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Synopsis Maternal stress can prenatally influence offspring phenotypes and there are an increasing number of ecological

studies that are bringing to bear biomedical findings to natural systems. This is resulting in a shift from the perspective

that maternal stress is unanimously costly, to one in which maternal stress may be beneficial to offspring. However, this

adaptive perspective is in its infancy with much progress to still be made in understanding the role of maternal stress in

natural systems. Our aim is to emphasize the importance of the ecological and evolutionary context within which

adaptive hypotheses of maternal stress can be evaluated. We present five primary research areas where we think future

research can make substantial progress: (1) understanding maternal and offspring control mechanisms that modulate

exposure between maternal stress and subsequent offspring phenotype response; (2) understanding the dynamic nature

of the interaction between mothers and their environment; (3) integrating offspring phenotypic responses and measuring

both maternal and offspring fitness outcomes under real-life (either free-living or semi-natural) conditions; (4) empir-

ically testing these fitness outcomes across relevant spatial and temporal environmental contexts (both pre- and post-

natal environments); (5) examining the role of maternal stress effects in human-altered environments—i.e., do they limit

or enhance fitness. To make progress, it is critical to understand the role of maternal stress in an ecological context and

to do that, we must integrate across physiology, behavior, genetics, and evolution.

Introduction

Maternally-derived glucocorticoid (GC) hormones

can influence the phenotype of developing offspring

in both the laboratory (reviewed in Barbazanges et al.

1996; Gluckman et al. 2005; Meaney et al. 2007) and the

natural world (reviewed in Meylan et al. 2012; Love

et al. 2013). Here we define such phenomena as mater-

nal stress effects, where exposure to an environmental

stressor (e.g., predation risk, low food availability,

social instability, and weather) elevates maternal GCs

(in vertebrates), which in-turn influence offspring phe-

notype. Short-term examinations of these phenotypic

responses in offspring have often previously been inter-

preted as unavoidable negative outcomes of exposure

to maternally-derived GCs (i.e., smaller birth/hatch

masses, slower growth; Love et al. 2013). However, in-

tegrative ecologists have proposed and begun empiri-

cally testing the environmental/maternal-matching

Advance Access publication August 8, 2017

� The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology.

All rights reserved. For permissions please email: journals.permissions@oup.com.

Integrative and Comparative Biology
Integrative and Comparative Biology, volume 57, number 3, pp. 437–449

doi:10.1093/icb/icx105 Society for Integrative and Comparative Biology

Deleted Text: , etc.
Deleted Text: ,
https://academic.oup.com/


hypotheses (Gluckman and Hanson 2004; Love and

Williams 2008; Monaghan 2008; Sheriff and Love

2013), which states that maternal stress has the poten-

tial to be adaptive if the maternal and offspring envi-

ronment match (i.e., mothers and offspring share a

common environmental stressor, either spatially or

temporally). This hypothesis has challenged the tradi-

tional negative-outcome perspective and evidence has

been provided that maternal stress effects may adap-

tively prepare offspring for a more stressful or rigorous

future environment (Marshall and Uller 2007; Uller

2008; Sheriff and Love 2013; but see Uller et al. 2013).

In order to determine whether maternal stress effects

can be adaptive it is useful to consider the particular

past, present, and future environments that mothers

and their offspring are likely to experience (sensu

Marshall and Uller 2007; Sheriff and Love 2013). For

example, the fitness value of offspring phenotypes

depends on the future environments within which

they will interact. Similarly, the life history of the organ-

ism will influence how stress-induced signals shape off-

spring phenotypic responses. Finally, it is useful to

consider how maternal stress influences the relative fit-

ness of both mothers and offspring across the different,

naturally-occurring contexts they might encounter.

In this paper we aim to provide researchers with

greater ecological and evolutionary context within

which the adaptive role of maternal stress effects can

be evaluated in the laboratory and field (Fig. 1).

Although we focus mainly on vertebrates, the concepts

within are broadly applicable across taxa. Specifically,

we discuss the intrinsic and extrinsic factors that can

influence maternal stress and therefore the maternal

stress–offspring phenotype relationship, how an appre-

ciation for the integration of offspring phenotypic

responses across relevant spatial and temporal environ-

ments will increase our understanding of the potential

adaptive value of maternal stress effects, and, finally, the

role that maternal stress effects can play within human-

induced rapidly changing environments.

Mechanisms of maternal stress effects:
moving beyond maternal programming

The mechanisms by which offspring phenotype is

shaped by maternal stress can act both pre- and post-

natally, and as such, how they act depends on whether

the animal is egg-laying or placental, and the amount of

subsequent parental care (see Matthews 2002; Love et al.

2013; and Monaghan and Haussmann 2015, for re-

view). In oviparous species, discrete and finite levels

of maternally-derived GCs (cortisol and corticoste-

rone) are deposited into eggs as a function of the relative

stressfulness of the mother’s environment during egg

production (e.g., Saino et al. 2005; Almasi et al. 2012;

Sopinka et al. 2017). In placental viviparous species,

offspring exposure to maternally-derived GCs can fluc-

tuate throughout gestation in relation to current ma-

ternal levels, producing a dynamic exposure (Matthews

2002). Nevertheless, a short-term, acute environmental

insult to a mother during gestation may also be suffi-

cient to alter offspring phenotype, depending upon the

stage of gestation when the stressor occurs (e.g., Kapoor

and Matthews 2005; Kapoor et al. 2009). Offspring may

also be directly exposed to maternally-derived GCs

post-natally, for example, through milk in mammals

(Sullivan et al. 2011). Regardless of whether in ovo, in

utero, or post-natal, GC exposure can have both activa-

tional and organizational effects on offspring morphol-

ogy, physiology, and behavior. Laboratory studies have

shown these effects to be potentially mediated by differ-

ences in methylation patterns and epigenetic changes

throughout the offspring genome (Heijmans et al. 2008;

Mueller and Bale 2008; Love et al. 2013; Cao-Lei et al.

2014).

Effects of maternal stress on offspring have often

been described as “maternal programming”, which

assumes that the phenotypic outcome of offspring was

primarily under maternal control (Monaghan and

Spencer 2014). Indeed, since GCs are important regu-

lators of many key developmental pathways it is plau-

sible that mothers may have co-opted these control

systems over evolutionary time (Love et al. 2005).

However, the developing embryo may not be a passive,

downstream recipient of a mother’s hormonal dictates.

Recent evidence suggests that mothers may not have

complete control of these effects and offspring do in-

deed possess a number of mechanisms which may

dampen or buffer the costs of GC exposure (see below),

while still being able to use the signal of maternal stress

as a reliable predictor of the future environment (Love

et al. 2013). For example, offspring can modulate GC

exposure by embryonic metabolic processes via the sul-

fonation pathway (Paitz and Bowden 2013). Likewise,

three-spined stickleback (Gasterosteus aculeatus) em-

bryos can rapidly efflux maternally-derived GCs from

the egg via ATP-binding cassette transporters (Paitz

et al. 2016). Laboratory studies in rodents have found

that offspring can buffer their exposure to maternally-

derived GCs via placental 11b-hydroxysteroid dehy-

drogenase type 2 (11b-HSD2), which converts GCs to

inert forms (Seckl 2004). Nonetheless, increases in ma-

ternal stress are not accompanied by an associated in-

crease in 11b-HSD2 levels, resulting in potentially

greater offspring GC exposure as maternal stress levels

increase beyond a particular threshold (Lesage et al.

2001; Lucassen et al. 2009). Thus, mothers may not

have complete control of the maternal stress–offspring
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phenotype relationship and offspring may play an ac-

tive role in their GC exposure and response to

maternally-derived GCs. Indeed, this idea of “parent–

offspring conflict” (Crespi and Semeniuk 2004; Uller

and Pen 2011) has been examined recently with regards

to exposure to maternally-derived hormones in general

(Müller et al. 2007). Exploring this conflict with specific

regards to maternal stress should provide significant

enlightenment as to the evolutionary pathways of this

maternal effect.

In addition to direct exposure to maternally-

derived GCs, offspring phenotype may be indirectly

influenced by stress-induced changes to maternal be-

havior, condition, and physiology (beyond just GC

levels). For example, in the viviparous common liz-

ard (Lacerta vivipara), maternal GC levels and body

condition interact to influence dispersal propensity

in offspring (e.g., Meylan et al. 2002). Mothers with

elevated GC levels may also alter pre-natal nutrient

allocation or provisioning (Cottrell et al. 2012), or

Fig. 1 The potential pathway of an ecological/environmental stressor on offspring performance and fitness, acting through maternal

stress effects. (A) Generally it is thought that an ecological or environmental stressor will increase maternal stress hormones, which in

turn will alter offspring phenotype in an adaptive or maladaptive manner depending upon the post-natal environment experienced by

the offspring. (B) Building upon this general framework we propose many avenues of future research that may provide novel insights

into our understanding of maternal stress effects (highlighted by the blue hashed lines). (I) Although traditionally thought that maternal

stress effects were controlled by the mother and her hormone levels, there is new emerging evidence that offspring may play a

significant role in this relationship. Further, maternally-derived stress hormones may not be the only mediator of this relationship.

(II) The ecological and environmental stressors experienced by the mother are likely dynamic in nature, and may change how and

when mothers perceive and respond to them. (III) Offspring’s phenotypic response does not occur along a single axis, but may be a

sex-specific integration of their behavioral, physiological, and morphological changes. Changes that do not stop at birth/hatching but

likely continue through development, being influenced by both pre-natal and post-natal cues. (IV) To fully appreciate the adaptive value

of maternal stress effects, the offspring phenotype’s performance and fitness must not only be considered within the ecological context

it occurs but its relative value among both stressful and unstressful future environments must be compared. (V) In many cases mothers

and offspring do not exist in a simple dyadic relationship, but may be part of a larger social unit that may influence the mother–

environment and mother–offspring relationship. Further, new evidence is emerging on the influence of paternal and grandparental

stress effects that may themselves directly influence offspring phenotype. (VI) Lastly, maternal stress effects may play a critical role in

how organisms respond to a changing world. Maternal stress effects may result in evolutionary traps if mothers do not perceive novel

stressors as stressful or if they perceive unstressful events as stressful. Alternatively, maternal stress effects may increase the magnitude

of an adaptive response if environmental changes lead to an increase within the mean of variation of a known stressor. Clearly, there is

much work to be done in this exciting field.
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reduce post-natal parental care (Herrenkohl and

Whitney 1976; Silverin 1986; Baker et al. 2008),

both of which can influence offspring phenotype.

For example, nutritional restriction in early-life has

been shown to alter brain development, song reper-

toire, growth, and energy expenditure in song spar-

rows (Schmidt et al. 2012, 2013, 2014). Ultimately,

the mechanisms driving maternal stress effects are

likely a combination of direct and indirect offspring

exposure to maternal stress. Cross-fostering experi-

ments in organisms that provide substantial post-

natal care or experimental manipulations in oviparous

organisms, where egg-GC-dosing effects could be com-

pared against maternal GC effects, may help elucidate

the relative contribution of direct versus indirect expo-

sure. Clearly, a better understanding of these multiple

interactive effects is needed.

Environmental regulation of the
strength of maternal stress effects

Increasing attention to the evolution of transgenera-

tional (across multiple generations), maternal effects

(non-genetic inheritance) has suggested a unifying

theoretical perspective that organisms should make

use of relevant environmental cues to adaptively ad-

just their phenotype (e.g., Levins 1968; Moran 1992;

Jablonka et al. 1995; Stamps and Krishnan 2014; Dall

et al. 2015; Leimar and McNamara 2015; Box 1).

These ideas have consistently suggested focusing on

the importance of spatial and temporal stability of

the environment, the “reliability” of the stressor, and

the subsequent match between conditions experi-

enced by the mother and those experienced by the

offspring to examine the evolutionary role of mater-

nal effects. While maternally-derived GCs can pro-

vide a potential cue of the future environment and a

mechanism of phenotypic adjustment, maternal

stress effects should only evolve when environmental

stressors experienced by the mother are likely to be

experienced by the offspring, but importantly, that

stressors within the environment generally fluctuate

among generations (Box 1). For example, if the en-

vironment is highly stable among generations, selec-

tion should favor a more fixed (rather than plastic)

phenotype (Levins 1968; DeWitt et al. 1998;

Boonstra 2013; Kuijper and Hoyle 2015). Yet, few

empirical studies have explicitly examined how dif-

ferences in the predictability and magnitude of an

environmental stressor may influence the strength

and ultimate impact of maternal stress effects

(Burgess and Marshall 2014). Evidence suggesting

that greater exposure to maternally-derived GCs

increases the degree of phenotypic response in

offspring (e.g., Sheriff et al. 2009, 2010), leads to

the prediction that the magnitude of stressor expe-

rienced, and the variation around that mean, has the

potential to influence the strength of maternal stress

effects.

The severity of the stressor is also likely to influ-

ence the strength of maternal stress effects. For ex-

ample, a potentially lethal stressor, such as the risk of

predation, may have a greater effect on offspring

phenotypic responses than one that is more benign,

such as density or extreme temperature. As such,

understanding the ecological context within which

the organism has evolved is key in interpreting

how a particular stressor will affect the offspring’s

phenotypic response (sensu Marshall and Uller

2007; Uller 2008; Sheriff and Love 2013). It is also

important to appreciate that there may be a potential

disconnect between factors that mothers perceive as

stressful and those their offspring perceive as stress-

ful. For example, differential vulnerability to certain

predators might occur between adults and offspring

due to differences in size and morphology, habitat

use, anti-predator defenses, etc. (e.g., Vitt and

Cooper 1986; Reimchen 1991; Fuiman and

Magurran 1994; Mattingly and Butler 1994; Benard

2004). Studies using egg predator cues to increase

general perception of risk provide some evidence

that mothers may respond to juvenile-specific pred-

ators (e.g., McCormick 1998; Zanette et al. 2011).

However, within these studies mothers interact di-

rectly with this risk while they are still caring for the

eggs or young (making it difficult to separate direct

and indirect effects). A mother’s future reproductive

potential and life expectancy may also influence how

she responds to a stressor (Moncl�us et al. 2011; Gélin

et al. 2015). Ultimately, the response a mother exhib-

its toward a stressor is likely determined by her own

vulnerability and life expectancy, yet it is unclear

how individual mothers may perceive and integrate

stressors that may only impact her offspring, and

how this may more generally influence the evolution

of maternal stress effects.

An additional underappreciated and unexplored

area in this field is whether the timing of maternal

experience has the capacity to influence the magni-

tude and timing of the offspring phenotypic re-

sponse. One prediction is that a mother’s current

experience should have stronger immediate effects

relative to past experiences since current conditions

are likely to provide the most up-to-date informa-

tion about the offspring’s current and future envi-

ronment. However, this might not always be the

case, and offspring may be better off responding to

an environment experienced in the mother’s distant
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past or not responding until later in their life, par-

ticularly if the stressors are age-specific (e.g., Zimmer

et al. 2017). For example, if mothers experience an

environment that is only stressful for adults, the

outcomes of maternal stress effects in the offspring

may not be seen until adulthood. Empirical studies

examining the dynamic nature of environmental

stressors, and how they are experienced by the

Box 1 Testing maternal stress effects in free-living systems

We expect that maternal stress effects should evolve most strongly within species that experience: (i) relative consistency between the

environment experienced by gestating mothers and that experienced by their offspring, but high variation in environmental stressors generally;

and (ii) relatively high costs of producing an unmodified offspring in a stressful environment compared with the costs of producing a modified

offspring in a benign environment (although this may be difficult to observe in nature given the selection pressures of these variable costs;

Sheriff et al., submitted for publication). Further, if the focal interest is on pre-natal stress-induced effects then systems with low post-natal

parental care should be selected, given this care may reduce the importance of pre-natal stress effects (with the opposite if the focal interest is

on post-natal stress effects).

Species that exhibit cyclic population dynamics are ideal field-based models given their large, relatively predictable inter-annual variation

(e.g., Fig. 2). Maternal effects have been invoked or found in the demographic patterns in cyclic systems of insects (Ginzburg and Taneyhill 1994;

Rossiter 1994), birds (Martınez-Padilla et al. 2014), and mammals (voles—Boonstra and Boag 1992; Boonstra et al. 1998a; Inchausti and

Ginzburg 1998; snowshoe hares—Boonstra et al. 1998b; Sheriff et al. 2011, 2015). However, most of the later studies focus only on the central

herbivore within the system, yet their predators are also cycling and strong maternal stress effects are predicted to occur there as well.

In systems that do not cycle, strong maternal stress effects are also predicted to occur if species dynamics are driven by relatively consistent

(if not exactly predictable) and large, variations in stressors. For example, mast years in conifer and deciduous trees driven by large scale

weather patterns (Pearse et al. 2016) cause large changes in food supply every 3–8 years that cascade upwards to the herbivore populations

that depend on them (e.g., Ostfeld and Keesing 2000; Fig. 2). Such fluctuations in the food supply can then either directly or indirectly cause

maternal stress (because of increasing population density) resulting in an offspring phenotypic response (e.g., Dantzer et al. 2013).

Fig. 2 Density changes over time (year) in (A) the 10-year population cycle of snowshoe hares and lynx (695% CI; adapted from

Krebs et al. 2014) and (B) the mast-density relationship between red squirrels and white spruce (adapted from Dantzer et al. 2012).
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mother and translated to offspring would help us

better understand the role of maternal stress effects

in ecological and evolutionary processes.

Beyond a simple mother–offspring
dyadic relationship

Mothers and offspring frequently do not exist in

simple dyadic interactions, but are at least temporar-

ily part of social units, which may include fathers,

siblings, and, in more complex groups, conspecifics

of varying relatedness. The social context in which

stressors occur likely influences the magnitude and

direction of maternal stress effects (Beery and Kaufer

2015). For example, if there is more than one pro-

visioning parent, the consequences of stress-induced

reductions in maternal care and provisioning may be

overcome by the partner, though the extent to which

partners are likely to compensate is itself context-

dependent (Hinde 2006; Johnstone and Hinde

2006). Alternatively, if both parents are subject to a

similar general environmental stressor, effects on the

offspring may be enhanced, for example, if both

parents reduce provisioning rates (Zanette et al.

2011). In cooperatively breeding species, mothers

may be buffered from a stressful experience and their

relative post-natal influence on offspring phenotype

may be further reduced. In cooperative fairy wrens,

for example, helper individuals can fully compensate

for reductions in maternal egg investment (Russell

et al. 2007) and for reductions in offspring provi-

sioning (Wright and Dingemanse 1999; Russell et al.

2008; Brouwer et al. 2014). Thus, a consideration of

the social context and mating system will provide

further insights into our understanding of maternal

stress effects.

The importance of fathers

The effect fathers can have on offspring phenotype

has generally been neglected relative to that of the

mother (Braun and Champagne 2014; Crean and

Bonduriansky 2014). It has routinely been assumed

that there is greater opportunity for maternal stress

effects due to the intimate contact between mothers

and offspring in utero or in ovo. However,

laboratory-based empirical evidence suggests that

fathers can also influence their offspring via stress-

induced changes in sperm (e.g., Rodgers et al. 2013;

Evans et al. 2017). For example, in laboratory mice

where there is no paternal care, males trained to

associate an odor with a stressor produced offspring

that behaved differently toward the odor, even

though the offspring had never been exposed to

the stressor themselves (Dias and Ressier 2014). In

addition, female mice mated to chronically stressed

males provided less parental care compared with fe-

male mice mated to control males (Mashoodh et al.

2012). In species with paternal care, males can influ-

ence offspring directly through their parenting be-

havior (McGhee and Bell 2014), which can be

sensitive to their own stressful experiences (Stein

and Bell 2014), as well as those of their mate

(McGhee et al. 2015).

This growing laboratory-based evidence for

paternally-mediated stress effects on offspring prompts

questions about the cumulative impact of both parents’

experience. Indeed, offspring may receive simultaneous

signals pertaining to environmental quality from both

parents, signals that might not always be in agreement

(i.e., sexual conflict; Chapman et al. 2003; Arnqvist and

Rowe 2005). This is an unexplored, yet tractable, area of

research with regards to maternal stress effects. A simple

prediction is that we should observe the most extreme

offspring phenotypic responses when information from

both parents is in agreement (Leimar and McNamara

2015). More generally, there is a need for further studies

investigating how offspring manage and integrate con-

flicting information from mothers versus fathers. One

prediction is that offspring should always respond to a

parental cue about the likelihood of danger, regardless of

whether information comes from one or both parents, if

the costs of failing to respond are high. Another possi-

bility is that offspring should favor information from

their same-sex parent because they are more likely to

experience similar environments. It will therefore be

critical moving forward to test for these effects in

naturally-occurring systems.

The importance of grandparents

A rapidly burgeoning field of research explores how

stressors experienced by parents may persist beyond

the F1 generation (reviewed in Rando 2012, Burton

and Metcalfe 2014; Gapp et al. 2014).

Multigenerational effects of stress are likely to occur

in mammals given that gametogenesis occurs in em-

bryos, and eggs that will produce the F2 generation are

exposed to the stressor inside the F0 mother. The effect

of this exposure may be enhanced or suppressed by the

F1 generation’s experience. Thus, the first truly unex-

posed generation would be the F3 generation (Skinner

et al. 2008). Interestingly, multigenerational studies of-

ten find sex-specific lineage effects (Anderson et al.

2006; Dunn et al. 2011; Bygren et al. 2014), e.g., grand-

sons were influenced by their paternal grandfather

while grand-daughters were influenced by their mater-

nal grandmother (Pembrey et al. 2006). Given the po-

tential for an acute stressor to influence ecosystem
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processes for generations (Sheriff et al. 2015), there is a

clear need to understand the prevalence and mecha-

nisms of multigenerational (parental) stress effects in

ecological contexts (Furrow and Feldman 2013;

Herman et al. 2014).

The expression of offspring phenotypes

Studies of maternal stress effects have primarily exam-

ined individual aspects of offspring morphology,

physiology, and behavior. As noted previously, labora-

tory-based studies in model rodents suggest that

maternal stress results in smaller, slower-growing off-

spring, with increased stress reactivity and anxiety-like

behaviors (see biomedical review by Meaney et al.

2007). However, ecological studies suggest that the

direction and magnitude of phenotypic responses are

often species- and context-specific. For example,

density-induced maternal stress in red squirrels

(Tamiasciurus hudsonicus) results in faster-growing

offspring (Dantzer et al. 2013). In wild house wrens

(Troglodytes aedon), elevated maternal GCs increased

maternal investment in reproduction resulting in off-

spring with greater prefledging body condition (Bowers

et al. 2016). Studies in sticklebacks suggest that behav-

ioral responses in maternally-stressed offspring vary

depending upon the environmental, including social,

context (Giesing et al. 2011 vs. McGhee et al. 2012;

Roche et al. 2012 vs. Feng et al. 2015). Given the com-

plexity of environmental stressors within natural sys-

tems and how these may further influence and interact

with offspring phenotypes, there is need for more stud-

ies investigating maternal stress effects in free-living

systems across species and environmental gradients to

better build our general predictions regarding maternal

stress effects.

Integrating offspring phenotypic responses

In addition to understanding the relative impact of

maternal stress effects within an ecological context, a

greater appreciation for the integrated nature of an off-

spring’s global phenotypic response is needed. For ex-

ample, the initial size of offspring at hatch or birth is

commonly used as a proxy for fitness, and is often as-

sociated with reduced survival (Reimchen 1991; Allen

et al. 2008). However, in response to greater predation

risk, stress-induced reductions in offspring body size

may be beneficial if they are coupled with increased

hiding behavior reducing energetic needs and risky for-

aging behavior. Further, the cost/benefit assessment of

integrated phenotypic responses must be expanded

across an individual’s lifetime; processes that impact

juveniles may differ substantially from those that im-

pact adults or other life-stages (e.g., McCormick and

Hoey 2004; Gagliano and McCormick 2009). There

may also be compensatory and dynamic changes in

offspring phenotype over time, such that an induced-

trait may not remain static from development to

adulthood. For example, in house wrens (T. aedon)

hatchlings from corticosterone-injected eggs were ligh-

ter at hatching, but because of compensatory growth,

were heavier at fledging compared with control off-

spring (Strange et al. 2016). Current studies in wild

animals focus primarily on offspring phenotype and

performance in early-life, but it is largely unknown

how these change over time and translate to future

performance and fitness in later life, and what compen-

satory mechanisms in phenotypic plasticity are in place

(and if so under what circumstances they occur) (but

see Blas et al. 2007).

Sex-specific susceptibility to maternal stress

Maternally-derived GCs may also have sex-specific

effects on offspring characteristics, with males often

more susceptible to elevated maternal stress exposure

when such effects arise (e.g., Love et al. 2005; but see

Montano et al. 1993). There may also be sex specific

responses to maternal stress (St-Cyr et al. 2017), as ev-

ident from studies on early life stress (e.g., Schmidt et al.

2012). Biases in the primary or secondary sex ratios in

species that produce more than one offspring at a time

have also been shown (Pike and Petrie 2006; Bonier

et al. 2007; Navara 2010, 2013; Khan et al. 2016). To

date, most work on sex-specific effects of maternal

stress has either investigated underlying mechanisms,

such as sex-specific placental regulation (Bronson and

Bale 2016), without appreciating the adaptive signifi-

cance (e.g., Bale and Epperson 2015), or investigated

the adaptive significance of such effects without con-

sidering the mechanisms (e.g., Trivers and Willard

1973; Veller et al. 2016; but see Cameron 2004).

Future studies of maternal stress effects therefore

have a unique opportunity to simultaneously examine

both the proximate mechanisms and the ultimate sig-

nificance of sex-specific effects.

Studies investigating sex-specific effects can pro-

vide further insights into the relative control mothers

or offspring have in regulating maternal stress effects.

Theoretical models suggest that if there is parent–

offspring conflict in the optimal offspring phenotype

(Uller and Pen 2011), mothers may attempt to max-

imize their own fitness by reducing offspring pheno-

typic quality, but offspring should attempt to resist

such effects. If the valence of these effects is sex-

specific, selection may favor the evolution of mech-

anisms that enable the more-at-risk sex, the one that

experiences the biggest cost of maternal stress
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exposure, to better resist those effects (Love et al.

2005; Love and Williams 2008). Future studies are

needed to both investigate the sex-specificity of ma-

ternal stress effects, and the impact of such effects on

both maternal and sex-specific offspring fitness.

The relative influence of the post-natal environment

Offspring development does not stop at birth.

Indeed, post-natal, early-life experiences that result

in phenotypic or developmental plasticity can allow

organisms to better cope with environmental varia-

tion later in life (Relyea 2003; West-Eberhard 2003;

Snell-Rood 2012). Offspring likely continually adjust

their phenotype in response to environmental cues

they experience beginning in utero (or in ovo) to the

end of their respective developmental window, and

likely still into adulthood. Laboratory- and field-

based studies have shown that post-natal maternal

care can enhance or negate in utero stress-induced

phenotypic responses (e.g., Francis et al. 1999; Love

and Williams 2008) and environmental enrichment

during adolescence can reverse the effects of prenatal

stress (Morley-Fletcher et al. 2003). However, studies

have also shown that early exposure to maternal stress

can nonetheless have long-lasting consequences to

phenotypes even if offspring are exposed to benign

early-life conditions (e.g., Bian et al. 2015; Sheriff

2015). These carryover effects may drive the evolution

of early-life stress as a maternal effect (i.e., the balance

between costs and benefits to offspring and maternal

fitness) providing a rich area for future exploration. A

recent theoretical model suggested that the period of

developmental sensitivity is driven by the degree of

variability in the environment (Panchanathan and

Frankenhuis 2016). As such, we would expect that

the influence of pre- versus post-natal environment

on offspring phenotypic response should depend

upon the relative costs associated with not responding

to either environment, the need for an individual to

remain phenotypically plastic during early life given

the life history of the species (Snell-Rood 2012;

Panchanathan and Frankenhuis 2016), and the rela-

tive predictability/stability of the future environment

(Uller 2008; Moore et al. 2015). For organisms that

remain phenotypically plastic during early life a par-

ticularly interesting avenue for future research would

be to investigate how offspring phenotype is influ-

enced by the relative quality of information gained

during the pre- versus post-natal period, particularly

if the temporal nature of the information provides

contradictory cues (i.e., your post-natal experience

contradicts the cues provided by your mother pre-

natally; Kuijper and Hoyle 2015).

Toward general predictions of offspring

phenotypic responses

Although many have examined individual aspects of

offspring phenotypic response to maternally-derived

GCs, a predictive general theory on which pheno-

typic traits can be expected after exposure to mater-

nal stress has yet to be formally articulated. The

biomedical literature suggests that offspring exposure

to maternally-derived GCs results in smaller, slower-

growing, anxious offspring (Meaney et al. 2007), but

growing evidence from natural populations suggests

that offspring phenotypic responses are often spe-

cies-, life-history- and context-specific (Marshall

and Uller 2007; Love et al. 2009; Sheriff and Love

2013). But is there a generalized outcome that can be

predicted based on the taxon, the life history, and

the type of stressor experienced by an organism, or

are responses truly individually, context-specific? For

example, in free-living mammals and birds, maternal

exposure to predation risk has been shown to reduce

offspring body size and weight (e.g., Sheriff et al.

2009; Zanette et al. 2011; Coslovsky and Richner

2011), whereas exposure in wild lizards to risk cues

or risk-induced maternal GC levels has been shown

to increase offspring body size, particularly tail

length (e.g., Bestion et al. 2014). We expect off-

spring’s general phenotypic response is a hierarchical

integration across factors, and suggest that meta-

analyses across taxa and context could provide test-

able hypotheses to increase our understanding of

maternal stress effects as a general phenomenon.

Maternal stress effects in a changing
world

Maternal stress effects may play a critical role in organ-

ismal responses to human-induced rapid environmen-

tal change (i.e., HIREC; Sih 2010) with two potential

outcomes. Given that maternal stress effects are

species-specific responses likely to have been optimized

by natural selection in response to expected environ-

mental variation (Gluckman et al. 2005), if HIREC

leads to organisms increasingly exposed to novel stres-

sors maternal stress effects have the strong potential to

result in evolutionary traps (Schlaepfer et al. 2002).

This scenario can occur if mothers fail to perceive novel

stressors as stressful (sensu Sih et al. 2010), or if mothers

perceive unstressful events as stressful (sensu Trimmer

et al. 2017).

Alternatively, if HIREC results in an increase in

the mean or variation of a known stressor, currently

experienced within an organism’s life history, mater-

nal stress effects may increase the magnitude of an

adaptive offspring phenotypic response and increase
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maternal and offspring fitness. For example, Chinook

salmon experience periodic droughts during repro-

duction, and a recent study has shown that pre-natal

exposure of Chinook salmon to maternal stress

results in phenotypes that perform better in low wa-

ter (i.e., drought-simulated) conditions at the fry

stage (Capelle 2016). This scenario may also occur

if HIREC introduces a novel stressor that is within

the realm of that experienced by the organism. For

example, prey are under intense selection pressure to

respond adaptively to predators, often a suite of

predators, and it has been shown that prey can gen-

eralize their perception and antipredator responses

from current predators to closely related novel pred-

ators (Griffin et al. 2001; Ferrari et al. 2007). Yet, if a

novel predator has an unfamiliar hunting mode, al-

though it may be perceived as a stressor, the off-

spring phenotypic response may be maladaptive.

We expect the adaptive potential of maternal stress

effects to novel stressors to depend upon the inter-

active effects of maternal perception ability, related-

ness of novel stressors, and the plasticity of offspring

phenotypic response.

Conclusion

The study of how maternal stress shapes offspring phe-

notype has intensified over the past decade and is cur-

rently within a period of extreme interest and

excitement. A genuine shift from viewing maternal

stress as a unanimous cost to mothers and offspring

has given way to an appreciation that altered pheno-

types have the potential to perform better under certain

future environmental circumstances. Nevertheless, this

new perspective and set of accompanied approaches is

still in its infancy and much still has to be developed

theoretically and then tested empirically. We have syn-

thesized five primary areas for further research exam-

ining the adaptive potential of maternal stress where

substantial progress can be made:

(1) Identifying the mechanisms that allow offspring

to modulate exposure to maternal stress and ex-

amining the indirect, alternate maternal mecha-

nisms of influence are needed as these are the

mechanistic scaffolds on which natural selection

can shape the evolution of maternal stress

effects.

(2) Examining the environmental regulation and

dynamic nature of the environment–mother in-

teraction will be insightful to understanding

how they drive different offspring phenotype

responses and the evolution of adaptive mater-

nal stress effects.

(3) Measuring fitness outcomes under real-life (ei-

ther free-living or semi-natural) conditions to

adequately assess the adaptive potential of

stress-induced phenotypes.

(4) Empirically-testing fitness outcomes across pre-

and post-natal environments, and across spatial

and temporal scales, is likely to be insightful for

understanding the interaction between altered

offspring phenotype and environmental

variation.

(5) Examining the potential for evolved, adaptive

maternal stress effects to either limit or enhance

fitness outcomes (and therefore population via-

bility) under novel, HIREC scenarios.

Critical in going forward is that future studies

integrate across biological disciplines from physiol-

ogy to ecology and evolution, to investigate and test

the adaptive potential of maternal stress in naturally-

occurring systems. We must examine maternal stress

effects as a continuum; integrating studies at lower

levels, that delineate the machinery, with studies at

higher levels, that assess the functioning and evolu-

tion (sensu Bartholomew 1986).
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