Skip to main content
. 2018 Apr 5;14(4):e1007275. doi: 10.1371/journal.pgen.1007275

Table 2. Comparison by province of genome-wide significant signals for fasting glucose.

Province N SIX3-SIX2 G6PC2
rs895636-T rs34177044-A rs2232326-C
MAF Beta P-value MAF Beta P-value MAF Beta P-value
Heilongjiang 736 0.35 0.134 0.007 0.35 0.194 0.0009 0.02 -0.199 0.22
Liaoning 564 0.37 0.036 0.48 0.36 0.172 0.006 0.02 -0.365 0.03
Shandong 625 0.36 0.152 0.003 0.40 0.156 0.01 0.03 -0.232 0.16
Jiangsu 723 0.38 0.125 0.004 0.39 0.086 0.11 0.04 -0.007 0.95
Henan 732 0.36 0.120 0.009 0.37 0.076 0.14 0.03 -0.405 0.0009
Hubei 349 0.43 0.086 0.25 0.38 0.130 0.14 0.04 -0.151 0.42
Hunan 660 0.44 0.057 0.21 0.36 0.084 0.13 0.05 -0.305 0.003
Guizhou 461 0.43 0.128 0.07 0.36 0.188 0.03 0.07 -0.178 0.22
Guangxi 936 0.47 0.057 0.14 0.36 0.157 0.001 0.09 -0.277 3.5 x 10−5
All Subjects 5,786 0.40 0.099 2.3 x 10−8 0.40 0.145 6.9 x 10−12 0.04 -0.252 1.8 x 10−9

Provinces are ordered based on geographical location from north to south. Trait values were adjusted for age, age2, BMI, PC1, and sex, and the residuals were then inverse normal transformed. Beta estimates reflect per allele effects of variants on inverse normal transformed traits. Only non-diabetic subjects were included in the analyses. Global tests for heterogeneity between the provinces were not statistically significant (P>0.05). CHNS, China Health and Nutrition Survey; MAF, minor allele frequency.