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Abstract

Atherothrombosis describes the acute thrombotic event that occurs after rupture of an 

atherosclerotic plaque. It often leads to arterial occlusion and subsequent clinical manifestations of 

myocardial infarction, stroke, and sudden death. Tissue factor (TF) is the receptor for plasma 

factor VIIa (FVIIa) and, once formed, the TF:FVIIa complex activates the coagulation cascade. TF 

is present at high levels within atherosclerotic lesions and is also present on circulating monocytes 

and microparticles in patients with advanced cardiovascular disease (CVD). Formation of the 

TF:FVIIa complex plays a central role in atherothrombosis. This review will describe the cellular 

sources of TF, the potential of TF-positive microparticles as a biomarker of thrombotic risk, and 

current pharmacologic approaches to inhibit TF as a therapeutic intervention in patients with 

CVD.

Introduction

Atherothrombosis is the result of atherosclerotic plaque disruption and subsequent arterial 

thrombosis, which culminates in arterial occlusion and myocardial infarction or stroke. 

Atherosclerosis and subsequent atherothrombosis is one of the most devastating disease 

states in the Western world accounting for more than 25% of deaths in the United States in 

any given year, which is the leading cause of death in both men and women [1-3]. In 

addition, the projected cost of coronary heart disease in the United States was over $100 

billion in 2010 due to health care services, medications, and lost worker production [4]. 

Characterized as a disease of cholesterol deposits in macrophages and the vessel wall in 

small and medium sized arteries, it is more comparable to an autoimmune insult on the main 

transport vesicle for cholesterol, low density lipoprotein (LDL), after progressive oxidation. 

Atherosclerosis is undetectable without specific radiographic examinations or invasive 

procedures. Recently, atherosclerosis has been redefined as an inflammatory disease due to 

the combined cellular and molecular analyses of atherosclerotic lesions (reviewed in detail 

[5]). Recently, much clinical interest has been generated regarding the crosstalk between 

coagulation and inflammation in the pathogenesis of vascular diseases [6]. In particular, our 
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laboratory is interested in the relationship between atherosclerosis and the procoagulant 

protein tissue factor (TF).

TF is the primary initiator of the extrinsic pathway of coagulation [7-8]. When it binds its 

ligand factor VIIa (FVIIa) a complex is formed that activates both FIX and FX resulting in 

the generation of thrombin and ultimately cross-linked fibrin [9]. TF is not normally exposed 

to flowing blood, but rather expressed by cells in the media, such as vascular smooth muscle 

cells (VSMCs), or cells in the adventitia, such as adventitial fibroblasts. It has been proposed 

to form a protective ‘haemostatic envelope’ to reduce blood loss in the event of vascular 

injury [10-11]. Importantly, TF expression is also induced in circulating monocytes, the 

major source of intravascular TF [12], during cardiovascular disease (CVD) and in the 

macrophages within atherosclerotic plaques [13]. It is speculated that TF is the main protein 

involved in triggering thrombosis after plaque rupture.

This review will discuss (1) the cellular sources of TF in atherosclerotic plaques, (2) the 

potential use of TF-positive microparticles (MPs) as a biomarker for CVD, and (3) currently 

used therapeutics to decrease the amount of TF in atherosclerotic plaques and in the 

circulation.

TF Expression within Atherosclerotic Plaques

The initiating event in atherosclerosis is still a mystery to both scientific and clinical 

researchers. However, after several decades of research, there are three prevailing hypotheses 

currently being tested: (1) the response-to-injury hypothesis [14-16], (2) the response-to-

retention hypothesis [17-18], and (3) the oxidative modification hypothesis [18-19]. These 

models are elegantly summarized by Stocker and Keaney [20]. Briefly, the response to 

injury hypothesis suggests the initiation of atherosclerosis begins with endothelial injury or 

dysfunction resulting in LDL deposition (resulting in progressive oxidative modification) 

into the subendothelial space leading to a constant ‘autoimmune-like’ attempt to continually 

heal this injury (critical event: endothelial injury/dysfunction). In contrast, the response-to-

retention hypothesis suggests LDL infiltrates specific sites within arteries due to transcytosis 

and arterial retention from proteoglycan binding results in lipoprotein aggregation and 

modification leading to triggering of the proinflammatory cascade (critical event: LDL-

matrix interactions). Finally, the oxidative modification hypothesis results from trapped 

subendothelial LDL becoming oxidized (oxLDL) resulting in monocyte chemotaxis and 

foam cell formation (critical event: LDL oxidation). Regardless of the hypothesis, the end 

result is leukocyte adhesion, transmigration, foam cell formation, inflammation, VSMC 

migration, formation of a fatty streak, apoptosis, necrosis, release of proteases, and eventual 

weakening of the fibrous cap leading to atherothrombosis. Importantly, in all three of the 

hypotheses, TF expression is induced in atherosclerotic lesions with (1) the introduction of 

leukocytes in the subendothelial space [5, 21] and (2) modified LDL activation of receptor 

complexes on these leukocytes, VSMCs, and endothelial cells [22-28••].

High levels of TF are expressed in atherosclerotic plaques and is associated with both 

cellular (macrophages, VSMCs, and endothelial cells) and acellular (foam cell-derived 

debris within the necrotic core) regions [29-36]. Monocyte chemoattractant protein-1 
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(MCP-1) is a potent chemokine involved in both the initiation and progression of 

atherosclerosis, and has been shown to induce TF expression in both monocyte/macrophages 

and VSMCs [37-38]. Aggregated LDL increases TF expression on human monocytes/

macrophages resulting in the release of biologically active TF-positive MPs [22]. Further, 

oxLDL is a potent activator of TF in monocytes, VSMCs, and endothelial cells resulting in 

the release of TF-positive MPs, which are highly procoagulant [23-28••, 39]. Indeed, 

atherosclerotic plaques have 200-fold higher concentrations of leukocyte, VSMC, and 

endothelial cell-derived MPs compared with circulating blood [40]. Importantly, more than 

50% of the MPs isolated from the plaques were TF-positive [40]. Finally, increased TF 

expression is correlated with the progression of human atherosclerotic lesions, more than 

likely due to an increase in macrophage apoptosis and necrosis as the lesion expands [36].

The TF:FVIIa complex not only triggers clotting but also activates the protease-activated 

receptor 2 (PAR-2), which results in proinflammatory signaling [41-42•]. TF induction of 

proinflammatory cytokines and chemokines can result in further leukocyte recruitment to the 

atherosclerotic lesion, thus enhancing the progression of atherosclerosis [6, 9, 13, 34]. 

VSMCs play a key role in atherosclerosis both in early and in late stages [43]. In early 

stages, VSMCs migrate from the media to the intima where they are trapped and proliferate 

to contribute to the development of fatty streaks. More advanced atherosclerotic lesions 

contain VSMCs that have a higher proliferative index and a greater synthetic capacity for 

extracellular matrix, particularly collagen, proteases and cytokines [44-46]. Similar to 

macrophages, late-stage VSMCs can express a variety of receptors for lipid uptake and can 

form foam-like cells, thereby participating in the accumulation of plaque lipid. Importantly, 

the presence of TF contributes to VSMC migration in vitro and in vivo [47], which appears 

to be due to the activation of the PAR-2 signaling pathway [48]. Further, TF:FVIIa activation 

of PAR-2 results in the secretion of the inflammatory cytokine IL-6 and chemokine IL-8, 

which further the atherogenic immune phenotype [49]. In addition, ligation of the CD40 

receptor, implicated in the atherogenic immune process, on VSMCs and monocyte/

macrophages can augment the expression of TF protein and activity in the atherosclerotic 

lesion [50-53]. These data suggest that TF may contribute to monocyte infiltration, 

macrophage foam cell formation, cyokine and chemokine production, and SMC migration to 

initiate and progress atherosclerosis.

Despite the plethora of in vitro studies supporting the idea that TF may contribute to the 

progression of atherosclerosis, it is important to note that the specific contribution of 

TF:FVIIa to atherosclerosis in mouse models remains uncertain. Our laboratory found that 

heterozygous TF mice (TF+/-) expressing only 50% of the normal level of TF had similar 

amounts of atherosclerosis compared to TF+/+ mice on an atherogenic apolipoprotein E 

(Apoe-/-) background [54]. Similarly, a deficiency of TF in bone marrow cells did not affect 

atherosclerosis in a low density lipoprotein receptor deficient (Ldlr-/-) mouse model [54]. It 

should be noted that the Apoe-/-/low TF mice were not able to be studied due to premature 

death by 12 weeks of age and thus the contribution of non-hematopoietic TF could not be 

analyzed. Further, the Apoe-/- studies were conducted in 34 week old mice, which may have 

missed differences in the early stages of atherosclerosis. Additionally, Apoe-/- mice have 

defects in innate and adaptive immune response, independent of lipoproteins [55-56]. It is 

interesting that different results are observed with changes in levels of the natural inhibitor 
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of TF called tissue factor pathway inhibitor (TFPI). For instance, a significant increase in 

atherosclerosis was observed in mice with a 50% reduction of TFPI (Apoe-/-/Tfpi+/-) 

compared to littermate controls [57]. Interestingly, a VSMC overexpressing TFPI mouse on 

an Apoe-/- background had less atherosclerosis [58••]. Finally, atherosclerotic studies 

utilizing PAR-2 deficient mice have not yet been conducted. Therefore, the role of TF:FVIIa 

and PAR-2 in atherogenesis needs further examination.

Role of TF in Plaque Rupture and Atherothrombosis

The most detrimental role of TF in atherosclerosis is the triggering of thrombosis after 

plaque rupture. Importantly, many studies have demonstrated TF in atherosclerotic plaques 

as the primary protein responsible for the thrombogenicity of the plaque and the primary 

cause of atherothrombosis [59-60]. While TF is associated with atherothrombosis, the extent 

of plaque thrombogenicity is dependent upon plaque composition. For example, TF present 

in plaques is associated with 60% of the cells in the atheroma, including: endothelial cells, 

VSMCs, and mostly monocyte/macrophages and foam cells [32-33, 36, 61-64]. Importantly, 

the level of TF in the plaque is strongly associated with plaque thrombogenicity [65]. In 

addition, Ardissino and colleagues demonstrated TF activity is higher in plaques from 

patients with unstable coronary syndromes and myocardial infarction versus patients with 

stable disease [66]. Further, the amount of TF protein in the plaque was correlated with TF 

activity [66]. However, some of the TF within the cellular milieu of the atheroma is 

associated with TFPI, and the presence of TFPI in human atherosclerotic plaques is 

associated with decreased TF activity [67-68, 69•, 70]. Importantly, a recent study 

demonstrated that lipoprotein (a) (Lp(a)), a complex of LDL and apolipoprotein a, can 

inactivate TFPI [71]. Lp(a) is a known risk factor for atherosclerosis, is upregulated in 

patients with unstable coronary syndromes, and accumulates in atherosclerotic plaques 

[72-73]. Therefore, the presence of Lp(a) may alter the TF/TFPI balance and increase the 

thrombogenicity of the plaque.

As mentioned previously, atherosclerotic plaques contain high levels of TF-positive MPs 

[40]. In addition, Mallat and colleagues demonstrated 97% of the total procoagulant activity 

extracted from atherosclerotic plaques was due to TF [74]. Subsequent proteomic analyses 

have demonstrated that over 90% of plaque-derived MPs are CD14 positive, suggesting 

monocyte/macrophage origin [75]. Bonderman and colleagues found increased TF activity 

associated with MPs taken from carotid atherosclerotic plaques [76]. Finally, Rautou and 

colleagues showed that plaque-derived MPs, but not circulating MPs, were able to activate 

endothelial cells resulting in leukocyte adhesion and transmigration [77••]. Together, these 

studies suggest that much of the TF that initiates atherothrombosis during plaque rupture is 

in the form of MPs.

It has been demonstrated that vessel wall TF is the primary cellular source that triggers 

thrombosis in animal models of arterial thrombosis [11, 78-79]. Importantly, carotid injury 

of atherosclerotic lesions in Apoe-/-/Tfpi+/- mice demonstrated a decreased time to occlusion 

versus littermate controls and this was attributed to increased TF activity [57]. In addition, 

hyperlipidemia is associated with a shorter occlusion time in mouse carotid arterial 

thrombosis models [11, 28••, 80••-81]. The role of circulating TF-positive MPs in 
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thrombosis can be evaluated using the laser-injury cremaster arteriole injury model. We 

recently, found that hematopoietic cell-derived, TF-positive MPs were increased during 

hyperlipidemic mice and enhanced thrombosis in this model [59]. Together, these studies 

indicate that TF and TF-positive MPs play a key role in thrombosis associated with 

atherosclerotic vessels.

TF-positive MPs as a Biomarker of Atherothrombotic Disease and 

Thrombotic Risk

MPs may serve as delivery vessels for certain proteins and nucleic acids (extensively 

reviewed in [82•]). However, many studies have demonstrated increases in certain MPs in a 

wide variety of disease states [83]. We believe that TF-positive MPs may serve as a potent 

biomarker of CVD and thrombotic risk.

Several studies have demonstrated an increase in expression of monocyte TF, monocyte-

derived TF-positive MPs, and MP TF activity in the plasma of patients with 

hypercholesterolemia [28••, 80••, 84-86]. In addition, TF antigen, circulating procoagulant 

MPs, and TF-positive MPs are increased in patients with unstable angina, myocardial 

infarction, and patients undergoing angioplasty or coronary stenting [87-90]. Importantly, 

MP TF activity is increased in patients with acute myocardial infarction and atherosclerotic 

plaques [89, 91-92]. The role of TF-positive MPs in CVD and atherothrombosis has been 

extensively reviewed [80••, 93••]. Together, these studies suggest that levels of TF-positive 

MPs, likely derived from activated monocytes, are increased in patients with CVD. 

However, unlike our recent finding that prospective analysis of MP TF activity can be 

predictive of venous thromboembolism (VTE) in patients with pancreatic cancer [94], 

further studies are needed to demonstrate the predictive value of MP TF activity in patients 

with CVD.

To address this question in an experimental model, we recently demonstrated that prolonged 

hypercholesterolemia, a known risk factor for atherosclerosis, results in a step-wise increase 

in the activation of coagulation, as measured by thrombin-antithrombin (TAT) and D-dimer, 

in both mice and monkeys [28••]. Moreover, we demonstrated that MP TF activity was also 

increased in a step-wise manner and was correlated with TAT, increased levels of oxLDL, 

and the inflammatory cytokine IL-6 [28••]. Importantly, levels of peripheral blood 

mononuclear cell (PBMC) TF were also increased with prolonged hypercholesterolemia. We 

further demonstrated that TF inhibition with an anti-TF antibody ablated the activation of 

coagulation and MP TF activity. Finally, we used bone marrow transplantation to 

demonstrate that TF-positive MPs were derived from hematopoietic cells. Together, we 

suggest that monocyte-derived TF is responsible for the systemic activation of coagulation 

and that MP TF activity serves as a potent biomarker of this response. While we did not 

examine atherosclerotic burden at each of the time-points, several studies have demonstrated 

progression of atherosclerosis in the Ldlr-/- model during the time-course utilized in our 

study [95-96]. This would suggest that circulating MP TF activity is likely to correlate with 

the level of atherosclerosis.
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Potential Therapeutic Inhibition of TF and TF-induction of Thrombin and 

Fibrin in Atherothrombosis

First line therapy for patients with advanced atherosclerosis and patients discharged post 

myocardial infarction usually includes administration of: (1) statins to lower LDL 

cholesterol and niacin or fibrate to raise HDL [97-98], (2) antiplatelet therapy consisting of 

aspirin or clopidogrel, (3) blockade of the renin angiotensin system via an angiotensin 

converting enzyme (ACE) inhibitor with or without an angiotensin II receptor blocker 

(ARB), and (4) administration of beta blockers [99]. However, statins also exhibit several 

pleiotrophic properties, such as anti-inflammatory responses and inhibition of prenylation of 

intracellular signaling proteins [100-101]. Importantly, statins have also been demonstrated 

to reduce TF expression and activity, both in vitro and in vivo, in several animal models of 

atherosclerosis and hypercholesterolemia as well as in humans [24, 26, 28••, 85-86, 100, 

102-105] .

We recently demonstrated that oxLDL induction of TF in human monocytes is inhibited by 

pretreatment with simvastatin [28••]. In addition, simvastatin administration attenuated 

hypercholesterolemic increases in oxLDL, PBMC or white blood cell TF, MP TF activity, 

circulating MPs, and thrombin-antithrombin (independent of changes in LDL) in both mice 

and monkey study models [28••]. Similar LDL-independent effects of simvastatin and 

pravastatin resulted in reduced inflammation and thrombogenicity in hypercholesterolemic 

pigs and monkeys [106-107]. Regarding atherosclerosis, simvastatin and rosuvastatin 

administration reduced both aortic and atherosclerotic lesion TF in hypercholesterolemic 

mice without affecting LDL [100, 102]. Importantly, monocyte and macrophage expression 

of TF is inhibited by statins [24, 26, 85-86, 103-105]. This statin-induced reduction of TF is 

also demonstrated in vivo in type II familial hypercholesterolemic patients along with 

concomitant reductions in prothrombin fragmant F1 + 2 [85-86]. These data suggest that 

simvastatin can decrease TF expression and activity, primarily in monocytic cells, and that 

this may be an alternative therapy for TF inhibition in atherosclerotic and atherothrombotic 

conditions.

It is interesting to note that almost 50% of patients who develop atherosclerosis and eventual 

atherothrombosis have levels of LDL cholesterol which are considered at or below the 

average range of an otherwise ‘healthy’ population [17, 108]. Therefore, these patients could 

also benefit from the pleotrophic effects of statin therapy [100-101]. The key is to identify 

these ‘normal’ patients with advanced atherosclerotic disease using various other 

biomarkers, e.g. TF-positive MPs (as discussed in the previous section), and with screening 

of inflammatory markers. In a hallmark study, the justification for the use of statins in 

primary prevention (JUPITER) trial demonstrated preemptive administration of rosuvastatin 

to individuals with normal levels of LDL, but elevated levels of inflammation, could 

significantly reduce the incidence of major cardiovascular events [109]. Again, this 

demonstrates that inflammation may serve as a potent biomarker in patients with ‘silent’ 

atherosclerotic disease having normal lipid levels. In addition, a retrospective analysis of 

JUPITER found that VTE was also significantly reduced in this patient population [110••]. It 
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was speculated that this reduction in events was due to statin-induced inhibition of TF 

expression [110••].

In addition to statins, another commonly used therapeutic also reduces both direct TF 

expression and activity in vitro and in vivo. Application of ACE inhibitors captopril, idrapril, 

and fosinopril, as well as the ARB losartan, dose-dependently decreased TF expression and 

activity in endotoxin-stimulated PBMCs [111]. Interestingly, ACE inhibition with enalapril 

also decreased levels of plasma TF antigen in patients with acute myocardial infarction 

[112]. Moreover, ACE inhibitors have been demonstrated to reduce the incidence of 

myocardial infarction, suggesting potential antithrombotic effects of this drug class 

[113-116]. This may occur, in part, independently of blood pressure inhibition by decreasing 

synthesis of IL-1β and TNF-α recruitment of monocytes to atherosclerotic plaques [111, 

117-118]. Together, this data suggests ACE inhibitors and ARBs may have similar 

pleiotrophic effects to statins and that their antithrombotic outcomes may be, in part, due to 

reduced TF expression in monocytes.

Conclusion

In summary, high levels of TF are present in atherosclerotic plaques. Importantly, plaque-

derived TF is likely to be a major trigger of atherothrombosis and is the major determinant 

of the thrombogenicity of the atheroma. TF-positive MPs are generated in advanced 

atherosclerosis and may be a useful biomarker for monitoring atherosclerosis and thrombotic 

risk. Finally, there are several clinically used drugs that inhibit TF expression and this may 

add to the beneficial effects of these drugs.
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