Table 2. Discovery and validation cohort clinical information

Discovery Cohort

EOPE (mean) LOPE (mean) IUGR (mean) Pre-term ‘Control’
(mean)

Term Control
(mean)

N¼ 22 18 11 24 19
Fetal birth weight- Standard

deviation range
�8.18–3.77 (-1.65)1 �2.9–2.57 (-0.96)2 �2.57–1.22 (�1.99)3 �1.61–3.23 (0.51) �0.94– 0.98 (�0.09)

Fetal Sex (M: F) 14: 8 10: 8 4: 7 16: 8 9: 10
Maternal Age (years) 19.7–42.9 (33.3) 23.1–41.3 (34.0) 33.3–38.0 (34.3) 22.2–41.1 (32.5) 30.0–40.2 (34.9)
Gestational Age (weeks) 24.9–38.4 (32.0) 34.6–41.3 (37.4) 34.6–38.0 (36.6)4 25.0–36.7 (32.6) 37.3–39.9 (38.4)

Validation Cohort

EOPE (mean) LOPE (mean) IUGR (mean) Pre-term ‘Control’
(mean)

Term Control
(mean)

N¼ 22 11 0 6 9
Fetal birth weight- Standard

deviation range
�2.46– 0.01 (�1.40)5 �2.92– 0.01 (�0.84)6 0 �1.02–0.05 (�0.16)7 �1.11– 3.60 (0.61)

Fetal Sex (M: F) 9: 13 7: 4 0 4: 2 6: 3
Gestational Age (weeks) 26.0–34.0 (30.5) 35.0–37.0 (36.4)8 0 27.0–33.0 (30.8) 38.0–40.0 (38.8)

1) p-value¼6.9e-6 vs. pre-term control, 2) p-value¼0.014 vs. term control, 3) p-value¼1.7e-5 vs. term control, 4) p-value¼3.3e-4 vs. term control, 5) p-value¼0.004

vs. pre-term control, 6) p-value¼0.0005 vs. term control, 7) p-value¼0.04 between discovery cohort pre-term control vs. validation cohort pre-term control, and

8) p-value¼0.0001 vs. term control.
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placentas from pre-term births from a variety of etiologies (e.g.
Premature rupture of the membranes, incompetent cervix, cho-
rioamnionitis), while any term control samples with evidence
of pathology involving the chorionic villi were excluded. There
was a significant difference in gestational age between nIUGR
and term placentas, as well as between nIUGR and pre-term
placentas. We opted to compare nIUGR to term controls, as the
gestational ages were closer in range to the term controls,
acknowledging the changes in DNAm identified may be due to
gestational age. Gestational age was to be assessed on identified
sites post hoc, however, as no differentially methylated sites
were identified between nIUGR and controls, this analysis was
not completed and focus was shifted to validated EOPE differen-
tially methylated sites.

Validation cohort
The validation (Toronto) cohort consisted of 22 EOPE, 11 LOPE,
and 15 control placentas (Table 2). For the validation cohort, pla-
cental samples were purchased through the Research Centre for
Women’s and Infants’ Health BioBank (Mount Sinai Hospital);
details in the sample processing can be found in Leavey et al.
(2016) (59). DNA was extracted from the pooled placental tissue
by ethanol precipitation using the WizzardVR Genomic DNA
Purification Kit (Promega). Gestational age at delivery and fetal
birth weight were collected for each case. Gestational age was
dated primarily using second trimester ultrasound markers. For
this cohort, ethics approval was obtained from both Mount
Sinai Hospital (#13–0211-E) and the University of Toronto
(#29435).

The validation cohort represents a subset of samples from
the Leavey et al. (2016) study (59). PE was defined as BP> 140/
90mm Hg after 20 weeks gestation and proteinuria>300mg/day
or>2þby dipstick (60), this is the same as the SOGC guidelines
used to define PE in the discovery cohort. As the time of diagno-
sis was unknown, we subdivided the PE samples from this
cohort into EOPE and LOPE based on the gestational age at deliv-
ery. Exclusion criteria included diabetes, sickle cell anemia,
morbid obesity, and multi-fetal pregnancies. The division of the
term and pre-term controls was also done in the validation
cohort, which consisted of 6 pre-term control and 9 term control
placentas (Table 2).

DNA methylation analysis
The NanoDrop 1000 spectrophotometer (ThermoScientific,
Wilington, DE, USA) was used to assess DNA purity and concen-
tration, and 750ng of DNA from each placenta was bisulfite con-
verted using the EZ DNA Methylation Kit (Zymo Research,
Irvine, USA). Samples were run on the Illumina
HumanMethylation450 BeadChip array platform (450K), meas-
uring DNAm at 485, 512 CpG sites across the genome (20). The
samples, run on 27 chips in 4 batches, were hybridized to the
microarray chip as per the manufacturer’s protocol, and micro-
array chips were scanned by a HiScan 2000 (Illumina). To mini-
mize any effects of sample processing, validation cohort arrays
were run in the same batch and with the same operators as a
subset of the samples from the discovery cohort (Chips 5013,
5015, 3024, 3037, 3038, 3110, See Supplementary Material, Figs
S6 and S7). This DNA methylation data for the discovery and
validation cohorts is available from the Gene Expression
Omnibus (GEO) database under the accession numbers
GSE100197 and GSE98224, respectively.

Raw data (IDAT Files) were read into R statistical software,
version 3.2.4, where functional normalization (61), background

subtraction, and colour correction were performed. Blair et al.
(2013), previously used subset within-array normalization
(SWAN). Functional normalization performs all the benefits of
SWAN normalization and, in addition, utilizes the 848 control
probes on the array to mediate changes in DNAm that are due
to technical effects (61). To check that all sample-reported fetal
sexes matched the XY chromosomes in the data, samples were
clustered on probes intensities from the XY chromosomes. All
reported fetal sexes matched the presence of XY chromosomes
in both cohorts. Bad quality probes and those that had a missing
beta value in> 5% of samples or a detection P-value< 0.01 were
removed from the analysis (Discovery N¼ 1402, Validation
N¼ 1115). To minimize fetal sex effects, probes on the X and Y
chromosomes (Discovery N¼ 11 648, Validation N¼ 11 302), as
well as probes that cross-hybridize to the X and Y chromosomes
(Discovery N¼ 11 412, Validation N¼ 10 734), and probes con-
taining a SNP at the CpG of interest were also removed
(Discovery N¼ 19 957, Validation N¼ 20 398) (62). This left 440 093
CpG sites for analysis in the discovery cohort and 441 963 CpG
sites in the validation cohort (Supplementary Material, Table S4).

Differential methylation analysis
All statistical analyses were performed using R version 3.2.4.
Differentially methylated sites were identified using statistical,
i.e. false discovery rate (FDR)<0.05, and biological, i.e. a change
in DNAm (Db)>0.1, criteria. We corrected for fetal sex in our lin-
ear regression (using limma package in R), but we did not adjust
for fetal birth weight, as it is closely related to pathology. As our
groups were matched to controls of a similar gestational age,
our final model where DNAm alterations were identified took
into account fetal sex only. Only those sites that met both these
criteria were then evaluated in the validation cohort. In this
case, linear regression (using the glm package in R) was used,
and sites were considered to be persistent hits if the nominal P-
value<0.05 and the change in DNAm was in the same direction
as the discovery cohort. Bonferroni correction P<0.05 was also
used to investigate how many hits would be validated with a
more stringent threshold. To compare the heterogeneity of the
samples in each cohort, sample-by-sample Pearson correlations
were performed, and the average correlation of each sample
was compared between the two cohorts by Student’s t-test sep-
arately for the control (TermþPre-term) and EOPE samples.

To investigate whether the 42 Bonferroni corrected hits and
the 599 nominal P-value validated hits were more than would
be expected by chance, 1703 sites (number of EOPE hits in the
discovery cohort) were randomly sampled from the validation
cohort data and run through a linear model, correcting for fetal
sex. One thousand permutations were run and the number of
sites that met a nominal P-value< 0.05 in each iteration was
recorded. The number of randomly sampled sites to meet a
nominal P-value< 0.05 were compared with the actual number
of sites that validated in our data [N¼ 42 (Bonferroni corrected)
and N¼ 599 (nominal P-value)].

Clustering analysis
Hierarchical clustering was performed on the persistent hits to
investigate whether samples clustered according to their clini-
cally diagnosed pathology, or whether DNAm profiling could
suggest an improved definition of pathological groups. The
pvClust package in R (63) assessed how stable any resulting
clusters were, using 1000 iterations. The sigClust2 package (64)
determined if any clusters were significantly different from one
another, also using 1000 iterations. To investigate whether
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differences in DNAm between the clusters were enriched for
any specific pathway(s), linear regression was used to identify
differentially methylated sites between clusters. Differentially
methylated sites were annotated to genes using the Price et al.
annotated closest transcriptional start site (62), and then input-
ted into ermineJ, a gene ontology tool (31). ErmineJ allows us to
input a background gene list specific to the Illumina 450K array,
accounts for multifunctionality (gene ontology terms that
appear frequently due to the number of genes involved in the
pathway), and allows for multiple iterations to be run to
strengthen the power of the analysis.

Supplementary Material
Supplementary Material is available at HMG online.
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