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Abstract

Purpose—Late genitourinary (GU) toxicity after radiation therapy limits the quality of life of 

prostate cancer survivors; however, efforts to explain GU toxicity using patient and dose 

information have remained unsuccessful. We identified patients with a greater congenital GU 

toxicity risk by identifying and integrating patterns in genome-wide single nucleotide 

polymorphisms (SNPs).

Methods and Materials—We applied a preconditioned random forest regression method for 

predicting risk from the genome-wide data to combine the effects of multiple SNPs and overcome 

the statistical power limitations of single-SNP analysis. We studied a cohort of 324 prostate cancer 

patients who were self-assessed for 4 urinary symptoms at 2 years after radiation therapy using the 

International Prostate Symptom Score.

Results—The predictive accuracy of the method varied across the symptoms. Only for the weak 

stream endpoint did it achieve a significant area under the curve of 0.70 (95% confidence interval 

0.54–0.86; P = .01) on hold-out validation data that outperformed competing methods. Gene 

ontology analysis highlighted key biological processes, such as neurogenesis and ion transport, 

from the genes known to be important for urinary tract functions.

Conclusions—We applied machine learning methods and bioinformatics tools to genome-wide 

data to predict and explain GU toxicity. Our approach enabled the design of a more powerful 

predictive model and the determination of plausible bio-markers and biological processes 

associated with GU toxicity.
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Introduction

Prostate cancer is 1 of the most common malignancies for American men, with ~161,000 

new cases diagnosed annually (1). Radiation therapy (RT), the use of ionizing radiation to 

induce tumor cell death, is an important treatment option for prostate cancer. However, RT 

for prostate cancer can lead to late genitourinary (GU) toxicity, negatively affecting patients’ 

quality of life after therapy (2). Patients exhibit various symptoms classified as lower urinary 

tract syndrome (LUTS). LUTS has 3 broad categories: symptoms that deteriorate bladder 

emptying (voiding or obstructive), storage of urine in the bladder (storage or irritative), and 

symptoms experienced after urination (after micturition) (3).

Efforts have been made to establish an association between the incidence of RT-induced GU 

toxicity and the amount of RT dose spill to organs in the urinary tract such as the bladder 

neck, trigone, and urethra (4–7). However, the benefits of using dosimetric quantities to 

predict this endpoint remain unproved, partially owing to the variability in bladder shape 

causing discrepancies between the planned and delivered dose (8). This has motivated 

investigations of the genetic variations, mainly single nucleotide polymorphisms (SNPs), 

which modify inherent normal tissue sensitivity to radiation (9, 10). Genome-wide 

association studies (GWASs) using single-SNP association tests have identified loci tagged 

by risk SNPs for urinary endpoints (11–13). However, the single-SNP association methods 

used by those GWAS analyses faced difficulties in replication (14) owing to the large 

number of hypotheses being tested simultaneously and inherently small effect size of an 

individual SNP, limiting the statistical power (15). Machine learning-based multivariate 

modeling is an alternative approach that considers many important SNPs simultaneously and 

combines the small effects of the SNPs to achieve greater predictive power by aggregating 

the effect sizes of the predictors (16). Random forest (RF) is a multivariate method that has 

been widely applied in several GWASs but not in the setting of RT-induced toxicity (16–20). 

The following characteristics make RF an attractive method for GWAS: (1) it performs well 

in high-dimensional problems in which the number of predictors is high relative to the 

sample size (21, 22); (2) it provides the relative importance of predictors that can be used to 

highlight genes or biological processes for possible associations with the phenotype (16, 18); 

and (3) properties of random processes, such as bootstrap sampling and random feature 

subset selection, help to reduce model variance due to aggregation of trees with low 

correlation (21). To enhance the robustness of models to noise in a prediction target, a 

“preconditioning step” was introduced before RF training, which has been shown to identify 

patients with greater RT toxicity risk (16).

The present study was initiated to address the imminent clinical need for better explanation 

and prediction of RT-induced GU toxicity. The primary goal was to predict a congenital GU 

toxicity risk by using genome-wide SNP predictors. To this end, we used a machine learning 

method (preconditioned RF regression [PRFR] reported by Oh et al [16]) to build a reliable 

predictive model and a bioinformatics method to identify the biological correlates associated 

with RT-induced GU toxicity.
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Methods and Materials

Clinical data

Under compliance of the institutional review board, a cohort of 368 prostate cancer patients 

were enrolled at the Mount Sinai Hospital. The clinical variables and outcomes were 

collected prospectively. The patients underwent brachytherapy with or without external 

beam RT with curative intent. The patients were followed up for GU symptoms using the 

patient-reported International Prostate Symptom Score (IPSS) (23). The IPSS questionnaire 

consists of 6 grades (0, no symptoms, to 5, most severe) for the following 7 symptoms: 

incomplete emptying, frequency, intermittency, urgency, weak stream, straining, and 

nocturia. We studied 324 patients with ≥1 available IPSS assessment during the 2 years ± 6 

months after RT. For each of the 7 IPSS symptom endpoints, the patients were further 

stratified by the baseline performance (good, defined as a score 0 or 1 for individual 

symptoms vs other), and patients with good baseline status were analyzed. A toxicity event 

for a symptom was defined as a maximum score increase of ≥3 from baseline to 2 years ± 6 

months. Of the 7 endpoints, 4 had event rates that were >10% and were subject to analysis. 

These included urinary frequency, urge, nocturia, and weak stream (Table 1). The patients 

who met the selection criteria for each symptom were randomly split into training (two-

thirds) and hold-out validation (one-third) data sets with matching toxicity event rates. This 

configuration of disjoint training and validation sets is able to produce a single prediction 

model and thus can be readily validated externally or interpreted using previous biological 

knowledge.

Genotype data and population structure

The patients were genotyped for 606,563 germline SNPs using the Affymetrix, version 6.0, 

array (Affymetrix, Santa Clara, CA). Preprocessing of the SNP has been described in 

Appendix E1 (available online at www.redjournal.org). The effect of population structure on 

the SNP association strengths was assessed using 2 methods: (1) the inflation factor was 

measured in a genome-wide association test for each symptom endpoint; and (2) a principal 

component analysis on the genotype data was performed using the software EIGENSOFT 

(24), where the ethnic diversity in the cohort was represented by 3 significant (false-

discovery rate-adjusted P < .05) principal axes (Fig. E1; available online at 

www.redjournal.org). Ethnicity-based toxicity prediction was performed in a logistic model 

using the 3 principal components as predictors.

PRFR model training and validation

Before PRFR modeling, the univariate association strength in the training data was measured 

for each of the predictors, including those SNPs that had passed the quality control, and the 

available clinical variables. The associations for the following 14 clinical covariates were 

investigated (11): tumor stage, androgen deprivation therapy (ADT), RT type, smoking 

status, hypertension, diabetes, Gleason score, α-blockers, age, initial prostate-specific 

antigen score, total biologically effective dose to a tumor, prostate volume, baseline IPSS, 

and self-identified ethnicity. In addition, for those who received ADT, the ADT duration and 

interval (between the end of ADT and the start of RT) were tested. The χ2 test was used for 

SNPs and categorical clinical variables; continuous clinical variables were evaluated using 
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logistic regression. Based on the resulting P values, the number of variables for modeling 

was reduced. Because of the much larger number of hypotheses in genotype data, a more 

stringent P value cutoff of .001 was applied to the SNPs, instead of the conventional cutoff 

of P ≤ .05 used for clinical variables. The predictors with P values less than the respective 

threshold were used as predictors for the PRFR model.

Modeling of the PRFR consisted of a preconditioning step (25) to create continuous 

surrogate outcomes from the original binary outcomes, followed by RF regression using the 

surrogate outcomes as a prediction target. More specifically, preconditioned outcomes were 

produced using logistic regression, coupled with the principal components, computed using 

a set of important SNPs such that the correlation between the original outcomes and the 

preconditioned outcomes is maximized, thereby refining the original outcomes and 

providing a more informative input for further statistical learning. Next, the preconditioned 

outcomes were used in RF modeling. More details on the implementation of PRFR are 

described in the supplemental material of the study by Oh et al (16). Validation of the PRFR 

model was always performed independently of the model training in the use of the hold-out 

data set (Fig. 1). Training of PRFR was completed in 2 stages for different purposes:

1. Fivefold cross-validation (CV): CV was used for testing stability and comparing 

PRFR against other baseline models. Unlike conventional CV, validation 

occurred in the hold-out data instead of the left-out fold. CV was repeated 100 

times with randomized fold configuration. Permutation-based variable 

importance measures (VIMs) for the SNPs in the PRFR model were obtained by 

taking an average of 5 × 100 VIM results. The 500 models resulting from the 5 × 

100 iterations were tested in the hold-out validation data set. The predictive 

performance of the PRFR model in the validation set, measured by an area under 

the curve (AUC), was compared against 5 competing models: (1) RF without 

preconditioning; (2) least absolute shrinkage and selection operator; (3) 

preconditioned least absolute shrinkage and selection operator; (4) the PRFR 

model retrained with a fewer number of SNPs, first the top 50% and then the top 

75% of SNPs based on the VIMs; and (5) ethnicity-based model (see method 2).

2. Model building on the whole training data: the PRFR model was built using all 

the samples in the training set and was tested in the hold-out validation set to 

obtain the performance of the “finalized” model. Owing to the randomness in RF 

learning, the training was repeated 500 times, and the resultant predictions were 

averaged. The significance of the prediction was measured using Mason and 

Graham’s test (26), with a null hypothesis that the obtained AUC would not be 

>0.5. The statistical analyses were performed with the R language using the 

packages glm (27), ranger (28), and GenABEL (29). The described pipeline for 

our modeling approach is summarized in Figure 1.

Analysis of biological plausibility of the PRFR model

The PRFR model was investigated for its relevance to GU toxicity based on the functional 

annotations for the SNPs in the model. First, a proportion of SNPs among the top 50%, 75%, 

and 100% quartiles of the highest VIMs, which produced the greatest validation AUC, were 
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extracted. The list of genes near the SNPs within 20,000 base pairs were found using 

annotations from the Genome Reference Consortium GRCh37. The biological relevance of 

the resultant candidate genes was studied in 2 ways: (1) gene ontology (GO) enrichment 

analysis was performed to discover the GO terms for the biological processes that were 

significantly enriched with the gene list (Appendix E2; available online at 

www.redjournal.org); and (2) to discover from the candidate genes a subset of interacting 

proteins with similar functions, MetaCore (Thompson Reuters, New York, NY) was used to 

search a manually curated protein–protein interaction database to discover a cluster of 

proteins connected to each other. Next, a systematic literature search on the proteins in the 

largest cluster for their relevance to LUTS was performed. Articles were searched in July 

2017 from PubMed using a search scheme with the keywords shown in Fig. E2 (available 

online at www.redjournal.org).

Results

Univariate associations of predictors

The association P values for the 14 covariates with respect to the 4 GU symptoms are shown 

in Table E1 (available online at www.redjournal.org). No significant association between the 

covariates and any GU endpoints was found after Bonferroni’s correction. Analysis of the 

treatment type resulted in a P value of .03 for nocturia (odds ratio 0.23, 95% confidence 

interval [CI] 0.04–0.89) and thus was included in the PRFR model. However, its inclusion 

did not significantly improve the performance.

The strength of the genome-wide associations varied across the 4 GU endpoints (Table 1; 

Fig. E3; available online at www.redjournal.org). Nocturia returned the highest number of 

SNPs (n =977) with P <.001, and frequency returned the lowest (n = 539). No notable 

inflation was detected for any of the GU endpoints. The inflation factors ranged from 0.97 to 

1.03 (Fig. E3; available online at www.redjournal.org).

Performance of PRFR models in predicting GU outcomes

Similar to the variability of the genome-wide association strengths, the performance of the 

PRFR models also varied across symptoms (Table 1). A weak stream was predicted using 

the PRFR model, with the highest classification performance (fivefold CV AUC of 0.67, 

95% CI 0.64–0.70; AUC for the model built using the whole training data of 0.70, 95% CI 

0.54–0.86). Also, only for this endpoint, weak stream, did the AUC using the whole training 

data reach statistical significance (P = .01). For weak stream, the PRFR approach 

significantly outperformed the RF and linear models (P < .001); reducing the number of 

SNPs based on the VIMs decreased the AUC when the top 50%, but not the top 75%, of 

SNPs were used (Fig. 2). Ethnicity-based prediction recorded an AUC of 0.55 for this 

endpoint. Given the absence of the ethnic pattern, it is unlikely that the prediction of the 

PRFR model was driven by ethnicity-specific SNPs.

The ability of the PRFR model to identify those patients with a greater risk of a weak stream 

was examined further. A risk stratification plot was generated, in which the data from 75 

patients in the hold-out validation set were sorted by increasing predicted risk and divided 
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into 6 equal-size bins. Next, the actual rate of the toxicity was calculated for each bin. Figure 

3 shows the degree of discrepancy between the actual and predicted risks at each of the 6 

risk bins. The Hosmer-Lemeshow test on the stratified risk scores resulted in a P value of .

49, indicating good agreement between the predicted and observed outcomes.

Interpretation of biological plausibility of the PRFR model

Owing to the statistical significance of its hold-out AUC value, the weak stream PRFR 

model was interpreted for its biological relevance. The top 75% of SNPs based on the VIMs 

(the smallest set of SNPs at the optimal AUC as shown in Fig. 2) resulted in 241 genes. 

From these genes, 34 significantly enriched GO biological process terms and 11 functional 

groups were identified (Fig. 4; Appendix E2; available online at www.redjournal.org). The 

GO biological process with the lowest P value was “negative regulation of cellular 

component movement” (GO ID, GO:0051271; P = 1.1 × 10−6). The largest functional group, 

containing 9 GO terms, was related to neurogenesis, with a group P value of 6.4 × 10−6. The 

second largest group, with 5 GO terms, was associated with ion transport.

MetaCore detected a cluster of 15 proteins that were connected to each other with previously 

known direct protein–protein interactions (Fig. 5). From the systematic literature search, we 

found that 7 proteins in the cluster—protein kinase C (PKC), annexin I, protein kinase G, 

epidermal growth factor receptor (EGFR), schwannomin, acid-sensing ion channel 2, and 

neurexin—have been previously proven to be associated with LUTS (Table E2; available 

online at www.redjournal.org). These proteins, with the exception of neurexin, were 

interconnected, forming a subcluster within the 15-protein cluster.

Discussion

A clinically actionable prediction model for RT-induced late GU toxicity has been lacking. 

In particular, patient-specific genetic variation has been largely overlooked in the context of 

predictive modeling of the toxicity, with the exception of a study by De Langhe et al (10), 

which used 343 SNPs that were chosen based on relevance to the cellular response to 

ionizing radiation as predictors. In contrast, in the present study, the entire genome was 

agnostically searched for SNPs that could be informative of GU toxicity without previous 

knowledge of particular genes or biological processes. Those SNPs were then integrated into 

a prediction model. This task poses a challenge to validation owing to the high number of 

variables to be considered and resultant risk of overfitting. Nevertheless, our machine 

learning approach significantly predicted a weak stream endpoint in hold-out validation. 

Further post hoc analysis of the model based on GO enrichment analysis and a literature 

survey showed the plausibility of the biology highlighted by the model.

Currently, no conclusive models derived from dose and/or patient characteristics are 

available for GU toxicity. Yahya et al (5) presented multivariate prediction models for late 

GU symptoms (dysuria, hematuria, incontinence, and frequency) and identified the presence 

of baseline GU symptoms as the most important predictor, which has been observed in other 

studies (30). This variable was controlled by analyzing only those patients who had minimal 

baseline symptoms. Given the absence of significant correlation between the baseline IPSS 

and the endpoints (Table E1; available online at www.redjournal.org), it is unlikely that the 
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proposed SNP-based bio-markers are confounded by the baseline condition. Thor et al (4) 

predicted different symptom categories of GU toxicity using dose–volume parameters. The 

AUC values in a validation data set ranged from 0.51 to 0.64. Compared with these data, the 

results from our PRFR method indicate that genomic profiling might be able to complement 

the dose-only models in projecting GU toxicity risks. However, accurate dosimetric data 

were not available for testing this hypothesis.

The predictive accuracy of our PRFR method varied across the symptoms studied. Two 

obstructive symptoms with an event rate of <10% did not qualify for further analysis. The 

variable symptom rates and predictive performance suggest that the irritative and obstructive 

symptoms should be studied separately rather than as an aggregation, which was already 

demonstrated by Yahya et al (31). Further studies on using radiation dose distribution could 

help elucidate the difference between the 2 categories because the symptoms might originate 

from different urinary tract structures and be affected by different biological mechanisms 

(3).

Two major machine learning approaches in GWASs are RF and regression type models such 

as linear or logistic regression. Several studies have reported that RF tends to improve the 

predictive power compared with other machine learning methods, especially in the problems 

with a larger number of features than samples (32), likely because of the random process 

during RF modeling (22). Moreover, the preconditioning idea coupled with RF improved the 

predictive power significantly compared with conventional RF.

The key biological processes and gene products that were discovered from the PRFR weak 

stream model aligned well with the previously known etiology of LUTS, which is not 

necessarily radiation-induced. In particular, the GO enrichment analysis revealed 

neurogenesis as the most prominent biological process. The lower urinary tract is innervated 

by various peripheral nerves, including pelvic, hypogastric, and pudendal nerves, which 

control essential urinary functions such as the sensation of bladder filling, phasic contraction 

of smooth muscles in the bladder, and contraction of sphincters for urination (33). Studies 

have reported nerve damage after RT for prostate cancer with a possible association to 

erectile dysfunction (34, 35), which has not been studied to a large extent for GU toxicity. 

The inability to recover from damage to the nervous system caused by interventions such as 

RT could explain part of the toxicity risk. The second most influential biological process in 

the analysis pertained to ion transport. This can be related to the detrusor smooth muscle, a 

muscular wall of the bladder. This muscular machinery is also important for urination, and K
+ ion channels are vital for detrusor smooth muscle contraction and relaxation (36).

Among the 241 genes in the PRFR weak stream model, a 15-protein cluster, of which 7 

proteins were previously associated with urinary disorder, was discovered. Six of these 

proteins formed a subnetwork, with PKC acting as a network hub (connected to protein 

kinase G, EGFR, acid-sensing ion channel 2, and annexin I). PKC is expressed in bladder 

smooth muscle cells (37), and its activation has been shown to increase smooth muscle 

contractile forces (38), which could explain its association with the weak stream. It has also 

been identified by Oh et al (16) in the protein networks for RT-induced erectile dysfunction 

and rectal bleeding. Another notable protein in the network is EGFR, a protein known for 
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stimulation of cell proliferation and movement. It has been implicated in bladder wall 

smooth cell proliferation resulting from a sustained stretch of the bladder wall (39), which is 

a likely consequence of an obstructive symptom such as weak stream.

One of the limitations of the present study was the use of only heritable genetic factors. 

Moreover, as previously mentioned, the heterogeneity of RT dose distributions should be 

considered to investigate the dose effect on the toxicities and facilitate external validation of 

the model. It seems reasonable to assume that predictive power could be significantly 

increased if the actual dosimetric drivers of damage were better known on a patient-by-

patient basis. This might require better imaging of each fraction to accumulate a usefully 

accurate dose map of the delivered dose to the bladder. The present analysis likely benefited 

from using data from a single clinic with a consistent treatment philosophy, thereby reducing 

interpatient dosimetric variability compared with multicenter cohorts. Another limitation 

was the endpoint definition at a single follow-up point of 2 years after RT, which was 

determined based on a study by Kerns et al (11), in which the peak in the overall GU 

symptom score occurred 1 to 2 years after RT. Further research on the earlier onset of GU 

toxicity could highlight the difference in genetic components and biological processes 

between acute and late complications.

Conclusions

Genome-wide SNP data were used to predict the incidence of 4 GU toxicity symptoms after 

RT. PRFR was used to combine the effects of hundreds of SNPs, and its predictive 

performance was compared with those of other multivariate strategies. Only 1 of the 

endpoints (weak stream) resulted in a statistically significant prediction model (P = .01), 

which was confirmed on the hold-out validation data. Although the performance varied 

across the symptoms, these results suggest that PRFR is an effective approach for risk 

stratification using genome-wide data. By ranking the importance of SNPs in PRFR and 

applying bioinformatics tools, the biological processes and proteins implicated in radiation 

injury were identified. Many of the same genes had previously been identified in the 

reported data as related to urinary tract function. On further validation, the predictive model 

could help design personalized RT for prostate cancer and discover novel biomarkers.
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Summary

Genitourinary toxicity after radiation therapy limits the quality of life of prostate cancer 

survivors. We identified patients with a greater risk of genitourinary toxicity by 

discovering and integrating genome-wide risk signatures using machine learning 

methods. We applied preconditioned random forest regression to predict 4 urinary 

symptoms after radiation therapy. For weak stream, the method achieved an area under 

the curve of 0.7 on a hold-out validation data set. Gene ontology analysis identified key 

biological processes, including neurogenesis and ion transport.
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Fig. 1. 
Flowchart describing our modeling pipeline. Abbreviations: CV = cross validation; PRFR = 

preconditioned random forest regression; SNPs = single nucleotide polymorphisms.
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Fig. 2. 
Hold-out validation area under the curve (AUC) and its fluctuation over 5-fold cross-

validation for the weak stream endpoint as predicted by 7 models. Dashed line indicates 

AUC for ethnicity-based prediction. Abbreviations: LASSO =least absolute shrinkage and 

selection operator; PRFR = preconditioned random forest regression; SNPs = single 

nucleotide polymorphisms.
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Fig. 3. 
Risk stratification plot for a weak stream endpoint. Error bars represent 1 standard error.
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Fig. 4. 
Overrepresented gene ontology (GO) terms in the genes associated with the weak stream 

endpoint. A node size indicates a degree of significance of a GO term. Eleven functional 

groups are shown in different colors. A list of individual terms and their significance are 

provided in Appendix E2 (available online at www.redjournal.org).
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Fig. 5. 
A cluster of gene products in the weak stream model. Underscored nodes are the proteins 

that have been shown to be relevant to lower urinary tract syndrome in the systematic 

literature search (Table E2; available online at www.redjournal.org). Green, red, and gray 

connections indicate activation, inhibition, and unspecified, respectively. Abbreviations: 
EGFR = epidermal growth factor receptor; PKC protein kinase C. (A color version of this 

figure is available at www.redjournal.org.)
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