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Abstract
Substance use disorders (i.e., drug addiction) constitute a global and insidious public health issue. Preclinical biomedical
research has been invaluable in elucidating the environmental, biological, and pharmacological determinants of drug abuse
and in the process of developing innovative pharmacological and behavioral treatment strategies. For more than 70 years,
nonhuman primates have been utilized as research subjects in biomedical research related to drug addiction. There are
already several excellent published reviews highlighting species differences in both pharmacodynamics and
pharmacokinetics between rodents and nonhuman primates in preclinical substance abuse research. Therefore, the aim of
this review is to highlight three advantages of nonhuman primates as preclinical substance abuse research subjects. First,
nonhuman primates offer technical advantages in experimental design compared to other laboratory animals that afford
unique opportunities to promote preclinical-to-clinical translational research. Second, these technical advantages, coupled
with the relatively long lifespan of nonhuman primates, allows for pairing longitudinal drug self-administration studies and
noninvasive imaging technologies to elucidate the biological consequences of chronic drug exposure. Lastly, nonhuman
primates offer advantages in the patterns of intravenous drug self-administration that have potential theoretical
implications for both the neurobiological mechanisms of substance use disorder etiology and in the drug development
process of pharmacotherapies for substance use disorders. We conclude with potential future research directions in which
nonhuman primates would provide unique and valuable insights into the abuse of and addiction to novel psychoactive
substances.
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Introduction
Substance use disorders constitute a class of mental health dis-
orders that pose an insidious public health problem. For exam-
ple, an estimated 246 million people worldwide between the
ages of 15 to 64 years have used an illicit drug (UNODC 2015). Of
these users, approximately 10% meet diagnostic criteria for a
substance use disorder (American Psychological Association
2013; UNODC 2015). Furthermore, the estimated annual eco-
nomic burden of illicit drug use in the United States related to
crime, lost work productivity, and health care was 193 billion
US dollars in 2011 (National Drug Intelligence Center 2011).
These epidemiological and economic data support biomedical
research efforts to improve our mechanistic understanding of
the biological, environmental, and pharmacological determi-
nants of illicit drug use and to develop innovative and more
effective treatment strategies for substance use disorders.

In biomedical research, nonhuman primates account for
0.5% of all animals utilized as subjects (Foundation for Biomedical
Research 2017). Preclinical substance abuse research utilizing
nonhuman primates as research subjects has been conducted
since the early 1930s. In his seminal study, Spragg investigated
the effects of morphine dependence and subsequent withdrawal
on choice between an intramuscular morphine injection and
fruit by chimpanzees (Spragg 1940). These results demonstrated
that choice behavior was significantly influenced by the mor-
phine withdrawal state, such that chimpanzees were more
likely to choose morphine when they were in withdrawal.
Although chimpanzees are no longer used as research subjects
in substance abuse research, these results provided the empiri-
cal foundation that translationally relevant substance abuse
research could be conducted in nonhumans.

To date, there are four species of nonhuman primates that
have been predominantly used in substance abuse research:
rhesus monkeys (Macaca mulatta), cynomolgus monkeys
(Macaca fascicularis), squirrel monkeys (Saimiri sciureus), and ba-
boons (Papio anubis). To quantify the relative prevalence of non-
human primates in substance abuse research, a database
search was conducted using the National Institutes of Health
research portfolio online reporting tools (i.e., NIH RePORTER) on
January 19, 2017 using the keywords “drug self-administration”
and “rat,” “mouse,” or “nonhuman primate.” Results were further
limited to only active projects funded by the National Institute on
Drug Abuse. Using the search terms drug self-administration and
rat resulted in 247 hits, drug self-administration and mouse re-
sulted in 91 hits, and drug self-administration and nonhuman
primate resulted in 41 hits. Thus, nonhuman primates served
as research subjects in approximately 10% of National Institute
on Drug Abuse-funded preclinical substance abuse research
studies using the drug self-administration procedures that
will be described in more detail below under “technical
advantages.”

The use of nonhuman primates as research subjects has
been instrumental in improving our mechanistic understand-
ing of substance use disorders in at least four areas. First, there
are published species differences between rats and nonhuman
primates related to the pharmacokinetics of abused drugs
and the pharmacodynamic profiles that maintain drug self-
administration. For example, the primary metabolite of 3,4-
methylenedioxymethamphetamine (MDMA, ecstasy, molly) in
rhesus monkeys (Banks et al. 2007), baboons (Goodwin et al.
2013), and humans (Pardo-Lozano et al. 2012) is 3,4-dihydroxy-
methamphetamine, which does not appear to be behaviorally
active in rats (Schindler et al. 2014) and its behavioral activity is

unknown in monkeys and humans. In contrast, the primary
metabolite of MDMA in rats is 3,4-methylenedioxyampheta-
mine (Baumann et al. 2009). 3,4-Methylenedioxyamphetamine
is behaviorally active, producing both reinforcing and neuro-
toxic effects (Markert and Roberts 1991). These issues of phar-
macokinetics will not be addressed further here; the reader is
encouraged to read the review by Weerts et al. (2007) for more
details regarding these species differences. Second, physiologi-
cal advantages of nonhuman primates related to a longer life
span and larger diameter veins for double-lumen catheter
implantation have provided opportunities to conduct sophisti-
cated drug self-administration procedures (Czoty 2015;
Huskinson et al. 2016; Maguire et al. 2013; Wade-Galuska et al.
2011) and to study chronic treatment of candidate pharma-
cotherapies (Banks 2016; Banks et al. 2015; Mello and Negus
1996). Third, phylogenetic similarities between humans and
nonhuman primates, such as brain organization and function,
have afforded opportunities to coordinate noninvasive brain
imaging or neurochemistry techniques with behavioral proce-
dures (Bradberry 2011; Gould et al. 2012; Howell and Murnane
2008). Phylogenetic similarities in immune function between
humans and nonhuman primates have also facilitated the
development and evaluation of candidate immunopharma-
cotherapies for substance use disorders (Bonese et al. 1974;
Collins et al. 2012; Desai and Bergman 2015; Evans et al. 2016;
Howell et al. 2014). Lastly, behavioral phenotypic similarities
between nonhuman primates and humans have provided op-
portunities to elucidate how environmental variables, such as
social behavior and early life stress, modulate the abuse-
related effects of drugs (Ewing Corcoran and Howell 2010;
Morgan et al. 2002; Nader et al. 2012b). The aim of this review
article is to discuss the last three of these issues as contributors
to the rationale for using nonhuman primates in drug abuse
research.

Advantages Related to Technical
Considerations for Preclinical Research
Drug addiction is a behavioral disorder, and addiction research
should rely heavily on experimental procedures that measure
behavior. The most important family of these procedures is
called “drug self-administration,” in which experimental sub-
jects can emit a behavior that results in drug delivery. For
example, a human or laboratory animal subject can be placed
in an environment that includes a response lever, and contin-
gencies can be programmed so that pressing the lever results
in delivery of drug (Figure 1A). Decades of research have estab-
lished that drugs that are abused by humans (e.g., cocaine) reli-
ably maintain drug taking in laboratory animals (Griffiths and
Balster 1979; Griffiths et al. 1979). Two general experimental de-
signs have emerged. First, a novel drug can be made available
for i.v. infusion to assess whether subjects will self-administer
the drug (Carter and Griffiths 2009). In this type of study, the
behavior of interest (e.g., pressing the lever) might produce
vehicle administration during some experimental sessions and
one of several drug doses during other sessions. Rates of behav-
ior maintained by vehicle and the different drug doses can be
measured and compared (Figure 1B). A drug is considered to
produce “reinforcing” effects predictive of abuse potential if
some dose of drug maintains significantly higher rates of
behavior than vehicle. The second type of research design
begins by establishing abused drug (e.g., cocaine or heroin)
self-administration and assessing whether treatment with a
test drug will alter self-administration of the abused drug
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(Mello and Negus 1996). Specifically, subjects are treated with
different test drug doses before experimental sessions during
which the abused drug can be self-administered (Figure 1C).
Test drugs that decrease self-administration of an abused drug
provide insights on mechanisms that underlie abuse of that
drug or have therapeutic potential as targets for candidate medi-
cations to treat abuse of that drug.

Although drug self-administration procedures are the most
predictive behavioral model of drug addiction, they are also the
most technically demanding. Of particular importance, drug
self-administration is most robust when drug delivery and
onset of drug effects occur as soon as possible after self-
administration behavior has been expressed (Beardsley and
Balster 1993; Woolverton and Anderso 2006). This is often
achieved, in both humans (Comer et al. 1998; Foltin and
Fischman 1992) and laboratory animals (Johanson and Balster
1978; Thomsen and Caine 2005), by automated i.v. delivery of
the self-administered drug. For example, in a typical experi-
mental arrangement, subjects are implanted with an i.v. cathe-
ter connected to an infusion pump and drug reservoir
(Figure 1A). A computer is used to monitor the behavior of
interest (e.g., lever pressing) and to operate the infusion pump

and deliver an i.v. infusion as soon as the behavior has
occurred. In humans, i.v. catheters are often implanted for rela-
tively short periods of time (hours to days). In laboratory ani-
mals, though, more sustained catheterization is preferred to
permit behavioral training and repeated testing; the most com-
mon approach is to surgically implant a chronic indwelling i.v.
catheter. Consequently, the success of preclinical drug self-
administration experiments depends in large part on maintaining
the viability of chronic indwelling i.v. catheters. The techniques
and equipment for implantation and maintenance of i.v. cathe-
ters have improved dramatically since the first i.v. drug self-
administration studies were published more than 50 years ago
(Deneau et al. 1969; Weeks 1962). Intravenous drug self-
administration studies are now routinely conducted in a range of
species including rodents (rats, mice) and nonhuman primates
(macaques, squirrel monkeys, baboons). By virtue of their larger
body size, nonhuman primates have larger veins that confer two
advantages to their role as research subjects for preclinical drug
self-administration studies: longer catheter life, and the possibil-
ity of implanting larger, double-lumen catheters.

First, the relatively large veins in monkeys can accommo-
date larger-diameter catheters, which increases catheter life.

Figure 1 The top panel shows a schematic of a drug self-administration set-up for nonhuman primates. Subjects are implanted with a chronic indwelling i.v. catheter

connected to a drug pump and placed into in environment that contains a response manipulandum, such as a response lever. A computer monitors responding and

operates the drug pump to deliver i.v. infusions. Intravenous catheters in nonhuman primates can have either one or two lumens. The bottom left panel shows hypo-

thetical data for an experiment to evaluate whether a test drug can maintain self-administration. In this design, responding produces i.v. infusions of the self-

administered drug. If some drug dose maintains higher response rates that drug vehicle, then the drug is considered to produce reinforcing effects suggestive of

abuse potential. The bottom right panel shows hypothetical data for an experiment to evaluate whether a test drug can reduce self-administration of a known drug

of abuse. In this design, responding produces i.v. infusions of the abused drug (e.g., cocaine), and changes in drug self-administration are evaluated during treatment

with the text drug. If the test drug selectively decreases self-administration of the abused drug, then the test drug may warrant further translational study as a candi-

date medication to treat substance use disorders.
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Intravenous catheters are long tubes composed of flexible and
biocompatible material such as silicone, and they are defined
in part by their inner diameter (the “lumen” through with
which fluid flows) and outer diameter (the diameter of the
lumen plus the walls of the catheter) (Figure 1A). The maxi-
mum outer diameter is constrained by the size of the veins in
the experimental subject, and the associated inner diameter of
the lumen is constrained by the catheter material. For example,
illustrative outer-/inner-diameter dimensions for catheters in
rhesus monkeys, squirrel monkeys, rats, and mice are 2.51/
0.84, 0.76/0.38, 0.64/0.31, and 0.41/0.18mm, respectively (Czoty
et al. 2007; Kimmel et al. 2007; Thomsen and Caine 2005).
Larger inner-diameter catheters are more resistant to blockage
and retain patency longer than smaller catheters, and conse-
quently, the average life of any given catheter in any nonhu-
man primate species exceeds that in rats or mice. Additionally,
monkeys have more veins than rodents that are sufficiently
large to accommodate a chronic i.v. catheter. For example, in
both adult rhesus and squirrel monkeys, the internal jugular,
external jugular, and femoral veins are all large enough to be
routinely used for i.v. catheterization in drug self-
administration studies. Furthermore, the brachial veins of rhe-
sus monkeys can also sometimes be used. Conversely, in rats
and mice, only the external jugular veins are routinely used.
The longer individual catheter life coupled with the larger
number of usable veins results in longer overall i.v. catheter life
in monkeys than rodents. For example, the mean ± standard
deviation i.v. catheter life in a group of 9 adult male rhesus
monkeys at one of the author’s laboratory was 35 ± 10 months,
whereas the total catheter life in rats and mice reported in a
separate study averaged 5 to 6 months (Thomsen and Caine
2005). This longer catheter life in monkeys facilitates studies
that involve long-term experimental manipulations such as
repeated-measures within-subject testing, use of relatively
complex behavioral tasks that require extensive training, or
evaluation of long-term dosing regimens with test compounds
(Banks 2016; Goodwin 2016; Negus and Banks 2013).

Second, the larger veins in monkeys also permit use of
double-lumen catheters, which increases flexibility in experi-
mental design. Single- and double-lumen catheters have one or
two lumens, respectively, within the overall catheter structure
(Figure 1A). Although single-lumen catheters are commonly
used for drug self-administration in monkeys, the relatively
large outer diameter can also accommodate two adjacent lu-
mens. For example, two of the authors use double-lumen ca-
theters with an outer diameter of 2.36mm and two lumens
with inner diameters of 0.76mm each. Double-lumen catheters
function as two independent catheters and enable the indepen-
dent delivery of two different i.v. solutions. For example, one
lumen can be used for i.v. infusions of the self-administered
drug (e.g., cocaine), and the second lumen can be used for self-
administration of a second drug or for chronic infusion of a
treatment drug (Huskinson et al. 2016; Negus 2005; Negus and
Mello 2003).

Impact on Translational Research

These technical advantages inherent to nonhuman primates as
experimental subjects may be especially important in transla-
tional research on candidate medications to treat substance
use disorders. As noted above, this type of study involves an
initial training phase, in which subjects are trained to self-
administer a drug of abuse (e.g., cocaine), followed by a

subsequent testing phase, in which cocaine self-administration
is evaluated during treatment with the candidate medication.
The preclinical-to-clinical predictive validity of these proce-
dures is influenced by two key variables (Banks and Negus
2012; Czoty et al. 2016; Haney and Spealman 2008; Weerts et al.
2007).

First, medications used clinically to treat drug addiction
(e.g., methadone maintenance to treat opioid addiction) are
typically administered chronically for periods of weeks to
years. Thus, the predictive validity of preclinical studies is
enhanced in experimental designs that use chronic dosing regi-
mens of candidate medications for periods of a week or more.
Experimental subjects that support a long i.v. catheter life facil-
itate these types of experimental designs by assuring reliable i.
v. access during both training and testing periods required for
sequential exposure to multiple chronic medication doses.
Moreover, computer-controlled and continuous medication
infusion through one lumen of a double-lumen catheter pro-
vides a convenient and reliable method for precisely controlled
test medication delivery while allowing simultaneous self-
administration of the abused drug through the other catheter
lumen.

Second, the predictive validity of preclinical medication
assessment can also be enhanced by using relatively complex
behavioral procedures that permit evaluation of the behavioral
selectivity of medication effects on drug self-administration.
Specifically, medications can reduce drug self-administration
either by producing a selective decrease in reinforcing effects of
the abused drug (the desired outcome) or by producing more
general effects that disrupt many behaviors (e.g., sedation or
paralysis; undesirable outcomes for a putative medication).
Behavioral selectivity can be assessed in preclinical studies by
comparing medication effects on drug self-administration with
effects on responding maintained by some other reinforcer,
such as food (Mello and Negus 1996). Optimal candidate medi-
cations will produce sustained decreases in drug self-
administration at doses that produce lesser or transient effects
on food-maintained responding. Drug self-administration and
food-maintained responding can be evaluated in the same sub-
ject during alternating behavioral sessions during which only
drug or only food is available, and more recently developed
“choice” procedures allow subjects to choose between drug and
food options that are simultaneously available (Banks 2016;
Banks et al. 2015). In choice procedures, optimal medications
produce not only a decrease in drug choice, but also a recipro-
cal increase in food choice as subjects reallocate their behavior
away from the drug option and toward the food option.
Regardless of the approach used (either alternating sessions of
drug and food availability or “choice” sessions of concurrent
drug and food availability), behavioral training can take a sub-
stantial amount of time. Overall, the long catheter life and the
feasibility of using double-lumen catheters in monkeys facili-
tates experimental designs that assess chronic medication
treatment effects on relatively complex behavioral tasks incor-
porating both drug self-administration and food-maintained
responding.

An Example of Translational Drug Self-Administration
Research

Translational research in any field is generally optimized by
the use of homologous procedures in laboratory animal and
human studies (Rasakham and Liu-Chen 2011). Use of
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homologous procedures minimizes discrepancies in variables
other than the species of the experimental subject and maxi-
mizes potential for direct comparison of results across species.
We (Johnson et al. 2016; Lile et al. 2016) and others (Foltin et al.
2015) have recently capitalized on the technical advantages
described above to develop homologous procedures in mon-
keys and humans for translational research on candidate medi-
cations to treat cocaine use disorder. In our studies, both
monkeys and humans were implanted with i.v. catheters and
tested in an environment with two response keys that could be
used to earn either i.v. cocaine injections or a species-specific,
non-drug alternative reinforcer (food pellets in monkeys,
money in humans). Each daily session began with a 30-min
“sampling” trial, during which subjects received the i.v. cocaine
dose and non-drug reinforcer available on that day. This was
followed by nine 30-min “choice” trials, during which subjects
could press one key to earn additional i.v. cocaine doses or the
other key to earn the non-drug alternative. In both species, the
cocaine dose and the magnitude of the alternative were sys-
tematically varied. The primary dependent measures were the
numbers of cocaine choices, food choices, and trial omissions
(i.e., neither option chosen) during each behavioral session.
Results in monkeys and humans were highly correlated. For
example, Figure 2 shows cocaine-choice dose-effect curves in
monkeys and humans when identical ranges of i.v. cocaine
doses were available as one choice, and either 10 food pellets
(in monkeys) or $3.00 (in humans) was available as the non-
drug alternative choice. In both species, increasing cocaine
doses maintained dose-dependent increases in cocaine choice
associated with reciprocal dose-dependent decreases in choice
of the non-drug alternative, and omissions were rare.
Moreover, the numbers of cocaine choices earned by monkeys
and humans at each cocaine dose were significantly correlated.
Notably, the details of these two drug self-administration pro-
cedures were initially established in human studies, and the
human procedure was then back-translated with minor modifi-
cations into monkeys. Moreover, these homologous procedures
are now poised for use in studies with chronically administered
candidate medications, and a double lumen catheter can be
used for medication delivery in monkeys. Development of this

translational research platform benefitted greatly from the
technical advantages described above.

Advantages Related to Coordinated Behavioral
and Noninvasive Imaging Preclinical Research
Overview of Noninvasive Imaging Techniques

The ability to characterize brain structure and function in living
human patients has proven to be an invaluable experimental
and diagnostic and tool in understanding and treating human
disease. The homology in brain anatomy and function between
nonhuman primates and humans, particularly in areas such as
the medial prefrontal cortex (e.g., Preuss 1995), provides unique
opportunities to elucidate the neurobiological consequences of
chronic drug exposure. Many brain imaging methods used in
humans have been adapted for use in nonhuman primate.
These include radiological techniques such as positron emis-
sion tomography (PET) imaging and magnetic resonance imag-
ing (MRI)-based approaches. The methodologies and
experimental considerations involved in applying each of these
approaches to nonhuman primate have been previously re-
viewed in detail (Gould et al. 2014; Howell and Murnane 2008;
Murnane and Howell 2011; Nader and Czoty 2008). Thus, we
will highlight how these techniques can be utilized in areas of
substance abuse research in which nonhuman primate offer
unique and valuable research opportunities.

Advantages Related to Biological Variables

Biological variables, and in particular sex, have gained greater
attention in biomedical research due to recent NIH policy
changes (Clayton and Collins 2014), and several review articles
have been written regarding sex as a biological variable in sub-
stance use disorder research (see Becker and Koob 2016; Carroll
and Lynch 2016; Sanchis-Segura and Becker 2016). However,
the review articles cited above have focused mainly on sex dif-
ferences in substance abuse research using rodent models.
This is perhaps surprising given that another critical biological
variable, research subject species, has emerged from the sub-
stance abuse literature as an important determinant of abused

Figure 2 Cocaine maintains a dose-dependent increase in cocaine choice in monkeys and humans responding under homologous cocaine choice procedures. Panels

A (monkeys; N = 4) and B (humans; N = 8) show the mean ± SEM number of trials completed for cocaine (open bars), trials completed for the non-drug alternative

reinforcer (closed bars; food pellets in monkeys and money in humans), or omitted trials (i.e., choice of neither cocaine or the alternative; gray bars) as a function of

cocaine dose on the X-axis. Data were analyzed by 2-way ANOVA, and significant ANOVAs were followed by the Holm-Sidak post hoc test. Asterisks indicate statisti-

cal significance (p < 0.05) within a trial outcome (cocaine choice, food choice, omission) compared to the 0 dose cocaine data. Dollar signs indicate statistical signifi-

cance (p < 0.05) with a cocaine dose between the numbers of cocaine vs food trials completed. Panel C shows a significant correlation in cocaine choice data for

monkeys and humans. Triangle denotes 0 cocaine dose condition. Diamond denotes 3-mg/70-kg cocaine dose condition. Square denotes 10mg/70 kg cocaine dose

condition. Circle denotes 30-mg/70-kg cocaine dose condition. Adapted from (Johnson et al. 2016; Lile et al. 2016).
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drug pharmacokinetic and pharmacodynamic effects (reviewed
in Phillips et al. 2014; Weerts et al. 2007). Brain imaging techni-
ques have been used extensively to characterize sex differences
in human brain structure and function (reviewed in Andersen
et al. 2012; Cosgrove et al. 2007). However, most human sub-
stance abuse studies have not been designed to examine sex as
an independent biological variable. Sex differences in humans
have been reported for both the dopamine transporter, the pri-
mary biological target of cocaine and amphetamines, and dopa-
mine D2 and D3 receptors (D2/D3R), critical mediators of the
abuse-related effects of many classes of abused drugs
(Kaasinen et al. 2001; Lavalaye et al. 2000; Mozley et al. 2001;
Pohjalainen et al. 1998). However, other human data do not
support a sex difference at these biological targets (Farde et al.
1995; Munro et al. 2006). Discrepancies may arise due to varia-
tion in parameters related to subjects’ drug use (e.g., amount
and duration of prior drug use, time abstinent, extent of poly-
substance use), comorbid psychiatric disease, and other limita-
tions inherent to human studies. Neuroimaging studies in
nonhuman primates, in which such potentially confounding
variables can be controlled, have shed light on potential biolog-
ical differences, particularly in D2/D3R function.

In a series of studies in drug-naïve male and female cyno-
molgus monkeys, D2/D3R were studied using PET imaging and
the radiotracer [18F]fluoroclebopride (FCP). The primary depen-
dent variable in PET imaging studies is receptor availability
quantified as a distribution volume ratio, which is a ratio of the
amount of radiotracer binding in a region of interest (ROI)
divided by a comparator region relatively devoid of receptors. It
is important to point out that distribution volume ratio is influ-
enced not only by the number of receptors present within a
given ROI, but also by the amount of extracellular neurotrans-
mitter (in this case, dopamine) that competes with the radio-
tracer for binding at the receptor. Early studies used a PET
camera with 9-mm resolution and measured D2/D3R availabil-
ity in a relatively large “basal ganglia” ROI composed of the cau-
date nucleus and putamen. In these studies, D2/D3R
availability was similar across sexes (Grant et al. 1998; Morgan
et al. 2002). Subsequent studies used smaller, separate ROIs for
caudate and putamen ROIs and, in females, employed a
microPET camera with significantly higher spatial resolution
(~2mm). In these studies, D2/D3R availability was higher in
both brain regions in females (Czoty et al. 2009; Nader et al.
2012b). Considering the equivocal human data, the nonhuman
primate findings suggest that other factors may have obscured
detection of sex differences in D2/D3R availability in some
human studies. For example, with respect to human studies in
cocaine abusers, it is possible that sex differences may dissi-
pate after long-term cocaine use. Although this question has
not been directly addressed in nonhuman primates, chronic
cocaine self-administration decreases D2/D3R availability in
basal ganglia regions in both males (Nader et al. 2002) and fe-
males (M Nader, S Nader, A Duke, H Gage, M Goodman, R Voll,
K Sai, A Mintz, L Howell, unpublished observations). Moreover,
a previous study reported no differences in [18F]FCP binding in
young adult male and female rhesus monkeys who had been
exposed to cocaine throughout gestation (Hamilton et al. 2010).

In addition to characterizing differences between males and
females, nonhuman primates are an ideal animal model in
which to study the effects of menstrual cycle in substance
abuse research. In contrast to rodents, which have an estrous
cycle that lasts only 4 days, the macaque menstrual cycle has a
similar duration (~28 days) and similar fluctuations in ovarian
hormones compared to humans (Appt 2004; Goodman et al. 1977;

Jewett and Dukelow 1972). Regarding the effect of menstrual
cycle phase on D2/D3R availability, human studies have yielded
equivocal results. Wong et al. (1988) reported lower caudate
nucleus D2/D3R availability in the follicular vs luteal phases,
but a more recent study using a different radiotracer (Munro
et al. 2006) reported higher putamen D2/D3R availability in the
follicular phase. A third study reported no differences in the
putamen as a function of menstrual cycle phase (Nordstrom
et al. 1998). We addressed this question by performing [18F]FCP
PET scans in adult female cynomolgus monkeys in the follicular
and luteal phases of their menstrual cycle (Czoty et al. 2009).
Consistent with the Wong et al. (1988) study, we found that
D2/D3R availability was significantly lower in the follicular vs
luteal phase of the menstrual cycle in both caudate and puta-
men. Certainly, there are both procedural and subject-related
factors that differ among these studies. It is important to note,
however, that in the Wong et al. (1988) and Czoty et al. (2009)
studies each subject was scanned twice, once in each phase. In
the other studies, fewer subjects were scanned under both con-
ditions (four in the Nordstrom et al. study, none in the Munro
et al. study). Moreover, the lower follicular-phase values for
caudate D2/D3R availability (2.85 ± 0.11) were much closer to
those observed in males (2.42 ± 0.39) than during the luteal
phase (3.18 ± 0.14); the same relationship was observed in the
putamen. Taken together these nonhuman primate data docu-
ment sex differences in D2/D3R availability and indicate that
menstrual cycle phase can influence these measures. Furthermore,
these results suggest that one reason that previous human stud-
ies may not have observed sex differences in PET measures may
have been a failure to consider the menstrual cycle phase of
female subjects.

MRI has been used to provide detailed structural images of
the brain without exposure to ionizing radiation. More recently,
functional MRI techniques have been developed to provide
information about brain function with superior spatial resolu-
tion compared to PET imaging and other modalities. Functional
MRI has greatly advanced our understanding of brain reward
circuitry and the neuropharmacological effects of abused drugs
(reviewed in Breiter and Rosen 1999; Volkow et al. 2004; Zahr
2014). One recent application is the study of functional connec-
tivity: temporally correlated activity in spatially distinct brain
areas that define integrated networks (Biswal et al. 1995).
Application of network theory to the brain has gained popular-
ity because these methods can evaluate the whole brain and
identify relationships that may be missed when a ROI-centered
analysis is used. One such network, termed the default mode
network (DMN; Buckner et al. 2008), is a set of brain regions
that displays correlated activity when the brain is not involved
in explicit goal-directed activity (Raichle et al. 2001). Studies
examining functional connectivity have demonstrated that
both acute and chronic drug use can disrupt brain networks,
including the DMN in humans (Chanraud et al. 2011; Liang
et al. 2015; Ma et al. 2011; Müller-Oehring et al. 2015). For exam-
ple, older adults with a history of moderate-to-heavy drinking
exhibited decreased connectivity in the central executive net-
work while performing a cognitive task (Mayhugh et al. 2016).
In the past decade, studies examining functional connectivity
have been extended to nonhuman primates, which show a
high degree of similarity to humans in identified brain net-
works including the DMN (Figure 3). More recently, these types
of noninvasive imaging studies have been applied to nonhu-
man primate models of substance abuse (Brevard et al. 2006;
Murnane et al. 2015; Telesford et al. 2015). For example, in ver-
vet monkeys who self-administered ethanol daily for over
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15 months, monkeys characterized as heavy drinkers showed
differences in brain network organization compared to light
and non-drinkers (Telesford et al. 2015). As the ability to mea-
sure and interpret alterations in global brain activity increases,
studies of functional connectivity in nonhuman primates will
play a critical translational role.

Advantages Related to Environmental Variables

Only a subset of those who are exposed to drugs and alcohol
will develop substance abuse disorders. Although little is
known about the factors that influence vulnerability and resil-
ience to the abuse-related effects of drugs, it is clear that these
characteristics can be influenced by long-term exposure to
environmental stress and enrichment in both humans and lab-
oratory animals. This highlights an important experimental
advantage of nonhuman primate subjects: the ability to con-
duct longitudinal studies. Brain imaging studies have contrib-
uted to our understanding of the effects of chronic exposure to
environmental variables that confer vulnerability to drug
abuse.

For decades, nonhuman primate social groups have proven
useful as models of human susceptibility and resistance to dis-
ease. In captivity, group-housed monkeys form dominance
hierarchies in which a monkey’s position is determined by the
outcomes of social interactions (Kaplan et al. 2009). Biological
differences among nonhuman primates in different positions
of the social hierarchy have been linked to predictable variation
in physiology, neurobiology, and behavior (Cohen et al. 1997;
Sapolsky 2005; Shively and Day 2014). Importantly, this social
rank-related variation extends to the abuse-related effects of
monoamine transporter ligands (i.e. cocaine or amphetamine)
and alcohol; studies have consistently reported an inverse rela-
tionship between social status and drug effects (Czoty et al.
2005; Ervin et al. 1990; Helms et al. 2012; McKenzie-Quirk and
Miczek 2008; Morgan et al. 2002; Peretti and Lewis 1969; Smith
and Byrd 1985). One explanation of the physiological and
neurobiological differences between high- (dominant) and low-
ranking (subordinate) monkeys involves a greater amount of
stress experienced by subordinates, as encompassed by the
concept of allostatic load (Goymann and Wingfield 2004). Thus,
we have conceptualized the linear social dominance hierarchy
as representing chronic environmental enrichment at one end
(dominance) and chronic social stress (subordination) at the
other (Nader et al. 2012a).

PET studies in socially housed monkeys have shed light on
neurobiological differences between monkeys of different
ranks. The first assessment of the relationship between social
status and D2/D3R availability occurred in a well-established
group of female cynomolgus monkeys. On average, D2/D3R
availability was significantly lower in subordinate monkeys,
which was hypothesized to be an effect of chronic social stress
(Grant et al. 1998). To investigate this question more directly,
groups of male and female cynomolgus monkeys underwent
PET scans while individually housed and again after 3 months
of social housing, by which time hierarchies had stabilized
(Morgan et al. 2002; Nader et al. 2012b). In both sexes, the direc-
tion of the effect was the same as in the Grant et al. (1998)
study: D2/D3R availability was higher in dominant monkeys.
However, contrary to the prevailing hypothesis, the difference
arose because D2/D3R availability increased in those monkeys
who became socially dominant, while measures in monkeys
that became subordinate did not change from their baseline
values. Importantly, when male monkeys were permitted to
self-administer i.v. cocaine injections, socially dominant mon-
keys were significantly less sensitive to the reinforcing effects
of cocaine (Czoty et al. 2005; Morgan et al. 2002). In this way,
the observed relationship between brain D2/D3R and sensitivity
to cocaine in male monkeys was consistent with observations
of lower D2/D3R in cocaine-abusing humans vs controls
(Volkow et al. 1993). The nonhuman primate data extend find-
ings in humans by suggesting that D2/D3R availability is a con-
tributing factor to sensitivity to cocaine rather than an effect of
long-term cocaine use. Interestingly, the relationship between
social status and sensitivity to cocaine in females was opposite
to that found in males: dominant females were found to be
more sensitive to cocaine during early exposure (Nader et al.
2012b). Thus, these studies identified sex-by-environment in-
teractions that influence sensitivity to cocaine.

Once male monkeys had self-administered cocaine over
several years, rank-related differences in D2/D3R availability
had dissipated (Czoty et al. 2004). However, when monkeys, still
living in social groups, were scanned after 8 months of absti-
nence from cocaine, D2/D3R availability was again significantly
higher in the caudate nucleus in dominant versus subordinate
monkeys. Taken together, these PET imaging studies indicated
that the environment exerts powerful effects on the brain
dopamine systems. Although these effects can be overridden
by chronic drug use, they have the potential to reemerge during
abstinence. An important point in the context of this review is
that these conclusions would not have been possible without
the ability to conduct longitudinal studies in nonhuman
primates.

Advantages Related to Interpretations
of Preclinical Research
The National Institute on Drug Abuse website operationally de-
fines drug addiction, the most severe stage of the substance
use disorder diagnosis, as “a chronic, relapsing brain disease
that is characterized by compulsive drug seeking and use,
despite harmful consequences” (National Institute on Drug
Abuse). Accordingly, there has been significant scientific inter-
est in developing predictive preclinical models to empirically
improve our understanding of the neurobiological mechanisms
mediating drug addiction and, ultimately, to develop effective
treatment strategies. Given the good translational and predic-
tive validity of preclinical drug self-administration procedures
to human substance use disorders (Carter and Griffiths 2009;

Figure 3 Unpublished demonstration of default mode network in human sub-

jects (left, n = 28) and cynomolgus monkeys (right, n = 4). Images courtesy of

Dr. Christopher T. Whitlow, Wake Forest School of Medicine.
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Czoty et al. 2016; Griffiths et al. 1979; Huskinson et al. 2014),
most of the scientific focus has been on developing innovative
preclinical drug self-administration procedures.

One hypothesized construct of drug addiction is that drug
use progresses from controlled to uncontrolled use over time
with repeated drug exposure (Koob 1996; Leshner 1997; Volkow
et al. 2016). Evidence supporting this hypothesis comes from
preclinical drug self-administration studies in which rats are
implanted with an indwelling i.v. catheter and afforded the
opportunity to self-administer cocaine under either 1-h “short-
access” or 6-h “long-access” or “extended-access” conditions
(Ahmed and Koob 1998). Rats allowed to self-administer
cocaine during 1-h sessions displayed stable rates of cocaine-
maintained behavior over the 22-day experimental period. In
contrast, rats responding during the 6-h session displayed a
steady increase in cocaine-maintained behavior and corre-
sponding cocaine intake over the same 22-day experimental
period. Although recent evidence suggests that escalated rates
of drug self-administration in rats might occur through dis-
crimination learning processes (Beckmann et al. 2012), the
escalated rates of drug self-administration in rats over time
have been replicated across numerous abused substances
including opioids (Ahmed et al. 2000; Wade et al. 2015), nicotine
(Cohen et al. 2012), alcohol (Priddy et al. 2017), and metham-
phetamine (Kitamura et al. 2006). Overall, the consistency and
broad range of abused substances that maintained this “esca-
lated” pattern of drug self-administration in rats provided
empirical evidence supporting both continued use of this pre-
clinical model of drug addiction in rats and further studies in
other species of laboratory animals, such as nonhuman
primates.

When patterns of drug self-administration have been exam-
ined in nonhuman primates under similar “extended-access”
conditions to those described above, the results have not re-
produced those reported above in rats. For example, rhesus
monkeys allowed to self-administer cocaine during 6-h “long-
access” behavioral sessions failed to display a steady increase
or escalation in cocaine-maintained responding and correspond-
ing cocaine intake over a 60-day experimental period (Henry and
Howell 2009; Henry et al. 2009). In fact, cocaine-maintained re-
sponding was quite stable over the entire experimental period.
Moreover, an escalated pattern of cocaine self-administration
in rhesus monkeys was not necessary to produce significant
alterations in the responsiveness of the mesolimbic dopamine
system (Henry et al. 2009). This neurochemical result of
chronic cocaine self-administration was significant because it
confirms and extends previous results in cocaine-dependent
humans (Volkow et al. 1997), thus supporting the predictive
validity of intravenous drug self-administration procedures in
nonhuman primates as models of the human substance abuse
disorder.

Other variants of extended-access drug self-administration
conditions have also been examined in nonhuman primates,
and the results of these studies also did not reproduce patterns
of escalated drug self-administration behavior. For example,
when monkeys were afforded the opportunity to self-
administer cocaine, d-amphetamine, or d-methamphetamine
23 h/d under unlimited access conditions, there was no consis-
tent pattern of increased rates of drug self-administration over
time and pattern of responding was best characterized as a
“binge-crash” pattern (Deneau et al. 1969; Johanson et al. 1976).
In a recent series of cocaine self-administration studies in non-
human primates, patterns of cocaine self-administration under
20-h/d cocaine access conditions were also best characterized

as a “binge-crash” pattern (Banks and Negus 2010; Banks et al.
2013; Hutsell et al. 2016a, 2016b). Moreover, escalated drug self-
administration in rats is typically interpreted as evidence for
increased reinforcing efficacy of the self-administered drug.
However, studies in nonhuman primates do not always support
this interpretation. For example, neither exposure to nor with-
drawal from extended cocaine access increased cocaine self-
administration in rhesus monkeys responding under a
progressive-ratio schedule (Czoty et al. 2006) or choice of
cocaine over food in rhesus monkeys responding under a
cocaine-vs-food choice procedure (Banks and Negus 2010).
Similarly, neither exposure to nor withdrawal from extended
methamphetamine access increased methamphetamine vs
food choice in rhesus monkeys (M Banks, unpublished observa-
tions). Although the exact mechanisms of this species differ-
ence remain to be fully elucidated, these results have
implications for both understanding the neurobiological mech-
anisms of substance use disorders and the development of can-
didate medications.

The clinical implications of this species difference in pat-
terns of drug self-administration has recently emerged in the
evaluation of candidate pharmacotherapies targeting the
kappa-opioid receptor (KOR)/dynorphin system (for review, see
Negus and Banks, 2017). For example, acute administration of
the long-acting KOR antagonist nor-binaltorphimine (nor-BNI)
or mixtures of buprenorphine + naltrexone (to produce a KOR
antagonist effect) attenuated escalated cocaine (Wee et al.
2009, 2012) and heroin (Schlosburg et al. 2013) self-
administration in rats under extended drug access conditions.
These results were interpreted as support for the clinical utility
of KOR antagonists as candidate pharmacotherapies for
cocaine or heroin use disorder. However, when acute nor-BNI
was evaluated under extended cocaine access conditions, it
failed to attenuate either cocaine-vs-food choice or rates of
cocaine self-administration under extended cocaine access
conditions in rhesus monkeys (Hutsell et al. 2016a).
Furthermore, acute treatment with another KOR antagonist 5′-
guanidonaltrindole also failed to block withdrawal-associated
increases in heroin-vs-food choice in rhesus monkeys (Negus
and Rice 2009). Recently, chronic buprenorphine + naloxone
plus naltrexone (to produce a KOR antagonist effect) was evalu-
ated in a double-blind, placebo-controlled clinical trial for the
treatment of cocaine use disorder, and there was no significant
decrease in cocaine use compared to placebo treatment (Ling
et al. 2016). Overall, these results highlight a recent and specific
example of translational concordance between candidate phar-
macotherapy treatment results in nonhuman primates and hu-
mans, and support the utility of nonhuman primates in the
drug development process for substance use disorder
treatments.

Future Directions
One potential direction where nonhuman primate substance
abuse research may expand is elucidating the neuropharmaco-
logical mechanisms of novel psychoactive substances. The
explosion of novel psychoactive substances that target recep-
tors for monoamines (e.g., 3,4-methylenedioxypyrovalerone),
opioids (e.g., trans-3,4-dichloro-N-(2-(dimethylamino)cyclohexyl)-
N-methylbenzamide; U-47700), or cannabinoids (e.g., 1-pentyl-
3-(1-naphthoyl)indole; JWH-018) have emerged as significant
public health problems over the past decade (Baumann 2014;
Baumann and Volkow 2016). However, there is a paucity of pre-
clinical studies that have determined the pharmacodynamic or
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pharmacokinetic effects of these novel psychoactive compounds
in nonhuman primates.

A recent series of studies has examined the behavioral phar-
macology of synthetic cathinone analogs using a drug discrimi-
nation procedure in nonhuman primates (Smith et al. 2016,
2017). In a drug discrimination procedure, animals (Lelas et al.
2000; Solinas et al. 2006) or humans (Bolin et al. 2016) are
trained to respond on one lever to earn a reinforcer (e.g., a food
pellet) after training drug (e.g., cocaine) administration and
respond on another lever to earn the same reinforcer after
vehicle administration. A test drug can then be administered to
determine whether it produces responding on the training
drug-associated lever suggestive of shared pharmacological
mechanisms with the training drug. Drug discrimination proce-
dures serve as a valuable tool for evaluation of novel psychoac-
tive compounds, because subjects can be trained to
discriminate a known drug of abuse, and novel compounds can
then be tested for their effectiveness to produce responding
similar to that training drug. Discriminative stimulus effects of
drugs are often similar across species, but important species
differences have been observed. For example, a prominent dif-
ference in drug effects between nonhuman primates and rats
trained to discriminate cocaine from saline was with the novel
psychoactive substance 4-methylmethcathinone (mephe-
drone). Mephedrone produced partial cocaine-like discrimina-
tive stimulus effects in rhesus monkeys (Smith et al. 2016)
compared to full cocaine-like effects in rats (Gatch et al. 2015).
Moreover, the mephedrone results in rhesus monkeys were
consistent with reports of subjective effects of mephedrone in
human mephedrone users (Carhart-Harris et al. 2011;
Kapitány-Fövény et al. 2013).

Nonhuman primates have also demonstrated utility as
research subjects for the evaluation of novel psychoactive sub-
stances targeting other receptor systems, such as the opioid or
cannabinoid systems. For example, nonhuman primates have
served as research subjects evaluating the behavioral effects of
novel mu-opioid agonists, such as fentanyl derivatives (France
et al. 1995), and novel nonopioid compounds, such as nocicep-
tin/orphanin FQ agonists (Ding et al. 2016; Ko et al. 2009;
Saccone et al. 2016). Regarding the cannabinoid system, squir-
rel monkeys are the only species of research animal for which
Δ9-tetrahydrocannabinol and other novel cannabinoid com-
pounds are robustly self-administered (Justinova et al. 2003;
Justinová et al. 2011; Schindler et al. 2016). However, reinforcing
effects of Δ9-tetrahydrocannabinol and another cannabinoid
receptor agonist, CP55,940, was recently demonstrated in a sub-
set of rhesus and cynomolgus monkeys (John et al. 2017). As
clandestine laboratories continue to synthesize novel psycho-
active substances to circumvent regulatory authorities, nonhu-
man primates will serve as a valuable resource to elucidate
underlying pharmacological, pharmacokinetic, and toxicologi-
cal mechanisms.

Another future direction for nonhuman primate substance
abuse research could be the increased utilization of sophisti-
cated behavioral procedures that assess aspects of cognitive
function. Because nonhuman primates have more similar corti-
cal brain structures and functions with humans compared to
rodents (Haber and Knutson 2009; Haber et al. 1990), nonhuman
primates provide unique opportunities to assess the behavioral
and neurobiological consequences of acute and chronic abused
drug exposure. Furthermore, these cognitive behavioral proce-
dures could then be coupled with other biological measure-
ments, such as hormone levels or brain activity, to conduct
parallel monkey and human experiments as described above.

For example, a recent study in female cynomolgus monkeys re-
ported that estradiol and progesterone level changes as part
of the menstrual cycle differentially impacted cognitive
behavioral procedure performance (Kromrey et al. 2015).
Furthermore, recent studies have combined brain imaging
and drug self-administration in nonhuman primates to
assess the effects of abused drug exposure on cortical brain
function (Howell et al. 2010; Porrino et al. 2016; Porter et al.
2014). Overall, the combination of technical and neurobiolog-
ical advantages support the utility of nonhuman primates to
elucidate the cognitive consequences of chronic abused drug
exposure.

Conclusions
The continued use of nonhuman primates as models in sub-
stance abuse research for over 70 years has provided valuable
insights regarding the biological, environmental, and pharma-
cological determinants of substance use disorders. Here we re-
viewed three particular associated with use of nonhuman
primates as research subjects. First, nonhuman primates afford
technical advantages over rats or mice in preclinical substance
abuse research with regard to i.v. catheter size, type (i.e., dou-
ble-lumen), and catheter longevity. These technical advantages
have provided researchers the ability to conduct coordinated
and translational research in parallel with human laboratory
drug self-administration studies. This use of coordinated
behavioral procedures in nonhuman primates and humans has
the potential to facilitate the drug development process for
candidate pharmacotherapies to treat substance use disorders.
Second, these technical advantages have also provided oppor-
tunities to improve our mechanistic understanding of the bio-
logical determinants and consequences of substance use
disorders by pairing chronic i.v. drug self-administration with
noninvasive imaging techniques, such as PET and MRI. Finally,
patterns of abused drug self-administration in nonhuman pri-
mates have supported alternative interpretations of results
from rat drug self-administration studies. Moreover, these non-
human primate studies have provided more concordant results
with both human laboratory drug self-administration studies
and clinical trials evaluating candidate pharmacotherapies for
substance use disorders. In summary, the examples described
in this review article provide empirical data supporting the
continued use of nonhuman primates in substance abuse
research. Nonhuman primate research subjects will be invalu-
able in addressing the emerging public health crisis of novel
psychoactive substance abuse and addiction.
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