Skip to main content
. 2018 Apr 5;13(4):e0194890. doi: 10.1371/journal.pone.0194890

Fig 5. Application of the EGO strategy to 3D print calibration cubes.

Fig 5

(A) Dimensions of the cube CAD model, 20 mm × 20 mm × 20 mm, L×W×H, and the resulting S3D slicer toolpath. (B) Summary of the EGO strategy applied to optimize the cube showing the highest score from each generation and the target score of 20. The cube optimized after 12 generations of hill climb. (C) Images of the PDMS 3D print using the Skeinforge CAD slicer to determine toolpath. The print with high bottom score (9/10) had poor wall score (5/10). (D) Images of the PDMS 3D print made using the Skeinforge CAD slicer to determine toolpath. The print with poor bottom score (5/10) had full wall score (10/10), and had the fittest total score (15/20). (E) Images of the PDMS 3D print made using the S3D CAD slicer to determine toolpath. The print with full bottom score (10/10) had poor wall score (5/10), and had the fittest total score (15/20). (F) Images of the PDMS 3D print made using the S3D CAD slicer to determine toolpath. The print with poor bottom score (3/10) had a full wall score (10/10). (G) S3D slicer toolpath of the cube before and after the flip, inverting the build orientation for 3D printing in the support bath, which was achieved at the 12th generation of the cube hill climb. (H) Image of PDMS 3D prints made using the S3D CAD slicer to determine the toolpath. A full total score (20/20) was reached after the flip. Scale bars are 1 cm.