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Abstract

Regulated activity of SLC6A3, which encodes the human dopamine transporter (DAT), contributes 

to diseases such as substance abuse disorders (SUDs); however, the exact transcription mechanism 

remains poorly understood. Here we used a common genetic variant of the gene, intron 1 DNP1B 

sequence, as bait to screen and cloned a new transcription active unit, AZI23′UTR, for SLC6A3. 
AZI23′UTR is a 3′ untranslated region (3′UTR) of the human 5-Azacytidine Induced 2 gene 

(AZI2) but appeared to be transcribed independently of AZI2. Found to be present in both human 

cell nuclei and dopamine neurons, this RNA was shown to down regulate promoter activity though 

a variant-dependent mechanism in vitro Both reduced RNA density ratio of AZI23′UTR/AZI2 and 

increased DAT mRNA levels were found in ethanol-naïve alcohol-preferring rats. Secondary 

analysis of dbGaP GWAS datasets (Genome-Wide Association Studies based on the database of 

Genotypes and Phenotypes) revealed significant interactions between regions upstream of 
AZI23′UTR and SLC6A3 in SUDs. Jointly, our data suggest that AZI23′UTR confers variant-

dependent transcriptional regulation of SLC6A3, a potential risk factor for SUDs.
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Introduction

Regulated dopamine transmission contributes to normal brain function but its dysregulation 

may result in pathophysiology associated with a range of neuropsychiatric disorders[1–5]. 

The dopamine transporter (DAT) is a primary regulator of dopamine neurotransmission. Its 

functional alteration has been consistently implicated in both normal brain function and 

dysfunction, especially in addiction especially in substances of abuse[6–10]. As such, the 

transcriptional regulation of the human gene SLC6A3, encoding DAT, plays an important 

role in brain activity by determining where, when, and how much functional DAT is 

expressed in the brain. Because of this, many studies have investigated SLC6A3’s 
association with various brain disorders, including functional analysis of the gene’s 

variants[11–15].

According to the 1000 Genomes Project, SLC6A3 has more than 2,500 polymorphisms 

within its 70 kb gene regions among various populations[16,17]. To better understand how 

these variations modulate the gene’s activity, it is essential to elucidate the transcription 

mechanisms. Previous studies have identified several transcription factors (TFs) for 

SLC6A3, including NURR1, HEY1, SP1, and SP3[18–21]. In addition, PITX3 was found to 

regulate the mouse DAT gene[22]. None of these have been linked to variant-dependent 

regulation associated with any diseases except limited evidence for NURR1’s association 

with Parkinson’s disease[23,24]. No other type of RNA-based regulation has been reported 

for SLC6A3.

In this study, we started the allele-dependent TF search and as a result, cloned a 3′ 
untranslated region (3′UTR).

Materials and Methods

Yeast One-Hybrid (Y1H) screen

By using human substantia nigra total RNA and Matchmaker One-Hybrid Library Screening 

Kit (Takara Bio USA Inc., Mountain View, CA, USA, Cat# 636560 and 630304), we 

screened for transcription factors in the following six steps per manufacturer’s instruction: 

(a) constructing and testing the bait which was prepared by annealing two complementary 

40 base DNA oligonucleotides harboring dinucleotide polymorphism in Intron 1 allele 

B(DNPiB) in the middle and carrying EcoR I and Mlu I at each end for inserting to reporter 

pHIS2.1 (see Supplementary Table 1 for all nucleotides used in this study); (b) generation of 

the cDNA for the library including first strand cDNA synthesis, amplifying cDNA using 

Long Distance PCR (LD-PCR), and purifying ds cDNA with CHROMA SPIN TE-400 

Columns; (c) library screening; (d) confirmation of positive interactions and rescue of the 

prey plasmid by re-streaking and yeast colony PCR to eliminate duplicates, rescuing and 

isolation of library plasmids responsible for activation of reporters; (e) yeast transformation 

followed by streaking single candidate colony on new 100mM 3-AT, TDO (Triple Dropout 

Medium: SD/–His/–Leu/–Trp) plate for selection; and (f) screening by PCR of selected 

colonies and DNA re-sequencing.
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Plasmid construction

Mammalian expression plasmid—F30 was freed from pGAD-T7- F30 which was 

identified by Y1H screen and cloned to pcDNA3.1+ to result in pcDNA3.1+F30 plasmid by 

EcoR I and Xho I restriction sites. The pcDNA3.1+F30 plasmid was used for all 

overexpression experiments. Luciferase (Luc) reporters SV40-A (pGL3-SV40-A-luc) and 

SV40-B (pGL3-SV40-B-luc) were constructed by directionally inserting 40 bp dsDNA oligo 

containing DNPi allele A or B in the middle of the oligo, after self-annealing the oligos 

carrying two restriction site ends, into HindIII/NcoI sites of Promega’s pGL3 SV40 

Promoter vector (Madison, WI, USA; see Supplementary Table 1 for a list of all nucleotides 

used in this study). Preparation of 7.9kb constructs has been described before[25]. 7.9kb-A 

(pGL3-hDAT7.9kb-A) and 7.9kb-B (pGL3-hDAT7.9kb-B) differed only by DNPi alleles and 

both covered a SLC6A3 promoter region (7.9kb) from 5,931bp upstream of transcription 

start site to 35 bp downstream of DNPi. For promoter screen, pGL3E-0.1kb, pGL3E-0.3kb 

and pGL3E-1.6kb were constructed by using high fidelity PfuUltra II Fusion HotStart DNA 

Polymerase (Agilent Genomics, Santa Clara, CA, USA) according to the manufacturer’s 

instruction, and the primers for three pairs: 0.1kbF/F30R, 0.3kbF/F30R and 1.6kbF/F30R. 

PCR products were digested with Kpn I/Nhe I before cloning into the same sites of 

Promega’s pGL3 Enhancer vector. All PCR products in the clones were confirmed for high 

fidelity by DNA-resequencing.

Cell Culture

BE(2)-M17, SK-N-AS, SN4741, IMR-32, HEK293T or HB248 of human origins were 

cultured in Dulbecco’s modified eagle medium (DMEM, ATCC, VA, USA) containing 10% 

Fetal Bovine Serum (FBS, Atlanta biologicals, GA, USA) in a 75 cm2 Falcon flask (Thermo 

Fisher Scientific, Waltham, MA, USA) in humidified air with 5% CO2 at 37°C. For nucleus 

and cytoplasm separation, cells were split in Falcon 6-well plate for a next day confluence 

level of 80% and harvested by cell scrapers (Corning, NY, USA). SN4741 cells of mouse 

midbrain origin were cultured at 32°C for maintenance and at 37°C for gene expression after 

transfection.

Cell culture transfection for Luc activity assay or RNA extraction

Cells were split in a 24-well plate for a next day confluence level of 80%. For each well, 

plasmid DNA (from 0 ng–400 ng) was mixed with 2μl SuperFect Reagent (Qiagen, CA, 

USA) in DMEM and incubated at RT for 10 min. For Luc assay, cells in each well were 

transfected with 400 ng of the SV40-A, SV40-B or 7.9k-A or 7.9k-B plasmid DNA. Plasmid 

DNA of expression vector pcDNA3.1+ or pcDNA3.1+F30 was co-transfected with the 

transfection efficiency control plasmid pRL-TK reporter (Promega), respectively. For dose-

dependence transfection and RNA extraction, 0 ng–400 ng plasmid DNA was used. Culture 

medium was removed from each well and the plasmid DNA/SuperFect mixture added. All 

plasmid DNA was isolated from E. coli culture at least three independent times for each 

plasmid by using PureYield™ Plasmid Miniprep System (Promega) and dissolved in TE 

buffer to a DNA concentration of 400ng/μl. Different preparations, each with an OD260/280 

ratio of about 1.8, were mixed to avoid quality variation. Three hours later, fresh growth 

medium replaced the transfection mixture. For Luc assay, 48 hrs later, cells were collected 
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and lysed and the firefly and renilla luciferase (RL) activities were measured with Dual-

Luciferase Reporter Assay System (Promega) according to the manufacturer’s instructions, 

using a Synergy HT luminometer (BioTek, Winooski, VT, USA). All firefly Luc activity was 

normalized to RL activity for transfection efficiency. For RNA extraction, the incubation 

time was 24 hrs. Each experiment in triplicate wells was repeated by the indicated number in 

figure legends.

RNAi on SV40-A or SV40-B

Cells were plated out with medium without antibiotics in a 24 well plate for a second day 

80–90% confluence level. Just before transfection, the plasmid DNA mixture (160 ng SV40-

A or SV40-B) and 5 pmol of F30-siRNA1, 2, or 3 were prepared, mixed gently in 50 μl 

medium (without serum), mixed with 1μl Lipofectamine™ 2000 diluted in 50 μl medium 

(without serum), mixed gently and incubated at room temperature (RT) for 20 min. The 

DNA-RNAi molecule-Lipofectamine 2000 complexes were added to each well containing 

cells and medium, followed by gentle mixing. After 48 hrs of incubation, cells were 

harvested for Luc activity assay, as described above.

Quantification of mRNA levels by quantitative real-time polymerase chain reaction (qRT-
PCR)

For in vitro work, cells of each well in 24 well plate were extracted for total RNA in 

TRIZOL (Invitrogen, CA, USA; 250 μl for each well, 500 μl after combining duplicate 

wells), according to the TRIZOL User Guide, and RNA was quantified by NanoDrop Lite 

(Thermo Fisher Scientific, Waltham, MA, USA). Final mass from each extraction was about 

4 μg RNA in 20 μl DEPC-treated water. For each sample, 200 ng RNA was subjected to 

cDNA synthesis in a volume of 10 μl, by Verso cDNA synthesis kit (Thermo Fisher 

Scientific).

For in vivo work, rodent brain tissue was sliced, and the left and right midbrain regions were 

micro-punched, transferred to RNase-free 1.5 ml microfuge tubes with 100 μl TRIZOL 

reagent, homogenized in ice by mechanical trituration followed by the addition of another 

900 μl of TRIZOL reagent to the tubes to extract total RNA for cDNA synthesis.

Each qRT-PCR reaction was prepared by KAPA SYBR FAST qPCR Master Mix (KAPA 

biosystem, MA, USA) with 200 nM of primer mixture and 0.1μl of cDNA. The PCR 

program ran 45 cycles, with an annealing temperature of 56°C, in Bio-Rad CFX Connect 

Real-Time System (Bio-Rad, CA, USA) according to the manufacturer’s protocol. The 

efficiency (an average coefficient of 2.0) was calculated using a series dilution method and 

Bio-Rad CFX Manager software and each coefficient was used in fold-change calculations 

for each primer pair. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an 

internal control for input.

Northern blot analysis

Probe preparation—A 442 bp human probe (hF30p) was freed from 2 μg of 

pcDNA3.1+F30 plasmid DNA by double-digestion with Nhe I and Hind III restriction 

enzymes (New England Biolabs, Ipswich, MA, USA). A 339 bp mouse probe (mF30p) was 

Liu et al. Page 4

Mol Neurobiol. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PCR amplified by using 0.1 μl mouse cDNA as the template and high fidelity PfuUltra II 

Fusion HotStart DNA Polymerase. Using the Verso cDNA synthesis kit, the mouse cDNA 

was synthesized in 10 μl from 200 ng mouse RNA extracted from SN4741 cells. The two 

DNA fragments were purified by Wizard® SV Gel and PCR Clean-Up System (Promega) 

and 100 ng of each DNA fragment was used for labeling with a North2South Biotin Random 

Prime Labeling kit (Thermo Fisher Scientific). mF30p was also used for rat RNA blotting 

because it had 84% identity with the rat AZI2 3′UTR, which was the only homology found 

throughout the entire rat genome.

RNA preparation—Fresh mouse or rat brain tissue was dissected into different 

subregions, including midbrain, hippocampus and cortex which were stored in −80°C. Cells 

from 6-well plate or 100 mg of brain tissue were homogenized in 1 ml TRIZOL Reagent by 

Argos Pestle Mixer (Argos Technologies, IL, USA) for RNA extraction as described above. 

The final RNA concentration was about 2μg/μl in 50μl of DEPC-treated water.

Cytoplasmic and nuclear RNA fractions of cells harvested in 200 μl ice-cold Lysis Buffer, J. 

Swirling buffer, from 6-well plate were separated using a Cytoplasmic and Nuclear RNA 

Purification Kit (Norgen Biotek, ON, Canada). The resultant RNA concentration was 

approximately 500 ng/μl for the cytoplasmic fraction and 90 ng/μl for the nuclear fraction, 

each in 50 μl of TE buffer.

Blotting—RNA was resolved to molecular weight by electrophoresis on a 1% denaturing 

agarose gel. Two μg of cytoplasmic RNA or 0.5 μg of nuclear RNA was loaded and after 

electrophoresis, RNA in the gel was capillary-transferred to BrightStar-Plus positive-charged 

Nylon membrane (Thermo Fisher Scientific). The membrane-RNA was crosslinked by UV 

and RNA was labeled by adding 40 ng labeled probe and detected by North2South 

Chemiluminescent Hybridization and Detection Kit (Thermo Fisher Scientific). The final 

results were visualized by a Chemi Doc XRS Molecular Imager, and band densities were 

quantified using ImageLab software (Bio-rad).

Western blot analysis

Cells were scrape-harvested from a 6-well plate, lysed in 200 μl ice-cold Lysis Buffer J. 

Swirling buffer for 5 min, followed by centrifugation at 12,000 rpm at 4°C for 3 min. The 

supernatant was collected as cytoplasmic proteins. The pellet was washed with ice-cold 

PBS, added to 200 μl RIPA buffer and disrupted by sonication for the nuclear proteins. 

Protein concentration was measured by Bradford Protein Assay (Bio-Rad, Hercules, CA, 

USA). 20 μl sample was loaded on a 10% Criterion TGX Precast Midi Protein Gel (Bio-

Rad). Proteins were then transferred to a PVDF membrane (Bio-Rad) and stained with 

antibodies for GAPDH (1:1000 dilution, Abcam, Cambridge, MA, USA), or a monoclonal 

antibody to RNA Pol II (1:1000 dilution, Santa Cruz Biotechnology Inc., CA, USA), 

followed by incubation with appropriate secondary antibodies and the staining was 

visualized with Pierce ECL substrate (Thermo Fisher Scientific). Images were captured as 

for the Northern blots.
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RNAscope and immunofluorescence (IF) staining

RNAscope analysis was carried out by using the RNAscope 2.5 HD Reagent Kit – RED 

(Advance Cell Diagnosis, Newark, CA, USA). The sample was fixed, dehydrated, and 

pretreated. BE(2)-M17 cells cultured on coverslips or frozen human post mortem nigra brain 

tissue were fixed with 4% paraformaldehyde (PFA) for 30 min and rinsed 3 times with Tris-

buffered saline (TBS). Fixed cells or sections of the fixed tissue were sequentially immersed 

in 50% ethanol (EtOH), 70% EtOH and then 100% EtOH for dehydration. Then 2–4 drops 

of RNAscope Protease IV were applied to pretreat the sample. At the probe incubation step, 

the sections were incubated with the desired probe (~2–3 drops/section or coverslip) at 40°C 

for 2 hrs and then washed four times in 1x wash buffer for 1 min each. The following probes 

were used: 5′ probe was a 10ZZ probe named Hs-AZI2-O2 targeting 546-1160 of 

NM_022461.4; 3′ probe was a 13ZZ probe named Hs-AZI2-O1 targeting 2384-3286 of 

NM_022461.4; scramble probe was RNAscope 3-plex Negative Control Probe. 

Amplification steps were performed by sequential incubation of Amp1 (pre-amplifier), 

Amp2 (background reducer), Amp3 (amplifier), Amp4 (label probe) at 40°C for 30 min each 

and then by incubation with Amp5 and Amp6 at RT for 30 min. The signal was visualized 

by mixing 1 part of FAST-A solution to 60 parts of FAST-B solution and then incubated at 

RT for 10 min.

IF staining was performed immediately after RNAscope. Samples were incubated in 

blocking buffer (Life Technology) at RT for 30 min and then incubated with rabbit 

polyclonal anti-tyrosine hydroxylase (anti-TH, Abcam, Cambridge, MA, USA, 2 mg/ml) 

primary antibody (1:500 dilution) at 4°C overnight. The following day, samples were 

washed four times in TBS for 4 min each, incubated with fluorescent secondary antibody (a 

488 labeled goat anti-mouse secondary antibody) at 1:500 dilution with 0.05% Triton 100 at 

RT for 2 hrs. Sections/coverslips were washed and mounting buffer with DAPI (VECTOR 

LABORATORIES, Burlingame, CA, USA) was applied. Images were collected by a 

confocal microscope, Leica TCS SP8 (Leica Microsystems Inc. IL, USA).

RNA-guided Chromosome conformation capture (R3C) protocol[26]

Cells from a 75 cm2 flask were treated with 2% formaldehyde at RT for 10 min and added to 

cold 1 M glycine for a final concentration of 0.125M on ice. After scraping and centrifuging, 

cell pellets were lysed in 1ml lysis buffer (10mM Tris, pH 8.0, 10mM NaCl, 0.2% NP-40, 

protease inhibitors and RNA inhibitors) on ice for 10 min. Pelleted by centrifugation at 

12,000 rpm and 4°C for 10 min, SDS buffer was added to dissolve the pellet in order to 

detach non-crosslinked proteins from DNA, followed by biotin-modified reverse 

transcription for dsDNA. The first-strand cDNAs were synthesized by using NEBNext RNA 

First Strand Synthesis Module (New England Biolabs, Ipswich, MA) and second-strand 

cDNAs synthesized by using NEBNext mRNA Second Strand Synthesis Module (NEB). 

dsDNA was digested with 600 U BspH I (NEB) at 37°C overnight with shaking (900 rpm) 

and then ligated with T4 DNA ligase(NEB) at 16°C for 4 hrs. Next, samples were reverse 

crosslinked by proteinase K at 65°C overnight and digestion of remaining RNA by RNase A 

at 37°C for 30 min, followed by purification with phenol–chloroform method and 

streptavidin Dynabeads (Invitrogen). Purified DNA was used for PCR amplification using 

four pairs of primers: r3cF30F/r3cF30R, r3cF30F/r3cSLC6A3R, r3cSLC6A3F/r3cF30R, 
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and r3cSLC6A3F/r3cSLC6A3R. The PCR program ran 45 cycles with the annealing 

temperature of 56°C in Veriti 96 well thermo cycler (Applied Biosystems, CA, USA).

Secondary analysis of dbGaP GWAS genotype

Genetic analysis—Secondary analysis used three datasets, Collaborative Study on the 

Genetics of Alcoholism (COGA, phs000125.v1.p1), Study of Addiction: Genetics and 

Environment (SAGE, phs000092.v1.p1) and the Australian twin-family study of alcohol use 

disorder (OZALC, phs000181.v1.p1). COGA covered two different US populations, that is, 

European Americans and African Americans, so that after data quality control (QC) using a 

published protocol[27], the dataset was split into two datasets, European Americans and 

African Americans. From the OZALC sample, only the unrelated individuals were extracted 

for the purpose of epistasis analysis. After QC, a total of 6,596 subjects were kept as 

unrelated and 41% of them were cases. Imputation was carried for each of these four cleaned 

datasets as described before[28], in order to extend the association power. Data 

manipulation, allelic association, and meta-analysis were all performed by using 

PLINK[29]; logistic regression analysis of single nucleotide polymorphism (SNP)-SNP 

interactions used the function implemented in the CASSI 2.50 software[30].

Genetic result display used a visualization program to draw the graph. The visualization 

program is implemented using the Java Swing package. The program read two input files in 

text format. The first file contains six columns for gene information: Node Name, Start 

Marker, End Marker, Lower Bound, Upper Bound, and Direction. The start and end markers 

are the beginning and end coordinates of a gene. The second file contains relation 

information recorded in three columns: Coordinate 1, Coordinate 2, and Strength. The 

strength could be any statistics measuring the weight or confidence of relations.

Data analysis

For rat AZI2 mRNA (5′ primers) or 3′UTR (F30) mRNA qRT-PCR data analysis, GAPDH 

mRNA was used to normalize for input, followed by calculating a relative expression ratio 

between alcohol-nonpreferring, NP, and alcohol-preferring, P, rats. The 3′UTR ratio was 

further normalized by the AZI2 ratio to obtain an AZI23′UTR enrichment ratio of 3′UTR/

AZI2, in order to compare the AZI23′UTR/AZI2 ratio between Northern blotting and qRT-

PCR findings. One-way or two-way ANOVAs with post hoc Tukey tests or Student’s t-tests 

were used in this study to assess statistical significance with the criteria of P < 0.05. All data 

are represented by mean ± S.E.M.

Results

F30 cloning

In a previous study, we found that a 40 bp Intron 1 DNA sequence (fragment III) displayed 

inhibitory activity in human neuroblastoma SK-N-AS cells[25]. That fragment was of 

haplotype A, carrying allele A of a dinucleotide polymorphism in Intron 1 (DNPi or 

rs67175440). This DNPi had two alleles, A (AG) and B (GA). Fragment III carried allele A 

and was not bound by any nuclear protein. Contrarily, the allele B fragment is bound by 
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nuclear protein (unpublished observations). Therefore we used this allele B (DNPiB) 

containing 40 bp fragment as bait to search for allele-dependent TFs targeting SLC6A3.

In the yeast one-hybrid (Y1H) screen of a cDNA library which was prepared with total RNA 

isolated from post mortem human nigral tissue, we picked 92 single colonies for PCR 

amplification and the PCR spotted three candidate positive colonies, F30, F34 and S93, with 

the length of PCR product larger than 600bp for DNA re-sequencing. S93 had no homology 

to any known human RNA except an 89% identity with a Papio anubis cDNA clone 

(GenBank: GE901207.1) and was not pursued. Purified F30 plasmid enabled colony growth 

as shown in selection plate of Supplementary Fig. 1A. Interestingly, both F30 and F34 

represented the same human 5-Azacytidine Induced 2 (AZI2) cDNA. Specifically, the 

sequences matched the second half of the AZI2 3′UTR (Supplementary Fig. 1B).

To find out whether F30 was a truncated cDNA fragment of AZI2, Northern blotting was 

carried out to examine the presence of F30 in six cultured human cell lines. The results 

suggested that F30 was not a truncated cDNA and confirmed F30 as an independent 

transcript in all of the examined human cell lines (Supplementary Fig. 1C). This observation 

was unexpected given that a protein would make better sense as the cloned product of Y1H 

rather than an RNA fragment. We then studied whether F30, a part of 3′UTR, actually 

conferred any regulatory activity. F30 and 7.9kb-B, which was a 7.9 kb SLC6A3 promoter 

fragment carrying DNPiB and cloned into a luciferase reporter vector, were co-

overexpressed in the human neuroblastoma cell line SH-SY5Y. The results showed that F30 

was able to downregulate SLC6A3 promoter activity (Supplementary Fig. 1D). These data 

suggested that F30 had independent regulatory activity in human systems and this 1,016 

nucleotide RNA has been termed AZI23′UTR here due to its identity to a portion of the 

human AZI2’s 3′UTR. We will still use “F30” to describe the cDNA clone for conciseness 

in the rest of the description of these experiments.

Allele-dependent regulation of exogenous promoters by AZI23′UTR

Next we examined whether AZI23′UTR/F30 could regulate promoter activity in an allele-

dependent manner. We tested two promoters, SV40 and SLC6A3 in the human 

neuroblastoma cell line SK-N-AS. The results showed that, indeed, F30 downregulated both 

promoter activities in a DNPiB-dependent manner (Fig. 1a–d). This DNPiB-dependent 

downregulation of SLC6A3 promoter by F30 was also observed in HEK293T cells 

(Supplementary Fig. 2). To further verify allele-dependence, RNAi was used to target 

3′UTR for effects on DNPi-regulated SV40 promoter activity. Expectedly, 3′UTR RNAi 

upregulated SV40 promoter activity only through DNPiB and not DNPiA. This DNPiB-

dependence of the RNAi effects was also observed in SH-SY5Y cells (Supplementary Fig. 

3). Although these RNAi results could be also attributable to AZI2 downregulation, together, 

these observations suggest that AZI23′UTR downregulates promoter activity via DNPiB in 

human transient expression systems.

AZI23′UTR regulation of endogenous SLC6A3 activity

In the human neuroblastoma cell line BE(2)-M17, overexpression of F30 downregulated 

endogenous SLC6A3 activity dose-dependently (Fig. 1e–f). We chose BE(2)-M17 because it 
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allowed examination of haplotype-dependent regulation[31]. Whereas we initially looked at 

possible allele-dependence in AZI23′UTR regulation of endogenous gene activity, this assay 

lacked the needed sensitivity to detect this effect.

Localization of AZI23′UTR to nuclei of BE(2)-M17 cells

To exert transcriptional activity, AZI23′UTR must be present in cell nuclei. We therefore 

used two approaches to identify the subcellular location of AZI23′UTR in BE(2)-M17. In the 

first approach, cytoplasmic and nuclear fractions were separated from each other and 

subjected to Northern blotting. As shown in Fig. 2A–B, the main form of the 3′UTR was 
AZI23′UTR, not AZI2. AZI2 and AZI23′UTR were both present in the cytoplasm but 
AZI23′UTR was enriched by 3-fold in the nuclei in comparison (Fig. 2C). The second 

approach used RNAscope analysis combined with immunofluorescence (IF) staining. This 

dual approach revealed that the 5′ probe, which selectively targeted AZI2, was more highly 

sensitive. A comparison of the 3′ to 5′ probe labeled AZI2 labeled mRNA revealed that 
AZI23′UTR was also enriched in the nuclei. (Fig. 2D vs 2E). This result is supported semi-

quantitatively by IF intensity analysis (Supplementary Fig. 4).

Localization of AZI23′UTR to nuclei of human post mortem dopamine neurons

We used the human probes and validated the nuclear localization in dopamine neurons of 

human post mortem tissue from two subjects. In these post mortem studies, the 5′ probe 

again displayed greater sensitivity and labeled the AZI2 mRNA both in the cytoplasm and 

nucleus. In contrast, the 3′ probe, which targets the 3′UTR, revealed labeling mainly in the 

nuclei of TH-positive neurons from both subjects (Fig. 3). This nuclear enrichment of 
AZI23′UTR, as observed by the semi-quantification of IF mean intensity or labeling clusters 

(Supplementary Fig. 5), was consistent with the Northern blotting finding that AZI23′UTR 

was enriched in human midbrain tissue (Fig. 3 Insert).

Promoter activity upstream of AZI23′UTR
AZI23′UTR expression was enriched, compared with AZI2, particularly in the midbrain, 

compared with the hippocampus and cortex of mice, rats and humans using Northern blot 

analyses (Supplementary Fig. 6). These findings suggested that AZI23′UTR was possibly 

transcribed independently of AZI2. To investigate this possibility, three human chromosomal 

DNA fragments (0.1kb, 0.3 kb, and 1.6 kb) immediately upstream of AZI23′UTR were used. 

Transcriptional regulatory activity was explored using the promoter report vector pGL3 

Enhancer in two dopamine neuron models, SK-N-AS and SN4741. Student’s t-test indicated 

that both the 0.1 kb and the 1.6 kb fragments inhibited the basal promoter activity carried by 

the vector down to 0.64- (P < 0.0001) and 0.52-fold (P < 0.0001) in SK-N-AS, and 0.90- (P 
= 0.04) and 0.66-fold (P < 0.0001) of the vector activity in SN4741. In contrast, the 0.3 kb 

fragment displayed clear promoter activity in both cell lines (Fig. 4). These data suggested 

that AZI23′UTR had its own promoter which was under different inhibitory regulations.

Implication of AZI23′UTR/AZI2 in SUDs

To explore the possible association of this AZI2/AZI23′UTR locus with substance abuse, two 

approaches were used. The first used a well-established rat animal model of alcoholism and 
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the second involved a secondary analysis of GWAS datasets in dbGaP[32]. The rat model 

used was the bidirectionally selected alcohol-preferring P vs the alcohol-nonpreferring NP 

rats[33,34]. Northern blotting analysis showed that P rats had significantly decreased 
AZI23′UTR/AZI2 expression ratio compared with NP rats in midbrain.(Fig. 5A–B), 

consistent with findings from qRT-PCR analysis of mRNA levels (Fig. 5C). At the same 

time, the P rats had significantly increased DAT mRNA levels in the midbrain, compared 

with NP rats (Fig. 5D).

The GWAS secondary analysis used four cohorts from three datasets, Collaborative Study on 

the Genetics of Alcoholism[35] (COGA, dbGaP accession#: phs000125.v1.p1), Study of 

Addiction: Genetics and Environment (SAGE, polysubstance abuse but mainly with 

cigarette smoking, dbGaP accession#: phs000092.v1.p1) and the Australian twin-family 

study of alcohol use disorder (OZALC, dbGaP accession#: phs000181.v1.p1). COGA had 

two ethnicities, US Caucasians of European descent and African Americans, so after data 

quality control (QC), this dataset was split into the two separate ethnic cohorts. Overlapping 

individuals, those included in both the COGA and SAGE studies, were removed from the 

SAGE datasets. The OZALC study used family genotype but only the unrelated individuals 

were extracted for the purpose of epistasis analysis. After QC, a total of 6,596 informative 

subjects remained, including 41.0% cases: 1,368 from COGA_EA, 753 from COGA_AA, 

2,063 from the OZALC study, and 2,412 from the SAGE study. Logistic regression was used 

for the epistasis analysis of gene-gene interaction. These cleaned datasets showed no 

significant main effects at the AZI2 locus (data not shown). By contrast, epistasis analysis 

revealed several interactions between the DNPi/core promoter region of SLC6A3 and the 

AZI2 locus (Fig. 5D). One of them, the most significant one in double-arrow curve, was 

between rs2617605 (1 kb downstream of DNPi or at 1,442,521 in chr5) and rs12054402 (25 

kb upstream of AZI23′UTR or at 28,384,051 in chr3), with a P-value of 1.25 × 10−11 and an 

odds ratio (OR) of 0.42 using a random effects model, followed by Bonferroni corrections. It 

is noteworthy that the most significant interactions were from the upstream region of 
AZI23′UTR, not upstream of AZI2 (the DNPi alleles were not typed in the original GWAS 

studies nor were they captured by imputation).

DISCUSSION
AZI23′UTR is the first inhibitory regulator, the first allele-dependent regulator and also the 

first ribonucleic regulator of SLC6A3 based on the in vitro data. The data presented here 

suggests AZI23′UTR protects against SUD. It appears to be the first regulatory ribonucleic 

acid shared by a 3′UTR of another gene. Therefore, this discovery describes the first 

kangaroo layout of two genes, a protein gene and a RNA gene (a small RNA gene in the end 

of a large protein gene like a pup in kangaroo’s pocket). It is unclear how the Y1H system 

detected it because Y1H has been designated to clone proteinaceous activity. One possibility 

for its detection could be that the DNPiB sequence may have been recognized by a yeast 

endogenous protein so that AZI23′UTR regulated the recognition for DNPiB specifically. 

Thus, the putative proteinaceous activity of this assay might help explain allele-dependent 

transcriptional regulation in exogenous expression systems. An attempt to investigate 

possible RNA-DNPiB binding activity by R3C failed, possibly because of the indirect 

regulation. Nested deletions from either the 5′ or the 3′ end aimed to screen for possible 
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functional domains or small open reading frames in two human neuroblastoma cell lines 

(SK-N-AS and SH-SY5Y) revealed no conclusive results. The question is still under 

investigation.

By molecular size and location, AZI23′UTR belongs to the category of long non-coding 

RNAs (lncRNAs). The genome encodes thousands of lncRNAs and some of them are 

characterized suggesting spatial or structural regulatory activity[36]. However, the exact 

mechanisms by which these lncRNAs regulate gene expression are still under investigation 

in various laboratories[37–41]. It is likely that AZI23′UTR is expressed under the control of 

its own promoter which seems highly regulated. The disproportion between AZI23′UTR and 

AZI2 RNA abundance in the midbrain of different species, supports this view of an 

independent promoter. AZI23′UTR appeared ubiquitously expressed but the biological 

activity of this widespread RNA requires continued research. For instance, it will be 

important to clarify if it plays a significant role in the predisposition to the development of 

SUDs.

Full-gene epistasis analysis found extensive and statistically significant single nucleotide 

polymorphism (SNP)-SNP interactions between the two genes in the genetic etiology of 

SUDs. Many SNPs throughout the AZI2 gene interacted with those located in the 

downstream, or near the 3′UTR, region of SLC6A3. The most significant interactions were 

from the upstream region of AZI23′UTR, rather than upstream of AZI2 (Supplementary Fig. 

7, see Supplementary Table 2 for details). These data suggest two possibilities. One 

possibility is that transcriptional regulation of SLC6A3 plays a greater role in 

psychopathology than previously thought, or AZI2 mRNA contributes to transcriptional 

regulation of SLC6A3 as well. This would be consistent with the observation that the AZI2 

RNA was detected in the nuclei of both BE(2)-M17 cells and human post mortem dopamine 

neurons. This data prepares a cellular platform for future study of this lncRNA. Moreover, a 

potential role for AZI2 in SUDs is supported by a report that the mouse AZI2 is related to 

sensitivity to amphetamine[42].

The present study highlights the need for further research in this area. We need to understand 

whether AZI23′UTR overexpression regulates animal DAT gene in vivo, reduces ethanol 

intake in a genetic animal model of alcoholism, the P rat, and even is able to attenuate 

relapse in models for SUDs. Additionally, delineation of other functional elements 

underlying these human gene-gene interactions will be another new project. Thus, continued 

functional studies of AZI23′UTR is warranted. In conclusion, we have identified AZI23′UTR 

as a new and independent transcriptional regulator of SLC6A3, and found that this 

transcriptional regulation is associated with an epistatic protection against SUDs in humans.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. F30 (AZI23′UTR) allele-dependent downregulation promoters activity by luciferase 
reporting in the human neuroblastoma SK-N-AS cells and downregulation of endogenous 
SLC6A3 mRNA level in the human neuroblastoma BE(2)-M17 cells
(a) SV40 promoter or (b) on 7.9kb SLC6A3 promoter, based on effects of F30 vs. vector 

pcDNA3.1 overexpression. A and B represent promoter carrying DNPiA or DNPiB alleles, 

respectively. Indicated P-value was obtained from Student’s t-tests; ANOVA P = 0.0028 for 

F30 effects on both SV40 and 7.9kb SLC6A3 promoters, compared to vector activity (n = 7–

10); (c) F30 DsiRNA exerts enhancing effects on the SV40-B promoter but not the SV40-A 

promoter (d), based on one-way ANOVA (n = 8–12). Three different F30 DsiRNA 

molecules were used (sequences listed in Supplementary Table 1). The SV40 data in panel 

(a) and DsiRNA effects in panels (c) and (d) were replicated in HEK293T and SH-SY5Y 

cells (see Supplementary Figs. 1 and 2).(e) different doses pcDNA3.1-F30 vector and (f) 

pcDNA3.1 vector. One-way ANOVA: *, P < 0.05; **, P < 0.001; ***, P < 0.0001 (n = 3–6).
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Figure 2. Nuclear expression of AZI23′UTR in human neuroblastoma BE(2)-M17 cells
(a) Nuclear enrichment of AZI23′UTR expression, compared to cytoplasmic expression, by 

F30-based Northern blotting. Noticed that loaded RNA amount for nuclear fraction was only 

25% of what was for cytoplasmic fraction. (b) Clean nuclear fraction separation from the 

cytoplasmic fraction by GAPDH- and RNAP II-based Western blots. (c) Quantification of 

Northern blot-based nuclear enrichment. P-value was obtained by Student’s t-tests (n = 3). 

(d) Low density of nuclear AZI2 RNA and (e) enriched nuclear expression of AZI23′UTR 

RNA both revealed by confocal images from RNAscope analyses. DAPI, nucleus; GAPDH, 

cytoplasmic control in immunostaining; 5′ probe, for targeting AZI2 mRNA only; 3′ probe, 

for targeting 3′UTR (both AZI2 and AZI23′UTR). Insert, close-up showing nuclear 

expression of 3′UTR with GAPDH staining filtered out. White arrow, nuclear expression of 

3′UTR. Scale bars, 25 μm.
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Figure 3. Nuclear localization of 3′UTR expression in human post mortem nigral dopamine 
neurons from two individuals (upper three rows from #7277, a 58 year old male and lower three 
rows from #8206, a 93 year old female) based on confocal images from RNAscope analysis
The consistent findings, despite different demographics, suggests the generalizability of 

these findings. Three up-to-down rows represent three RNA probes, 5′ probe for AZI2, 3′ 
probe for 3′UTR and scrambled probe for negative control; four left-to-right columns of 

images are DAPI for nucleus, TH (tyrosine hydroxylase protein immunostaining) for 

labeling DA neurons, RNA probing, and merging all three. White arrow, nuclear expression 

of 3′UTR by 3′ probe; Scale bars, 25 μm. Insert on the lower left: Northern blot for 

enriched expression of AZI23′UTR (black arrow), compared to AZI2 (gray arrow), in the 

same female (see supplementary data for an enlarged view).
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Figure 4. Identification of a regulated promoter upstream of AZI23′UTR
(a) Construction of three promoter reporters, with immediately upstream 0.1 kb, 0.3 kb and 

1.6 kb (1,585 bp) fragments, in Promega’s pGL3 Enhancer vector carrying the firefly 

luciferase gene. (b) Luciferase activity detected in SK-N-AS (left) and SN4741 (right) cell 

lines. Each dataset came from four independent experiments.
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Figure 5. Implication of the AZI23′UTR locus in genetic etiology of SUDs
(a–c) Reciprocal correlation between AZI23′UTR and DAT expression in midbrain from a 

genetic animal model of alcoholism male P vs NP rats. (a) A representative Northern blot 

showing increased AZI23′UTR expression in the NP, compared to P rats. (b) Quantification 

of Northern blot data as in panel (a). (c) AZI23′UTR enrichment ratio in NP vs P based on 

qRT-PCR analysis of mRNA levels in midbrain VTA. (d) Increased DAT mRNA levels in P, 

compared to NP rats. P-values obtained from Student’s tests (n = 3–4). (e) Human genetics 

of SUDs via SNP interactions (colored curves) between a SLC6A3 intron 1/core promoter 

region around DNPi (blue diamond) and the AZI23′UTR (green arrow)/AZI2 locus. Data are 

from meta-analysis of logistic regression results by using three dbGaP datasets of SUDs 

(alcohol and cigarette smoking). For SLC6A3, only the AZI23′UTR target or DNPi 

surrounding region is shown (see Supplementary Fig. 7 for full scale interactions between 

the two loci/three genes). Gray horizontal bars, on the left is SLC6A3 in chr5 and on the 

right is the AZI23′UTR/AZI2 loci in chr3 with coordinates indicated above the bars; double 

black arrow symbols, location of transcription start site of SLC6A3 or AZI2 (both run on the 

minus strands of the chromosomes); thermometer bar on the right, interaction strength (P-
value) in the form of −Log10(P-value); double-arrowed curve, the most significant 

interaction (rs2617605 at 1442521 of chr5 vs rs12054402 at 28384051 of chr3) which is 

outside the range of the indicated thermometer bar scale; chromosomal scale, 10 kb.
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