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Abstract
Glaucoma is the leading cause of irreversible blindness worldwide. Although most glaucoma patients are elderly, congenital
glaucoma and glaucomas of childhood are also important causes of visual disability. Primary congenital glaucoma (PCG) is
isolated, non-syndromic glaucoma that occurs in the first three years of life and is a major cause of childhood blindness.
Other early-onset glaucomas may arise secondary to developmental abnormalities, such as glaucomas that occur with aniri-
dia or as part of Axenfeld-Rieger syndrome. Congenital and childhood glaucomas have strong genetic bases and disease-
causing mutations have been discovered in several genes. Mutations in three genes (CYP1B1, LTBP2, TEK) have been reported
in PCG patients. Axenfeld-Rieger syndrome is caused by mutations in PITX2 or FOXC1 and aniridia is caused by PAX6 muta-
tions. This review discusses the roles of these genes in primary congenital glaucoma and glaucomas of childhood.

Introduction

Glaucoma is a heterogeneous group of optic nerve diseases that
share two clinical features, a characteristic injury to the optic
nerve (cupping) and a corresponding pattern of visual field loss.
The anterior segment of the eye is filled with an aqueous fluid
that is created in the ciliary body and exits the eye through the
trabecular meshwork. The trabecular meshwork is a porous tis-
sue located in the angle created where the cornea intersects the
iris - the iridocorneal angle. Abnormalities in the structure or
conformation of the iridocorneal angle may limit outflow of
aqueous humor and cause a rise in intraocular pressure, which
is a strong risk factor for developing glaucoma (1).

While the majority of glaucoma patients are adults, early on-
set forms of glaucoma are also important causes of visual dis-
ability. Glaucomas that occur before three years of age without
overt structural defects of the eye are termed primary congeni-
tal glaucoma (PCG). Conversely, developmental glaucomas

occur secondarily to recognizable malformations of the anterior
segment of the eye (iris, iridocorneal angle, etc.). PCG and devel-
opmental glaucomas have strong genetic bases and are the sub-
ject of this review.

Primary Congenital Glaucoma (OMIM: 231300)
PCG is the most common form of pediatric glaucoma (2) and ac-
counts for up to 18% of childhood blindness (3,4). The incidence
of PCG varies geographically, being most common in Saudi
Arabia (1/2,500) (5) and among consanguineous populations
(1/1,250 in Slovakian Roma) (6), and least common in Western
countries (1/10,000) (7). Symptoms are nonspecific and include
tearing, light sensitivity, eye rubbing, and irritability. High intra-
ocular pressure leads to enlarged eyes, cloudy corneas, cracks in
the cornea (Haab striae), and optic nerve cupping (8,9).

While the majority of PCG cases are sporadic, up to 40% are
familial and follow autosomal recessive inheritance patterns
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with variable penetrance (7). Genetic analyses of affected fami-
lies have yielded four loci associated with PCG: GLC3A on 2p21
(10), GLC3B on 1p36 (11), GLC3C (12) and GLC3D (13) adjacent to
but not overlapping one another on 14q24. PCG-causing muta-
tions have been identified in genes within two of the four loci.
Cytochrome P450 1B1 (CYP1B1) mutations were discovered
within the GLC3A locus and are the most common known cause
of PCG (14). CYP1B1 encodes a metabolizing enzyme of the cyto-
chrome P450 family. Mutations in latent transforming growth
factor beta binding protein 2 (LTBP2), located in the GLC3D locus
(15), have also been associated with PCG. LTBP2 encodes an ex-
tracellular matrix protein involved in cell adhesion and
structural maintenance of connective tissues. PCG-causing mu-
tations have not yet been found within the GLC3B or GLC3C loci.
Most recently, mutations in a third gene, tunica interna endo-
thelial cell kinase (TEK), have been reported in patients with
PCG (16).

Cytochrome P450 1B1 (CYP1B1)

Autosomal recessive mutations in CYP1B1 are the most com-
mon known cause of PCG. Over 150 variants have been identi-
fied worldwide and the prevalence of CYP1B1 mutations in PCG
varies greatly with ethnicity (17). A few specific CYP1B1 muta-
tions account for a majority of PCG cases in select populations
(i.e. E387K in Slovakian Roma and G61E in Saudi Arabia) (18,19).
One mutation, R390H, is especially common among Chinese,
Iranian, Indian, and Pakistani cases of PCG (17,20–22).
Pathogenic CYP1B1 alleles have been detected in a smaller frac-
tion of PCG cases in Japan (20%) (23) and the United States
(14.9%) (24). Although CYP1B1 mutations are most commonly
detected in PCG patients, mutations have also been rarely re-
ported in patients with a range of other phenotypes including
aniridia (25), Peters anomaly (26) Axenfeld-Rieger syndrome
(27), juvenile open angle glaucoma (28), and primary open angle
glaucoma (29).

CYP1B1 is a member of the cytochrome P450 family of
membrane-bound oxidase enzymes that have broad roles in
metabolism and produce hormones and other metabolic inter-
mediates during development (30). While most other cyto-
chromes are highly expressed in the liver, CYP1B1 is more
abundant in extra-hepatic tissues including lung, colon, kidney
and eye (31). The precise mechanism by which CYP1B1 muta-
tions cause PCG is unknown. However, CYP1B1 is expressed in
the ciliary body and trabecular meshwork, tissues of the eye
that regulate intraocular pressure (14,32). Recent studies pro-
pose that CYP1B1 may be essential in the development and
function of the trabecular meshwork (33,34). Moreover,
glaucoma-causing mutations reportedly decrease CYP1B1 en-
zyme stability, abundance, or catalytic activity (35–41). Together
these data suggest that CYP1B1 mutations may alter trabecular
meshwork function, cause dysregulation of intraocular pres-
sure, optic nerve damage, and ultimately PCG.

Latent transforming growth factor beta binding protein
2 (LTBP2)

Autosomal recessive LTBP2 variants are a rare cause of PCG,
with cases primarily reported in consanguineous families from
Pakistan and Iran (15,42). LTBP2 mutations are also responsible
for many cases of PCG in Slovakian Roma, with the R299X muta-
tion in LTBP2 accounting for over half of CYP1B1-negative cases
(43). However, LTBP2 mutations have not been detected in PCG

cohorts from northern India, the United Kingdom, the United
States, or China (24,44–46). Recently, mutations in LTBP2 were
found to cause congenital glaucoma in Siamese cats, providing
additional support for the role of this gene in PCG (47).

LTBP2 encodes an extracellular matrix protein with putative
roles in cell adhesion (48,49) and elastin microfibril assembly
(50–52). LTBP2 is highly expressed in tissues that are rich in elas-
tic fibers, such as lungs and arteries (53). LTBP2 is also expressed
in ocular tissues that are vital to regulation of intraocular pres-
sure and glaucoma biology, including the trabecular meshwork
and ciliary body. Moreover, LTBP2 is essential for development
of the anterior chamber and ciliary zonules (15,53). Mutations in
LTBP2 are, consequently, a plausible cause of congenital abnor-
malities of ocular structures that may lead to increased intraoc-
ular pressure and PCG.

Homozygous LTBP2 mutations have also been reported in
rare cases with a range of other ocular abnormalities (megalo-
cornea, microspherophakia, ectopia lentis, primary open angle
glaucoma, pseudoexfoliation syndrome, primary angle-closure
glaucoma and Weill-Marchesani syndrome) (54–59).

Tunica interna endothelial cell kinase (TEK)

Recently, transgenic "knock-out" mice that are deficient for the
angiopoietin 1 and 2 (Angpt1 and Angpt2) genes or the angio-
poietin receptor also known as tunica interna endothelial cell
kinase (Tek) gene were shown to have signs of PCG including en-
larged globes, high intraocular pressure, retinal ganglion cell
loss, and optic nerve damage. These phenotypes of the trans-
genic mice were attributed to an absence of ocular structures re-
quired for fluid drainage (i.e. Schlemm canal) and have
implicated the angiopoietin signaling pathways in PCG patho-
genesis (60). Furthermore, a dose response to Tek deficiency was
demonstrated. Mice heterozygous for the Tek "knock-out" muta-
tion develop abnormalities in outflow structures and elevation
in intraocular pressure with intermediate severity. Tek
haploinsufficiency can compromise aqueous humor outflow in
mice (16).

Heterozygous mutations in the human TEK gene were dis-
covered in 10 of 189 unrelated human PCG patients. Seven of
these ten PCG cases had no family history of glaucoma, while
additional affected family members were identified for three
PCG probands. Pedigree analyses reported autosomal dominant
inheritance with variable expressivity and incomplete pene-
trance (16). Several of the TEK mutations detected in human
PCG patients were shown to have functional effects in cell cul-
ture assays including altered transcription, reduced protein pro-
duction, altered post-translational modification, and aberrant
trafficking. TEK regulates vasculogenesis and is highly ex-
pressed in blood vessels and lymphatic endothelia, as well as in
the endothelium of Schlemm canal (61,62). Although their spe-
cific role in glaucoma pathogenesis is unknown, it is likely that
TEK mutations cause alterations in the development of ocular
structures necessary for normal aqueous outflow and regulation
of intraocular pressure and subsequently predispose develop-
ment of congenital glaucoma.

Developmental Glaucomas
Axenfeld-Rieger syndrome (OMIM: 180500)

Axenfeld-Rieger syndrome encompasses a heterogeneous
collection of disorders with ocular and systemic features.
Axenfeld-Rieger syndrome is rare and has a prevalence of
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1:200,000 and an autosomal dominant pattern of inheritance
with variable expressivity but high penetrance (63). Ocular fea-
tures are bilateral, congenital, and may be caused by abnormal
differentiation and migration of neural crest cells during the
formation of the anterior ocular structures (64). Most patients
have a white line on the corneal endothelium along its periph-
eral edge (posterior embryotoxon) and a range of iris abnormali-
ties including a decentered pupil (corectopia), additional holes
in the iris (polycoria), and generalized hypoplasia (Fig. 1A
and B). Strands or broad bands of iris may project across the iri-
docorneal angle and up onto the cornea (iris processes). A high
iris insertion may restrict aqueous from leaving the eye through
the trabecular meshwork and cause elevated intraocular pres-
sure (63–66). Microscopic abnormalities of the trabecular mesh-
work may also impair fluid drainage from the eye (64).
Consequently, elevated intraocular pressure and glaucoma de-
velop in 50% of Axenfeld-Rieger syndrome patients (64,67,68).
Non-ocular features of Axenfeld-Rieger syndrome include flat
mid-facies (maxillary hypoplasia and a flat, broad nose); a re-
duction in the number or size of teeth (hypodontia or microdon-
tia, Fig. 1C); and redundant tissue around the umbilicus

(63,64,66). Various congenital heart defects may also be present,
including atrial septal defects (69,70).

Linkage analysis of large pedigrees with dominantly in-
herited Axenfeld-Rieger syndrome led to the discovery of
disease-causing mutations in two genes, paired-like homeodo-
main 2 (PITX2) (68) and forkhead box C1 (FOXC1) (71).

Paired-like homeodomain transcription factor 2 (PITX2)

A range of PITX2 (originally termed RIEG1) mutations have been
associated with Axenfeld-Rieger syndrome including missense
mutations, nonsense mutations, splice site mutations (68), and
copy number variations (72). PITX2 encodes a member of the
bicoid class of homeodomain transcription factors, which play
critical roles in embryonic development and tissue morphogen-
esis. PITX2 encodes several alternatively spliced isoforms,
which all contain a partial or complete DNA-binding homeodo-
main termed solurshin. The majority of Axenfeld-Rieger-causing
defects are missense mutations within the homeodomain (73).

The precise mechanisms by which PITX2 mutations cause
Axenfeld-Rieger syndrome are not fully known, but relate to
PITX2 haploinsufficiency and dominant negative effects (74–76).
Some PITX2 mutations detected in Axenfeld-Rieger patients
have been shown to impart functional changes in cell-based in
vitro assays, including impaired ability to bind DNA and altered
transactivation activity in reporter assays (76). In rare cases,
hypermorphic alleles of PITX2 were identified in Axenfeld-
Rieger patients. These cases suggest that strict regulation of
PITX2 dosage is necessary for normal development and function
in the eye (76).

PITX2 is expressed in the tissues most affected by Axenfeld-
Rieger syndrome (68,77). Moreover, studies using experimental
mouse models have demonstrated that PITX2 is required for
normal ocular development and have helped to reveal a range
of abnormalities arising from PITX2 deficiencies (78,79). Knock-
out of Pitx2 reduces the abundance of astrocytes and retinal vas-
culature in neural crest-derived tissues (78). These deficits sug-
gest that developmental abnormalities of the optic nerve and
retina may contribute to glaucoma susceptibility in Axenfeld-
Rieger patients. Mice heterozygous for a Pitx2 null mutation also
recapitulate the ocular malformations of Axenfeld-Rieger syn-
drome and associated glaucoma (80). Together, these data
confirm a role for PITX2 mutations in the development of
Axenfeld-Rieger syndrome.

PITX2 mutations have also been associated with another
developmental abnormality characterized by adhesions be-
tween the central cornea and lens known as Peters anomaly
(81). Mutations in PITX2 have also been discovered in pa-
tients diagnosed with iris hypoplasia, iridogoniodysgenesis,
mesodermal dysgenesis, and anterior segment cleavage syn-
drome, which likely represent conditions located on a spec-
trum of phenotypes best described as Axenfeld-Rieger
syndrome (63).

Forkhead box transcription factor C1 (FOXC1)

Missense mutations, deletions, and duplications of FOXC1 (pre-
viously termed FKHL5) are another cause of Axenfeld-Rieger
syndrome (71,82–84). FOXC1 encodes a member of the forkhead
box family of transcription factors, which function as important
regulators of embryogenesis, cell migration, differentiation, and
fate determination (85). The defining and functional feature of
this family of transcription factors is the conserved 110-amino

Figure 1. Clinical features of Axenfeld-Rieger Syndrome in a patient with a PITX2

mutation. DNA sequencing of the PITX2 gene in a female with Axenfeld-Rieger

syndrome identified a novel heterozygous mutation of a canonical splicing se-

quence within intron 3, IVS3-1delG. This patient had classic features of

Axenfeld-Rieger syndrome including bilateral iris hypoplasia (panel A and B);

posterior embryotoxon (panel A and B indicated with black arrows); polycoria

(panel A and B indicated with white arrowheads); and corectopia (panel B indi-

cated with an asterisk). This patient also had hypodontia and microdontia

(panel C).
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acid forkhead domain, which mediates DNA binding and
protein-protein interactions.

Mechanisms by which FOXC1 mutations cause Axenfeld-
Rieger syndrome are not precisely known, but may often relate
to FOXC1 haploinsufficiency. Mutations that alter the Foxc1 gene
dosage in mice confirm a crucial role in the development of the
eye and Axenfeld-Rieger syndrome. Haploinsufficiency of Foxc1
is associated with iris hypoplasia, corectopia, and embryotoxon
in mice (86).

Many (71,87), but not all (71) FOXC1 mutations in human
Axenfeld-Rieger syndrome patients influence the forkhead do-
main and can impair localization (88,89), DNA-binding, and
transactivation (90,91). In rare cases, mutations in the fork-
head domain have been identified in Axenfeld-Rieger patients
that result in expression of mutant FOXC1 at levels similar to
that of wild-type, but with differential phosphorylation.
Abnormal phosphorylation of FOXC1 hinders nuclear localiza-
tion, DNA-binding, and transactivation (92). Each mutation
that interferes with FOXC1’s function as a transcription factor
has the potential to cause Axenfeld-Rieger syndrome. FOXC1
has recently been identified as a risk factor for primary open
angle glaucoma, suggesting a role in adult-onset glaucoma as
well (93).

FOXC1 is expressed in the tissues with key roles in the path-
ophysiology of Axenfeld-Rieger syndrome. FOXC1 is expressed
in the neural crest-derived tissues that form the drainage struc-
tures of the eye (trabecular meshwork) during development and
in the adult iris (94). FOXC1 is also detectable in non-ocular tis-
sues affected by Axenfeld Rieger syndrome including the heart
and heart valves (95,96) with alternative transcripts expressed
in a tissue-specific manner (94). These expression patterns
along with several cases of heart valve and atrial septal defects
in patients with Axenfeld-Rieger syndrome suggest that con-
genital heart disease may be an additional component of this
syndrome associated with FOXC1 mutations (95).

PITX2 and FOXC1 both encode transcription factors that in-
teract directly and influence their respective transcriptional ac-
tivity. PITX2 is a negative regulator of FOXC1. Consequently,
mutations in PITX2 may cause Axenfeld-Rieger syndrome, at
least in part, by altering the function of FOXC1 (87).

Axenfeld-Rieger syndrome is heterogeneous. Additional
Axenfeld-Rieger syndrome loci have been mapped to chromo-
somes 13q24 and 16q24, however, the specific disease-causing
genes in these loci have not yet been discovered (97).

Aniridia (OMIM: 106210)

Aniridia is a rare developmental eye disease characterized by
an underdeveloped iris that has a prevalence of 1/64,000 to 1/
96,000 and either autosomal dominant inheritance or sporadic
occurrence (98). Although the name "aniridia" suggests a com-
plete absence of the iris, all patients have some iris tissue rang-
ing from a tiny vestige that may be difficult to recognize to a
normal appearing iris (Fig. 2B and C). These abnormal irides
may collapse against the peripheral cornea and obstruct out-
flow of aqueous humor, leading to increased intraocular pres-
sure, optic nerve damage (Fig. 2D and E) and a secondary
glaucoma. Corneal pannus, foveal hypoplasia, and cataract
(Fig. 2B and C) are other important features of aniridia (99).
Pannus alters the transparency of the cornea and may signifi-
cantly compromise vision, while foveal hypoplasia is failure of
the retina to develop structures required for high-resolution
central vision. Aniridia has variable expressivity, with patients

showing a range of severity for corneal pannus, foveal hypopla-
sia, and iris abnormalities (98).

Paired box 6 (PAX6)

Missense mutations in PAX6 have been associated with autoso-
mal dominant inheritance of aniridia (100), while deletions and
rearrangements have been associated with sporadic cases (101).
PAX6 encodes a transcription factor that has profound effects
on ocular development. PAX6 activates expression of other
genes via its DNA-binding domains (a paired and a paired-type
homeodomain) and a proline, serine, threonine-rich transacti-
vating domain. Mutations that cause aniridia may alter PAX6
functional domains (i.e. missense mutations), cause a trunca-
tion of the encoded protein, or disrupt enhancer sequences,
such as a distant downstream regulatory region (DRR) element
(102–105). A common feature of disease-causing mutations is
that they alter the dose of functional PAX6 transcription factor,
which leads to dysregulation of downstream transcription fac-
tors and gene expression patterns, resulting in congenital mal-
formations that may promote glaucoma (106).

Phenotypes similar to aniridia have been detected in animal
models with mutations in PAX6 orthologues. Small eye (Sey)
mice do not develop eyes or noses and die soon after birth (107).
This developmental abnormality in mice was shown to be due
to a Pax6 mutation in parallel with discoveries of PAX6 muta-
tions in human patients with aniridia (100,102). A similar muta-
tion of the Drosophila Pax6 gene is associated with an eyeless
(ey) phenotype (108). PAX6 has a highly conserved and central
role in ocular development and aniridia (109).

Sporadic cases of aniridia may be caused by a large dele-
tion of chromosome 11p13 spanning the PAX6 gene, which
has been associated with a contiguous gene syndrome, WAGR
(Wilms tumor, Aniridia, Genitourinary abnormalities, and
mental Retardation). In addition to deletion of the PAX6 gene,
sporadic aniridia patients may also have a deletion of the
neighboring tumor suppressor gene, WT1, and increased
risk for Wilms tumor. All children with sporadic cases of anir-
idia should be investigated for a chromosome 11p13 dele-
tion and the associated risk for a potentially lethal Wilms
tumor (110).

Conclusion
Glaucomas of infancy and childhood have important genetic
components to their pathogenesis. Over the last two decades,
many disease-causing mutations have been identified. These
include mutations in three genes (CYP1B1, LTBP2, and TEK) that
have been associated with primary congenital glaucoma (PCG).
Mutations in a different set of genes have been detected in pa-
tients with secondary glaucomas of childhood. Specifically,
PITX2 and FOXC1 mutations have been associated with
Axenfeld-Rieger syndrome, while mutations in PAX6 have been
associated with aniridia. Patients with Axenfeld-Rieger syn-
drome or with aniridia are at high risk for developing secondary
glaucoma. Notably, the genes that have been associated
with these secondary glaucomas (PITX2, FOXC1, and PAX6) are
all transcription factors that control ocular development. In
each of these forms of glaucoma, disease-causing mutations
lead to microscopic and/or visible developmental malforma-
tions of ocular structures that regulate drainage of fluid from
the eye and ultimately cause elevated intraocular pressure and
optic nerve damage. Despite the significant discoveries of many
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glaucoma-causing mutations in several genes, a large propor-
tion of PCG, Axenfeld-Rieger syndrome, and aniridia cases do
not have known molecular genetic causes. Continuing research
is needed both to identify the additional glaucoma-causing mu-
tations in novel genes that are responsible for disease in these
patients and to translate this knowledge into new treatments.
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