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Abstract

Lower extremity fatigue has been associated with decline in postural stability, alteration of normal 

walking patterns and increased fall risk. Effects of lower extremity fatigue on amount of 

movement variability as assessed by linear variability such as standard deviation and root mean 

square is well known but there is lack of information about how fatigue influences nonlinear 

temporal structure of variability in healthy human gait. In this study ten subjects (5 males and 5 

females) were asked to perform treadmill walking for three minutes with an Inertial Measurement 

Unit (IMU) sensor affixed at their trunk level, thereafter the participants conducted squatting 

exercises and fatigue was induced as per standard fatigue protocol. The participants were asked to 

walk again on treadmill at their preferred walking speed for three minutes. The signals derived 

from the inertial sensor were used to compute stride interval time series (SIT) and signal 

magnitude difference (SMD) time series signals. These SIT and SMD signals were analyzed for 

non-linear variability such as complexity (approximate entropy and multiscale entropy) and 

Detrended Fluctuation Analysis (DFA). It was found that that there was significantly higher 

complexity in SMD signals due to fatigue inducement (p=0.04). Similarly, it was also found that 

fatigue significantly decreased fractal properties of SMD signals (p=0.013). In conclusion, lower 

extremity localized muscle fatigue influences magnitude of kinematic variability and induced anti-

persistence in the trunk kinematics. In future, more work is needed to understand how kinematic 

variability in angular velocities due to fatigue may affect fall risk in healthy adults.
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INTRODUCTION

Localized muscle fatigue is one of the potential risk factor for slip-induced falls [1] as 

muscle fatigue adversely affects proprioception [2–4], movement coordination and muscle 

reaction times [5] leading to postural instability [6] and gait changes [1, 7]. Human 

locomotion is programmed in the central nervous system (CNS) and is further adapted by 

proprioceptive feedback [8]. During stance phase of the gait cycle, proprioceptive input from 

extensor muscles and mechanoreceptors in the sole of foot provide load information [9] to 

the CNS. Fatigue in lower extremity muscles (around hip joint) may increase irregular firing 

of motor neurons during walking [10–12]. As such, fatiguing of the muscles around a joint 
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may not only inhibit the joint’s neuromuscular feedback but also disturb synergism between 

joint proprioception and muscular function leading to instability and gait changes [13–21].

Effects of fatigue on linear variability are well known [22, 23]. However, there is paucity in 

knowledge about the effects of fatigue on non-linear variability during walking. Complexity 

is a regularity statistic from nonlinear dynamics and has recently shown great promise in 

detecting subtle changes in motor control system [24]. Quantifying the complexity of 

physiologic time series with/and without localized muscle fatigue is of considerable interest. 

Fatigue in lower extremity musculature is also well associated with decline in postural 

stability, motor performance and alters normal walking patterns in human subjects but its 

effects on gait complexity have not been evaluated. To our knowledge this is the first study 

which looks into effects of fatigue on non-linear dynamics of kinematic time series in 

healthy young individuals during treadmill walking.

METHODS

Participants

Ten healthy young adults (five males and five females) participated in this study. The 

participants mean age was 29 ± 9 years, height was in the range of 173 ± 10 cm, and weight 

was 72 ± 11 kg. All participants were healthy, independent and non-sedentary and, were 

formally screened for major musculoskeletal, cardiovascular, and neurological disorders by a 

research coordinator during initial participant contact. Exclusion criteria of this study were 

factors that could interfere with gait, such as medication use, presence of neuromuscular 

disease and, balance and vision disorders. Informed consent was approved by the 

Institutional Review Board (IRB) of Virginia Tech and was signed by all participants prior to 

the study.

Participants were instructed not to perform any strenuous exercise 48 h prior to the 

experiment. All experiments were conducted between 11:00 am and 3:00 pm, and this was 

conducted to control the circadian effects of fatigue. Walking trials were conducted both 

prior and after the fatigue inducement. Three Inertial Measurement Units (IMU’s) were 

affixed on the participants, both at right and left shanks and the other at the sternum level 

using velcro straps and surgical tapes (Figure 1).

Fatigue Inducement

A custom built Biodex (Biodex System 3 Dynamometer, Shirley, New York, USA) 

attachment for the shoulders was used to assess maximum voluntary isokinetic exertions 

(MVE) during squatting (Figure 2). The Biodex attachment was designed to measure 

combined torque from the ankles, knees and hips through vertical motion/force exerted via 

shoulders. Although MVEs were performed using the shoulder attachment with a 

dynamometer during squat protocol, fatigue was induced by holding 5% of their body 

weight in front of themselves by both hands while squatting repeatedly at 22 repetitions per 

minute. An exercise set was set for 5 minutes and was followed by measurement of three 

MVEs using dynamometer. Experimenters did not instruct participants to take break 

between the exercise sets, but it was kept on participant’s choice to start their next new 
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exercise set as soon as they felt they were ready for it. The exercise sets continued until the 

participants reached 60% of their baseline MVE; this was categorized as fatigued state (time 

taken by participants was 52±7 minutes to reach this state).

Instrumentation

The IMU node consisted of MMA7261QT tri-axial accelerometers and IDG-300 (x and y 

plane gyroscope) and ADXRS300, z-plane uniaxial gyroscope aggregated in the 

Technology-Enabled Medical Precision Observation (TEMPO) platform which was 

manufactured in collaboration with the research team of the University of Virginia [25, 26]. 

The data acquisition was carried out using a Bluetooth adapter and laptop through a custom 

built program in LabView (LabView 2009, National Instruments Corporation, Austin, TX). 

Data was acquired with sampling frequency of 120 Hz. This frequency is largely sufficient 

for human movement analysis in daily activities, which occurs, in low bandwidth [0.8–5Hz] 

[27]. The data was processed using custom software written in MATLAB (MATLAB 

version 6.5.1, 2003, computer software, The MathWorks Inc., Natick, Massachusetts). 

Protocol: Participants were asked to walk on treadmill for 5 minutes at their self-selected 

pace. After this normal walking treadmill walking trial, participant’s MVE were noted and 

fatigue was induced as per protocol provided above. Once it was determined that participants 

have reached 60% of their baseline MVE. Participants were asked to walk again on treadmill 

for 5 minutes. The treadmill speed was kept same as during the normal walking trial.

Stride Interval Time series (SIT): The temporal fluctuations in stride intervals time series has 

been widely used as a non-invasive technique to evaluate effects of neurological 

impairments on gait and its changes with aging and disease[28, 29]. A customized 

MATLAB algorithm was used to identify peaks from gyroscope signals from trunk mounted 

inertial sensor. The time difference from one peak to the other was considered as stride 

interval and all these consecutive intervals made up Stride Interval Time Series (SIT) (Figure 

3).

Signal Magnitude Difference Time series (SMD): The differences in peak heights of angular 

velocity signals are categorized as signal magnitude differences. These differences in 

magnitudes of angular velocity were used to construct a time series which was named as 

Signal Magnitude Difference (SMD) Time series. The total length of SMD time series is one 

less than the total number of strides walked by the subject.

RESULTS

It was found that SMD time series complexity increased significantly due to fatigue. ApEn 

of SMD signals in post-fatigue condition was significantly higher than in normal walking 

condition (p = 0.04) (figure 6). Similar results were found for multiscale entropy which also 

confirmed increase in SMD complexity due to fatigue (p=0.02). We found that there was 

significant decline in persistence of SMD signals (p=0.01) (figure 7).
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DISCUSSION

The present study investigates the effects of lower extremity fatigue on nonlinear variability 

during treadmill walking. Indeed, some authors have reported higher linear variability after 

inducement of fatigue[23] but the objective of this study was to assess effects of lower 

extremity fatigue on nonlinear variability of SIT and SMD time series signals. Our results 

show that there was significant increase in complexity of SMD time series signals due to 

fatigue. Thus it reveals that there is increase in unpredictability of velocities produced in 

fatigue state. However, we did not find any significant changes in complexity for SIT time 

series. Which infers that probably temporal structure of variability is not affected by lower 

extremity fatigue. Previously it has been reported that the reduced capacity to adapt to stress 

is attributed to the loss of complexity with aging and disease [30]. This reduced complexity 

[30] in elderly, is dependent on the nature of the intrinsic dynamics of the system and one’s 

ability for short time adaptive change, which is required to meet an immediate task demand 

is reduced [31]. Complexity is usually associated with adaptive capacity of motor control 

system. Thus it appears that trunk kinematics and motor control have increased adaptive 

capacity in generating trunk momentum during fatigued walking.

We also found that hurst exponent declined in SMD signals due to fatigue, which indicates 

that kinematics such as velocity produced during fatigued state have lost long range 

correlations. There is decline in fractal properties of SMD signals due to fatigue inducement 

in lower extremity. Previous research has shown that elderly with low fractal scaling are 

more likely to fall than those with high fractal scaling[32].

CONCLUSIONS

In conclusion, the results of our analysis of complexity due to lower extremity fatigue 

acknowledged our hypothesis that fatigue also influenced nonlinear variability during 

treadmill walking. Higher complexity revealed higher unpredictability in generating trunk 

momentums. We also found that lower extremity fatigue negatively influenced long range 

correlations in trunk velocity signals.
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Figure 1. 
Attachment of IMU sensors at sternum level using Velcro strap.
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Figure 2. 
Customized Biodex attachment for measurement of maximum voluntary exertions.
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Figure 3. 
The time interval between consecutive peaks were used to compute stride interval time 

series.
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Figure 4. 
Schematic diagram showing how peak heights were used to compute SMD time series
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Figure 5. 
Schematic diagram of derivation of SID and SMD time series from angular velocity signals 

from trunk IMU during walking on treadmill.
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Figure 6. 
The SMD signal complexity from ApEn and Multiscale Entropy (MSE)
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Figure 7. 
Hurst exponent for fatigue and normal walking in SMD signals
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