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ABSTRACT Genome-wide association studies (GWAS) have identified thousands of loci that are robustly associated with complex diseases. The
use of linear mixed model (LMM) methodology for GWAS is becoming more prevalent due to its ability to control for population structure and
cryptic relatedness and to increase power. The odds ratio (OR) is a common measure of the association of a disease with an exposure (e.g., a
genetic variant) and is readably available from logistic regression. However, when the LMM is applied to all-or-none traits it provides estimates of
genetic effects on the observed 0–1 scale, a different scale to that in logistic regression. This limits the comparability of results across studies, for
example in a meta-analysis, and makes the interpretation of the magnitude of an effect from an LMM GWAS difficult. In this study, we derived
transformations from the genetic effects estimated under the LMM to the OR that only rely on summary statistics. To test the proposed
transformations, we used real genotypes from two large, publicly available data sets to simulate all-or-none phenotypes for a set of
scenarios that differ in underlying model, disease prevalence, and heritability. Furthermore, we applied these transformations to GWAS
summary statistics for type 2 diabetes generated from 108,042 individuals in the UK Biobank. In both simulation and real-data application,
we observed very high concordance between the transformed OR from the LMM and either the simulated truth or estimates from logistic
regression. The transformations derived and validated in this study improve the comparability of results from prospective and already
performed LMM GWAS on complex diseases by providing a reliable transformation to a common comparative scale for the genetic effects.

KEYWORDS complex diseases; genome-wide association studies; summary statistics; OR; linear mixed models

GENOME-WIDE association studies (GWAS) of complex
diseases often use a case-control design that requires the

analysis of a binary trait that indicates whether an individual
has the disease. Typically, association studies of disease traits
are conducted under the logistic regressionmodel, where each
SNPis tested individuallyagainst thephenotypeforassociation.
One key concern for GWAS is the control of spurious associa-
tionsduetopopulationstructure(Marchini etal.2004;Hirschhorn
and Daly 2005). Principal component (PC) correction (Price
et al. 2006) in combination with logistic regression is a com-
monmethod forGWAS of disease traitswhen population strat-
ification is of concern (Lambert et al. 2013; Michailidou et al.

2013; Ripke et al. 2014). Linear mixed model (LMM) meth-
odology is becoming the gold standard for GWAS due to its
ability to control for population structure and cryptic related-
ness, and has been shown to be more powerful than standard
GWAS (Yang et al. 2014). These advantages have led to the
recent use of LMMs for large-scale GWAS of dichotomous
traits (Fingerlin et al. 2013; Boraska et al. 2014; van Rheenen
et al. 2016; Howson et al. 2017).

The odds ratio (OR) is a commonmeasure for the strength
of association of a genetic locus and has desirable properties;
for example, it is not affected by case ascertainment. TheOR is
readablyavailable fromlogistic regression,however,when the
LMM is applied to all-or-none traits it provides estimates of
genetic effects on the observed 0–1 scale; a different scale
to that in logistic regression, which limits the comparability
of results across studies (Cook et al. 2017). Given that both
methodologies are used with experimental data to estimate
genetics effects, it would be convenient to have a reliable
transformation between effects estimated using the LMM to
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that from the generalized linear model. Often only summary
association statistics are available and thus such a transfor-
mation cannot depend on the genotype data.

Methodologies for making such a transformation have
been investigated in the statistics and economics literature,
withoneavenuerelyingonthe linksbetween logistic regression
and the linear discriminant analysis (LDA) method of Fisher
(1936) as discussed by Cox and Snell (1989), Efron (1975),
and Haggstrom (1983). Although the primary aim of the LDA
method was for classification of individuals, Haggstrom (1983)
showed that LDA provides a convenient avenue for calculating
logistic regression coefficients using readily available sum-
mary statistics from the fitting of the linear model to a dichot-
omous dependent variable via least squares. Another method
for estimating the logistic regression coefficients from linear
regression is via the “reverse Taylor series approximation”
(Press andWilson 1978), which relies on expanding the logistic
link function about the sample mean in a Taylor series. This
method was initially developed to provide starting values for
the iterative estimation procedure of logistic regression, and
has been adapted for summary level data in Chang et al.
(2000). The reverse Taylor series approximation is similar to
the first order approximation provided in Pirinen et al. (2013)
for use in GWAS and is equivalent if the genotypes are mean
centered. Pirinen et al. (2013) provided a second transforma-
tionwith smaller relative error across simulated traits than their
first order approximation, which relies on the second and third
order terms of the Taylor series coupled with some empirical
testing. Zhou et al. (2013) justified the use of the linear model
for GWAS of binary traits by also recognizing that the linear
model is a first order Taylor approximation to a generalized
linear model.

In this study, we derive a set of transformations to the OR
under the simple linear regression model that do not rely on
the Taylor series approximation and are thus hypothesized
to be more robust to the small genetic effect assumption of
previous methods. To test the proposed transformations, we
use real genotypes from the Genetic Epidemiology Research
on Adult Health and Aging (GERA) cohort (60,000 individ-
uals) (Lapham et al. 2015), and the first release of the UK
Biobank (150,000 individuals) (Sudlow et al. 2015) to simu-
late 50 all-or-none phenotypes for each of six scenarios that
differ in underlyingmodel (logistic or liability thresholdmodels
(Dempster and Lerner 1950; Reich et al. 1972; Wray and
Visscher 2015), disease prevalence, heritability, and allele
frequency spectrum. We measure the performance of each
transformation by estimating the MSE and the slope and
adjusted R2 from regression of the OR estimates from the
LMM on the simulated truth and compare the results with
the transformation of Pirinen et al. (2013). Additionally, we
investigate the robustness of the assumptions of the derived
transformation through a single variant of large effect simula-
tion under the liability thresholdmodel for a highly ascertained
study. We further applied these transformations to GWAS sum-
mary statistics for type 2 diabetes generated from 108,042 indi-
viduals in the UK Biobank.

Materials and Methods

Derivation of the OR under the linear regression model

Let the random variable Y equal 0 or 1, depending onwhether
an individual is healthy (control) or diseased (case), and let Z
represent an allele set, for example A/T, for a genetic locus,
and we arbitrarily set A to be the risk allele or exposure. We
can define the OR as

OR ¼ oddsðY ¼ 1jZ ¼ AÞ
oddsðY ¼ 1jZ ¼ TÞ

¼ ℙðY ¼ 1jZ ¼ AÞ=ℙðY ¼ 0jZ ¼ AÞ
ℙðY ¼ 1jZ ¼ TÞ=ℙðY ¼ 0jZ ¼ TÞ; (1)

where the ℙ notation denotes probability. This expression
best represents the meaning of the OR in this context, where
we compare the odds of the disease when one is exposed or
unexposed to the risk allele. However, by the symmetry of the
OR we can equivalently write

OR ¼ oddsðZ ¼ AjY ¼ 1Þ
oddsðZ ¼ AjY ¼ 0Þ

¼ ℙðZ ¼ AjY ¼ 1Þ=ℙðZ ¼ TjY ¼ 1Þ
ℙðZ ¼ AjY ¼ 0Þ=ℙðZ ¼ TjY ¼ 0Þ: (2)

Equation 2 contains probabilities that are recognizable as the
frequencies of each of the alleles in controls and cases. Letting
p0 and p1 represent the frequency of the risk allele (or effect
allele) within controls and cases, respectively, we can write
the OR as

OR ¼ p1
12 p1

12 p0
p0

: (3)

If we have individual-level data, thenwe can estimate p0 and
p1 from the sample and calculate theOR directly using Equa-
tion 3, without making any further assumptions. However,
if only summary statistics are available, we seek to derive an
expression for OR that potentially depends on summary sta-
tistics generated from a linear regression model.

We assume the following simple linear regression model:

Yi ¼ b0 þ b1Xi þ ei; (4)

where Yi is the response variable for individual i ¼ 1; . . . ; n of
a population, which we assume takes values 0 or 1 for un-
affected (controls) anddiseased (cases) individuals, respectively.
We define K as the lifetime probability that an individual
will be affected by the disease in the population (Witte et al.
2014). By definition, EðYiÞ ¼ ℙðYi ¼ 1Þ ¼ K; where the E

notation denotes expectation. The independent predictor
variable Xi is considered random and models a SNP. The
random variable Xi takes values 0, 1, or 2 with the corre-
sponding allele frequency of the risk allele, denoted p, and
we assume that each SNP is independent. The random vari-
able Xi is thus binomialð2; pÞ distributed for each SNP. In
Equation 4, ei is a random error term such that EðeiÞ ¼ 0
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and VarðeijXiÞ ¼ s2, and the unknown parameters b0 and b1
are to be estimated.

It is often the case in GWAS of disease phenotypes that the
cases are oversampled relative to the controls. This alters the
observedprobability that an individual has the diseasewithin this
misrepresented sample relative to the true population distribu-
tion. To symbolize this differentiation, we let k represent the
proportion of cases in the sampled population. This may or may
not represent K well, depending on the sampling procedure.

Under the simple linear regressionmodel and the ordinary
least squares solutions for the regression coefficients, we have

the following expression for the OR derived in Supplemental
Material, File S1:

OR1 ¼ ½kþ b1ð12 pÞ�½12 kþ b1p�
½k2b1p�½12 k2b1ð12 pÞ�: (5)

The broad intuition for this solution is that we use the
properties of the ordinary least squares solution for the re-
gression parameter b1;which relies on expressions for VarðXÞ
and CovðX; YÞ under Equation 4, and an expression for the
allele frequency p ¼ ð12 kÞp0 þ kp1; to solve for expressions
of p0 and p1 that depend on k, p and b1: We then substitute
these expressions into Equation 3 to obtain Equation 5. We
cannot observe VarðXÞ from summary statistics and thus we
must make some assumptions about the form of the variance
for the SNP to derive a transformation. Initially, we can as-
sume that the SNP genotype frequencies across cases and
controls are in Hardy–Weinberg equilibrium (HWE) and let
VarðXÞ ¼ 2pð12 pÞ: Equation 5 assumes that 2pð12 pÞ is a
good approximation of the VarðXÞ:

We can consider a more complete expression for the vari-
ance of the SNPunder Equation 4,which can be represented as
(see File S1):

VarðXÞ ¼ VarðXjY ¼ 0Þð12 kÞ þ VarðXjY ¼ 1Þk
þ 4kð12 kÞðp02p1Þ2: (6)

The difficulty with Equation 6 is that the within case and
control variances, VarðXjY ¼ 0Þ and VarðXjY ¼ 1Þ are un-
known. However, if we assume HWE within cases and con-
trols, we can equate VarðXjY ¼ 0Þ ¼ 2p0ð12 p0Þ and
VarðXjY ¼ 1Þ ¼ 2p1ð12 p1Þ in Equation 6 to obtain

VarðXÞ ¼ 2p0ð12 p0Þð12 kÞ þ 2p1ð12 p1Þk
þ 4kð12 kÞðp02p1Þ2: (7)

Equation 7 coupled with expressions for the CovðX; YÞ under
(4) and p ¼ ð12 kÞp0 þ kp1; allows for a solution that better
reflects the form of Equation 7 and can be estimated from
summary statistics. The solution for the expression of p0 and
p1 under this assumption is more challenging and requires a
quadratic in p0: We take the solution to the expression for
p0 and solve for p1 using p ¼ ð12 kÞp0 þ kp1: To solve for this
transformation under assumption Equation 7, we substitute
the derived expressions for p0 and p1 into Equation 3 (see File
S1) to obtain

The solution to the quadratic in p0 in Equation 8 can have two,
one, or no solution. We showed (see File S1) that OR2 will
have exactly one solution when

pk2 pk22 kð12 kÞ
ð12 kÞ2 2pð12 kÞ þ p22 2p2kþ pk

,b1,
pk2 pk2

p2 2 2p2kþ pk
:

(9)

It is possible for the quadratic in p0 to have two or no solution
but these are for very extreme ORs. For example, for a grid of
ðk; pÞ values we calculated the effect that would be required
to have an OR2 ¼ 50 (Figure S1 in File S1). For all ðk; pÞ
values the effect was contained in the interval (Equation
9), suggesting that ORs of .50 are required, for all values
of k and p, for two or no solutions to Equation 8 to exist. If no
solution exists thenwe expect this to be indicative of a quality
control or numerical error. Computationally, because we ex-
pect there to be only one solution to the quadratic in p0, we
take the solution that lies within ð0; 1Þ:

Equations 5 and 8 present the mathematical relationship
between the distribution and model parameters k, p and b1
under the model in Equation 4 with varying assumptions
about the representation of Equation 6. We make the distinc-
tion between cOR1 and cOR2 as estimates of OR;when k, p, and
b1 are replaced with their estimates k̂, p̂, and b̂1 in Equations
5 and 8, once we have observed the data. Practically this
corresponds to substituting estimates of k, p, and b1, which
contain sampling variation, from summary statistics generated
from the sampled data into Equations 5 and 8. The derivations
do not account for this sampling variation but rely on the un-
biased estimators used for k, p, and b1 to provide good esti-
mates of the OR under repeated sampling.

Transformations OR1 and OR2 require an estimate of the
allele frequency (p) in the sample, which is often reported
with summary statistics. However, if the sample estimate of

OR2 ¼ 1þ
2b1

�
2pb1ð12 kÞ2 ð12 kÞð2b1p2 kÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð12 kÞ�kð12 kÞ24pð12 pÞb2

1
�q �

2b1ðk2 pÞ
�
ð12 kÞð2b1p2 kÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð12 kÞ�kð12 kÞ24pð12 pÞb2

1
�q �

þ
�
ð12kÞð2b1p2kÞ6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kð12kÞ�kð12kÞ24pð12pÞb2

1
�q �2: (8)
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p is unavailable then an approximate estimate can be taken
from an adequate reference data set. Given many GWAS are
performed using oversampled cases relative to the true prev-
alence in the population, the sample allele frequency may
deviate from the reference allele frequency especially for
SNPs of large effect.We investigate the robustness of Equations
5 and 8 to this deviation from model assumptions through
simulation.

It may be the case that the allele frequency for each SNP is
not reported and an adequate reference data set is not obtain-
able, for example, in an admixed population. If this is the case,
then we can use the information contained in the SE of the
regression coefficient seðb̂1Þ; which is often reported with
summary statistics, to derive expressions that are indepen-
dent of p with equivalent assumptions to OR1 and OR2 (see
File S1). We explore their adequacy relative to the expressions
that include p through simulation.

Simulation

Data: To test the proposed transformations, we simulated
case-control phenotypes using real genotype data from the
GERA study (Lapham et al. 2015), and the UK Biobank
(Sudlow et al. 2015). For the GERA data set, a random sub-
sample of 10,000 individuals was taken from the larger data
set (�60,000 individuals) containing �1,100,000 HapMap
3 SNPs. Thefirst 10 PCs of the genotypematrix and the genetic
relationship matrix (GRM) were generated from these data
using the PLINK 1.9 software (Chang et al. 2015).

The UK Biobank is a prospective cohort study of over
500,000 individuals from across the UK. The interim UK
Biobank data release contains genotypes for 152,736 individ-
uals that passed sample quality control (99.9% of total sam-
ples). Imputed genotype data are provided as part of the data
release, which contains 73,355,667 SNPs, short indels, and
large structural variants. Selecting out only SNPs with impu-
tation info score .0.3 and minor allele count $5 resulted in
� 40,000,000 SNPs for the 152,249 individuals. PC analysis
and the self-declared ethnicity were used to derive a “White
British” subset of samples. In addition, samples were excluded
if they had a genetically inferred sex that did not match the
self-reported sex and extreme heterozygosity or missing
genotype outliers. These filters resulted in a data set with
140,720 samples, which includes related individuals. We then
selected out 1,162,900 HapMap3 SNPs and performed a
final filter excluding SNPs with MAF, 0:01 and HWE
P-value , 13 1026:

Logistic regression model simulation: For the first simula-
tion, a logistic regressionmodelwasused togeneratesimulated
phenotypes using the GERA data set. To generate case-
control phenotypes, the GERA genotypes were pruned on
linkage disequilibrium at 0.01 using the PLINK 1.9 software
(Chang et al. 2015). This left�15,000 independent SNPs from
which to simulate phenotypes. For each replicate, 100 effects
were drawn fromanNð0; 1Þ distribution and randomly assigned
to SNPs from the independent set. A vector of composite genetic

and PC values (to simulate population structure) were gener-
ated as

g ¼ Xbþ 10v1; (10)

where X (dimension 10; 0003 100) is the centered and
scaled genotype matrix for the SNPs that have been assigned
an effect,b (10031) is the set of sampled genetic effects, and
v1 (10; 0003 1) is the first PC of the full genotype matrix.
Probabilities of having the disease, given the genotypes X,
were generated by the logistic function i.e., for each individual
i case-control status was generated from a Bernoulli random
variable with success probability qi ¼ expðgiÞ=1þ expðgiÞ;
where gi is the ith element of the g column vector in Equation
10. This generated case-control data with an expected prev-
alence of 0.5 for each replicate because EðgÞ ¼ 0, due to the
expected value of the effects and PC equaling 0. Under the
logistic regression model we also simulated a set of null phe-
notypes that only contained the effect of PC one and no
genetic effects. A total of 50 replicates were generated for
the logistic and null simulations under the logistic regression
model, which were analyzed with logistic regression imple-
mented in PLINK 1.9 with the first PC fitted as a fixed effect,
and an LMM implemented in the GCTA software (Yang et al.
2011). Regression coefficients from the LMM were trans-
formed to ORs using Equations 5 and 8 for comparison with
results generated from logistic regression and the true simu-
lated OR. To assess the performance of the transformations
we regressed the transformed values from the LMM on the
simulated true or estimated OR values from logistic regres-
sion. For comparisonwe calculated the transformedORusing
Equation (3.2) of Pirinen et al. (2013). We used the estimated
slope and adjusted R2 as measures of the degree of correspon-
dence between the two sets of ORs for each of the methods.
The MSE was summarized for OR bins (bin width of one) for
each of the transformations along with the number of variants
and average allele frequency for each bin.

To investigate the rate of decay of Equation 8 formisspecified
values of k and p for the logistic regressionmodel simulation,we
substituted q3 k for k and q3 p for p into Equation 8, using the
multiplicative factors q ¼ ð0:9; 0:95; 0:98; 1:02; 1:05; 1:1Þ for
both k and p. The transformed ORs under these misspecified
coefficients were compared with the simulated true ORs to
quantify the rate of decay.

Liability threshold model simulation: To vary the underly-
ing model generating the data, we simulated case-control
phenotypes under the liability threshold model using the
GCTA software and the UK Biobank data set. For polygenic
disease traits, the liability threshold model has precedence in
the genetics literature and has been shown to model the
genetics of disease traits well. Related individuals were left
within the UK Biobank genotype set to mimic cryptic related-
ness, which is best controlled for using a LMM. Additionally, it
is common to oversample cases relative to controls in GWAS
ondisease traits,which canbe achieved in theGCTA software.
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The number of cases is limited to nK;where n is the number of
individuals in the data set used to generate the simulated
phenotypes and K is the prevalence of the disease in the
population. We simulated four scenarios with varying K, her-
itability (h2), and ratio of cases to controls (alters K to k) to
provide a range of realistic situations in which to test the
transformations. The following scenarios were simulated:
(1) K ¼ 0:1; h2 ¼ 0:5; ncases ¼ 5000 and ncontrols ¼ 5000
(k ¼ 0:5); (2) K ¼ 0:05; h2 ¼ 0:5; ncases ¼ 5000 and
ncontrols ¼ 5000 (k ¼ 0:5); (3) K ¼ 0:02; h2 ¼ 0:5; ncases ¼ 2000
and ncontrols ¼ 8000 (k ¼ 0:2); and (4) K ¼ 0:01; h2 ¼ 0:8;
ncases ¼ 1000 and ncontrols ¼ 9000 (k ¼ 0:1). The number of
individuals was fixed at 10,000 across scenarios with the ratio
of cases to controls limited by the size of the UK Biobank. For
each scenario, 50 replicates were simulated each using 100
effects drawn from an Nð0; 1Þ distribution and randomly
assigned to a subset of the independent set of SNPs. The in-
dependent SNP set was generated by pruning the UK Biobank
genotypes on linkage disequilibrium R2 ¼ 0:01 using the
PLINK 1.9, resulting in 14,284 markers to place effects on.
Replicates were again analyzed with logistic regression
implemented in PLINK 1.9 with the first 15 PCs fitted as
covariates, and an LMM implemented in the GCTA software.
Within each replicate a new set of 10,000 individuals from
the 140,000 total was used by GCTA to generate the pheno-
type. Therefore, a new GRM was built for each replicate using
PLINK 1.9 and a subset of 300,000 linkage disequilibrium
pruned SNPs derived from the 1,100,000 HapMap 3 SNPs.

To investigate the performance of the transformations for
rare variants, we took a random subsample of 100 variants
from chromosome 20 of the UK Biobank data that had mi-
nor allele frequencies between 0.001 and 0.01. Using these
variants we simulated 50 replicates with the following param-
eters:K ¼ 0:01; h2 ¼ 0:05; andncases ¼ 1400 andncontrols ¼ 8600
(k ¼ 0:14). This larger number of cases was chosen to pro-
vide the maximum case ascertainment that the UK Biobank
data could generate for this disease prevalence. This heritability
was chosen so that large effects would be generated when
GCTA randomly samples the 100 effect sizes from the Nð0; 1Þ
distribution. Within each replicate a new set of 10,000 individ-
uals from the 140,000 total was used by GCTA to generate the
phenotype, which again required a new GRM to be built for
each replicate as above. Replicates were analyzed with logistic
regression implemented in PLINK 1.9with the first 15 PCs fitted
as covariates, and an LMM implemented in the GCTA software.

For each scenario, we compared the results from the trans-
formed LMM effects and the reported OR from logistic re-
gressionwith the trueOR,whichwas calculated by estimating
p0 and p1 from the sampled data within each replicate and
Equation 3. To assess the performance of the transforma-
tions, we again regressed the transformed values from the
LMM on the simulated true OR, and used the estimated slope
and adjusted R2 as measures of the degree of correspondence.
The MSE was also summarized for OR bins (bin width of one)
for each of the transformations along with the number of vari-
ants and average allele frequency for each bin. We again calcu-

lated the transformed OR using the transformation of Pirinen
et al. (2013) for comparison. Transformations OR1 and OR2 re-
quire the SNP allele frequency, which is often unavailable for
summary statistics, and thus for each of the simulation scenarios
we investigated the robustness of these transformations to the
use of allele frequencies from a reference. The reference used
was theEuropean subset of the 1000Genomes Phase 1Version 3
(1000 Genomes Project Consortium et al. 2012). Furthermore,
the robustness of OR1 and OR2 when the SE of the regression
coefficient was used rather than the reference allele frequency,
was also investigated.

To investigate the rate of decay of Equation 8 for misspe-
cified values of k and p for the liability threshold model sim-
ulation scenarios, we again substituted q3 k for k and q3 p
for p into Equation 8, using the multiplicative factors
q ¼ ð0:9; 0:95; 0:98; 1:02; 1:05; 1:1Þ for k and p. The trans-
formed ORs under these misspecified coefficients were com-
pared with the simulated true ORs to quantify the rate of decay.

The transformations derived rely on the model that the
genotypes frequencies across cases and controls or within
cases and controls are inHWE.However, the expectedmarker
genotype proportions among diseased cases can deviate from
HWE when a true association exits, with the amount of de-
viation depending on the genetic mechanism.Wemay expect
a deviation from HWE for a variant of large effect when the
cases are heavily ascertained relative to the controls.

To investigate the potential bias of the method due to case
ascertainment for very large effects, we performed the fol-
lowing simulation in the R programming language (R Core
Team 2015). For a hypothetical 10,000 individuals (n), we
generated 50 simulated phenotypes per genetic effect size
across a grid, which ranged from 0.1 to 1.5 in increments
of 0.1 (750 total simulated phenotypes). The population
prevalence was set to K ¼ 0:01; heritability h2 ¼ 0:5, and
cases were oversampled relative to controls such that k ¼ 0:5:
For each phenotype a simulated SNP was generated from a
binomial ð2; pÞ distribution and mean standardized, where
p was sampled at random from the set of minor allele frequen-
cies (.0.001) from chromosome 20 of the UK Biobank data.
The genetic component of the phenotype was simulated as
g ¼ b1xþ q; where g is an n3 1 column vector of genetic
values, b1 is the simulated genetic effect, x is an n3 1 column
vector of mean centered simulated genotypes, and q is an
n3 1 column vector of values samples from a normal ð0; 1Þ
distribution, which represents the contribution from the poly-
genic background to the genetic component. The final pheno-
typewas generated by adding a randomnoise term e to g;with
column vector entries sampled from a normal distributionwith
mean zero and variance equal to s2

g=h
2 2s2

g so that the total
heritability on the liability scale is equal to the desired value
(0.5). Case-control phenotypes were generated by assigning a
one to those individuals with disease liabilities exceeding the
quantile threshold of the normal distribution that coincides
with a disease prevalence of K ¼ 0:01 and a zero otherwise.
To oversample cases relative to controls this simulation pro-
cess was repeated with equal numbers of cases and controls
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stored within each repetition until the desired sample size was
reached.

For each of the phenotypes, both a linear model and a
logistic regression model were used to analyze the data. The
effect from the linear model was transformed to the ORusing
OR2: The adjusted R2 from the linear model was stored from
the linear model to measure the proportion of phenotypic
variance explained by the large effect variant. The chi-squared
statistics from a one degree of freedom test for HWE genotype
deviation were recorded within cases and controls, and for
the whole SNP (across cases and controls) for each of the
phenotype–SNP pairs. The estimated ORs from logistic re-
gression and the transformed linear model estimates were
compared to the true OR, which was calculated by evaluating
p0 and p1 within the simulated data and using Equation 3.

Frequently, a large proportion of case-control phenotypic
variation can be explained by a large covariate effect such as
age and sex. To investigate whether the inclusion of a large
covariate effect induces a bias in the transformation, we re-
peated the above simulation but included a simulated binary
covariate with an effect size of unity. In addition to the
statistics stored for the above simulation scenarios the pro-
portion of variance explained by the sex effect was also
estimated. The large environmental effect had an adjusted
R2 on average across all replicates of 15.2% (SD=4%). Again,
the effect from the linear model was transformed to the OR
using OR2: Logistic regression and the transformed linear
model OR estimates were compared to the true OR calculated
from the simulated data. If a large binary or categorical cova-
riate explains a large proportion of the phenotypic variance, it
is typical to perform a within covariate group analysis and
then combine the within group estimates in a meta-analysis.
We investigated this concept by performing logistic regres-
sion and the linear regression analysis within covariate group
and then calculated a meta analyzed genetic effect using the
inverse variance method. The meta analyzed effect was then
transformed to the OR and compared with the true OR.

Application to type 2 diabetes

To further assess the efficacy of Equations 5 and 8, we
analyzed type 2 diabetes in the UK Biobank. We chose this
phenotype because it is a well-studied, common complex
disease that is present in the UK Biobank and is moderately
heritable relative to other common diseases. For the type
2 diabetes study, we further subsetted the 140,720 samples
to exclude individuals that had at least one identified closely
related sample. Further exclusion on relatedness was per-
formedwith one individual froma pairwith an estimated SNP
marker relatedness .0.05 removed. This resulted in a final
sample of 108,042 samples with age, sex, and case-control
status for type 2 diabetes. Related individuals were removed
from this analysis so that the ORs from logistic regression with
PC correction could be used as a benchmark for the trans-
formed OR, which would not have been a fair comparison if
related individualswere left in the analysis.Of this set, 5780 in-
dividuals were diagnosed with type 2 diabetes.

We performed a GWAS using the 1,162,900 HapMap3
SNPs for type 2 diabetes using a LMM implemented in the
BOLT-LMM (Loh et al. 2015) software and logistic regression
using PLINK 1.9. The covariates sex and age were fitted as
fixed effects in the LMM association study, whereas age, sex,
and 15 PCs (generated by the UK Biobank) were fitted in the
PLINK 1.9 logistic regression association study.

Data availability

The PLINK, GCTA, and BOLT-LMM software, source code,
installation package, and instructions were downloaded from
https://www.cog-genomics.org/plink2, http://cnsgenomics.com/
software/gcta/, and https://data.broadinstitute.org/alkesgroup/
BOLT-LMM/, respectively. An R Shiny application implementing
themethodology can be found at http://cnsgenomics.com/shiny/
LMOR/. The source code for the R Shiny application and an R
function implementing the method can be downloaded from
https://github.com/lukelloydjones/ORShiny.

Results

Simulation results

Under the null model of no genetic effects, we observed very
close correspondence between the ORs estimated by logistic
regression and that from the LMM (adjusted R2 � 1) for both
OR1 and OR2 (Figure S2 in File S1 and Table 1). Given no
genetic effects were simulated, we chose to randomly sample
a set of 10,000 results from the 50,000,000 possible results
generated from the 50 simulations for display. This reduced
the burden of results, with the hypothesis that this random
sample represents the distribution of results generated under
the null model well. From this subsample of 10,000 esti-
mated effects, we observed ORs from the null model between
0.5 and 2.0 from logistic regression (Figure S2 in File S1). Over
the 50 replicates the average estimated proportion of pheno-
typic variance explained by the first PCwas�0.11 (SE=0.038)
on the liability scale.

For the data simulated under the logistic model, OR1 and
OR2 performed equally well up to an ORof 10 (Figure 1A and
Table 1). Large effects were on average attributed to variants
with low minor allele frequency (Table S1 in File S1). The
transformation of Pirinen et al. (2013) performed less well
with systematic deviations from the true OR occurring after
an OR of three (Figure 1A and Figure S3 in File S1). Across
OR bins, OR2 had a smaller MSE than the transformation of
Pirinen et al. (2013) (Figure S3 in File S1). Using an external
reference for the allele frequency did not alter the results
dramatically for OR1 and OR2, with no change in the esti-
mated slope and adjusted R2 when the transformedORswere
compared to the true ORs (Figure S4 in File S1 and Table 1).
A similar small deviation in performance was seen when the
SE was used to compute the approximate transformations
(Figure S4 in File S1 and Table 1). For deviations from the
true k of .610%; OR2 showed an upward bias, whereas if
p was deviated from its true value, no bias was observed
(Figures S6A and S7A in File S1).
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Under the liability thresholdmodel, slopes and adjustedR2

valueswere close to unity across simulation scenarios (Figure 1
and Table 1). Systematic underestimation of the true OR
after an OR of 2.5 was again observed when the transforma-
tion of Pirinen et al. (2013) was applied (Figure 1 and Figure
S3 in File S1). For simulation scenarios one to five, large
effects were on average attributed to variants with low minor
allele frequency with smaller MSEs observed for OR2 relative
to Pirinen et al. (2013) as the OR increased (Figure S3 and
Table S1 in File S1). There was a small decrease in perfor-
mance as the sample prevalence decreased with OR2 perform-
ing marginally better than OR1 with respect to slopes and
adjusted R2 across scenarios, up to ORs of 10 (Figure 1 and
Table 1).We also saw an increase in variance around the fitted
line for larger effects and as the prevalence decreased (Figure 1).
When the allele frequencies from the 1000 Genomes were
used to calculate the transformed ORs, marginal deviations
from the slope and R2 statistics were observed relative to those
using the sample allele frequency (Figure S4 in File S1 and
Table 1). A similar small decrease in performance was seen
when using the SE coupled with the regression coefficient to
estimate the transformedORs (Figure S5 in File S1 andTable 1).
For deviations from the true k of .610%; OR2 showed a
substantial bias with an increase in the size of the bias with
decreasing true sample prevalence (Figure S6 in File S1). If
p was deviated from its true value, no bias was observed for
those scenarios in which k ¼ 0:5 with an increase in the size
of the p dependent bias of OR2 when k tended to smaller
values (Figure S7 in File S1).

For the large effect variant simulation scenarios under the
liability threshold model, we observed an increasing bias in
the estimate of theOR for both the transformedeffect from the
linear model and logistic regression as the effect size of the
variant was increased (Figure S8, A and B in File S1). This
coincided with a substantial deviation in the HWE assump-
tion across cases and controls and within cases as the pro-

portion of phenotypic variance explained by the single variant
of large effect became larger (Figure S8C in File S1). The de-
viation between the estimated OR from logistic regression
and that from OR2 was at a maximum when the Hardy–
Weinberg disequilibrium within cases was greater than that
across cases and controls, which is an assumption in the
derivation of OR2 (Figure S8D in File S1). Observed maxi-
mum average deviations between the estimated OR and the
true ORwere�30% for the transformed OR and 25% for the
logistic regression estimates when the true OR exceeded 7.5
(Figure S8D in File S1). The deviations from the true OR for
the transformed OR estimates had larger variation than those
from logistic regression with maximal deviations of .100%,
when the true OR exceeded five, whereas the maximum value
for logistic regressionwas�45% (Figure S8D in File S1).When
Hardy–Weinberg disequilibrium was larger across cases and
controls relative to just within cases, the OR estimates from
logistic regression were very similar to those from the trans-
formed linear regression estimate. When a large covariate
effect was included in the simulation we observed a further
increase in the upward bias of the estimates of the OR from
logistic regression (Figure S9, A and B in File S1). Further-
more, when a large covariate effect was included the linear
model transformation underestimated the effect (Figure S9, A
and D in File S1). The results from the meta-analysis showed
an improvement in the bias in the OR estimates from logistic
regression and the linear model transformation (Figure S9E
in File S1).

Type 2 diabetes results

The association results from the analysis of type 2 diabetes
showed 12 loci passing genome-wide significance (after
clumping with a linkage disequilibrium threshold R2 ¼ 0:1)
for both the LMM and logistic regression results. Of the set
of SNPs passing genome-wide significance, the median OR
for the risk allele was 1.14 with a maximum value of 1.30

Table 1 Summary of adjusted R2 and slope coefficients from regression of estimated ORs on true or logistic regression ORs from
simulated and real-data analysis of type 2 diabetes

Null Logistic K ¼ 0:1 K ¼ 0:05 K ¼ 0:02 K ¼ 0:01 K ¼ 0:01 rare Type 2 diabetes

OR1
R2 0.987 0.999 0.993 0.996 0.986 0.983 0.997 0.986
Slope 0.989 1.00 0.969 0.965 0.975 0.953 1.02 0.977
R2* – 0.992 0.988 0.995 0.984 0.988 0.997 0.986
Slope* – 1.00 0.979 0.966 0.962 0.979 1.01 0.977
R2** – 0.991 0.993 0.996 0.986 0.980 0.997 0.986
Slope** – 1.02 0.970 0.965 0.975 0.956 1.02 0.977

OR2
R2 0.987 0.991 0.989 0.994 0.984 0.983 0.997 0.986
Slope 0.989 1.05 0.998 0.984 1.02 0.972 1.01 0.977
R2* – 0.991 0.989 0.994 0.982 0.989 0.997 0.986
Slope* – 1.05 0.998 0.984 0.995 0.998 1.01 0.977
R2** – 0.985 0.989 0.994 0.984 0.979 0.997 0.986
Slope** – 1.06 0.998 0.984 1.01 0.975 1.02 0.977

Results were generated from regression of transformed ORs from the LMM on estimated ORs from logistic regression for the null and type 2 diabetes results and the true
simulated ORs in the logistic and liability threshold simulation scenarios. The * rows correspond to the results from the use of reference allele frequencies for p from the
1000 Genomes Phase 1 Version 3 European sample. The ** rows correspond to the results from the use of the transformations using the SE of the regression coefficient
instead of p.
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(P-value = 1.533 10238) from the logistic regression results.
Across the full set of association results (1,162,900 SNPs),
OR1 and OR2 performed well, with all regression slopes and
adjusted R2 values very close or equal to one (Figure 2A). The
results from Pirinen et al. (2013) gave identical slopes and R2

values for the type 2 diabetes results (Figure 2B). The use of a
reference for the allele frequencies, or the use of the SE versions
of the transformations, did not alter these results (Table 1).

Discussion

Wederived and tested transformations toORunder the allelic
additive risk model and the assumptions of the simple linear
regression model. LMMs are being used for GWAS of dichot-
omous traits to correct for population structure and cryptic
relatedness [Fakiola et al. 2013; International Genetics of
Ankylosing Spondylitis Consortium (IGAS) et al. 2013; Jiang

Figure 1 Performance of logistic regression and OR transformations from the linear model across simulation scenarios. Comparison of estimated ORs
from logistic regression (green), transformed ORs from the LMM using OR2 (red), and the transformed ORs from the LMM using the equation from
Pirinen et al. (2013) (blue), with true simulated ORs across logistic and liability threshold model simulation scenarios. (A) Results from the logistic model
simulation. (B) Results from the simulation scenario with K ¼ 0:1; h2 ¼ 0:5; ncontrols ¼ 5000; and ncases ¼ 5000 (k ¼ 0:5). (C) Results for the simulation
scenario with K ¼ 0:05; h2 ¼ 0:5; ncontrols ¼ 5000; and ncases ¼ 5000 (k ¼ 0:5). (D) Results for the simulation scenario with K ¼ 0:02; h2 ¼ 0:5;
ncontrols ¼ 8000; and ncases ¼ 2000 (k ¼ 0:2). (E) Results for the simulation scenario with K ¼ 0:01; h2 ¼ 0:8; ncontrols ¼ 9000; and ncases ¼ 1000
(k ¼ 0:1). (F) Results from the rare variant simulation scenario with K ¼ 0:01; h2 ¼ 0:05; ncontrols ¼ 8600; and ncases ¼ 1400 (k ¼ 0:14). All ORs have been
reported for the allele that increases the odds of having the disease such that each point is greater than (1,1). Panels display comparisons from 5000 simulated
true effects generated from the 50 replicates. All panels include the fitted linear regression line for each of the sets of points and the y ¼ x line (black) for
reference. Key statistics from the regression of the transformed ORs from OR2 are displayed at the top of each panel.
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et al. 2016; Liu et al. 2017]. Additionally, methods that correct
for case-control ascertainment explicitly or through retrospec-
tive association analysis have emerged (Golan and Rosset
2014; Hayeck et al. 2015; Jiang et al. 2015; Weissbrod et al.
2015) to overcome the loss in power under case-control ascer-
tainment (Yang et al. 2014). Across simulation scenarios, we
showed that the transformed LMM effects from OR1 and OR2

showed very high concordance with the simulated truth and
logistic regression OR estimates. This was again observed for
the summary statistics generated for type 2 diabetes in the
UKBiobank. TransformationOR2 performed the best on average
across scenarios, with regression slope and adjusted R2 esti-
mates closest to unity. The transformation of Pirinen et al. (2013)
showed systematic deviation as the trueORbecame larger and
had larger MSEs than OR2 for OR bins .3. Transformation
OR1 also showed good robustness across simulation scenarios.
Therefore,OR1 orOR2 are adequate formost complex diseases
where the median OR for the risk increasing allele is �1.3
(Manolio 2010).

The SE transformations have the added benefit of not
relying on the allele frequency, although if an adequate ref-
erence is available thenOR1 andOR2 are robust to differences
in sample vs. reference allele frequencies, even in ascertained
studies. We recommend the use of OR2 in all scenarios if
allele frequencies are available with the SE transformations

a good alternative if one is unsure whether there is a reliable
allele frequency reference for the population under study, or
if the ancestral background of a set of summary statistics is
unknown. Alternatively, if small genetic effects are assumed
then we can ignore b1p in Equation 5 and reduce the ex-
pression to ½ðkþ b1Þ=ð12 k2b1Þ�½ð12 kÞ=k�; which is in-
dependent of p. Furthermore, if we assume that kb1 is
small then this equation reduces to 1þ b1=½kð12 kÞ�;
which is also equivalent to the first transformation pro-
vided in Pirinen et al. (2013) and provides a link to the
derivation using the first order Taylor expansion of the
logistic link function. These simpler transformations were
evaluated but not presented in the simulation results as
they showed poor performance for ORs.2 due to the small
effect assumption.

Modeling a dichotomous trait using a linear model has
a few shortcomings: it implicitly assumes that the error is
heteroscedastic because we are equating the mean plus error
term to a dichotomous outcome, which induces a depen-
dence between the variance of the error term and the mean
(Greene 2003); the predicted values from the linear model
are not constrained to lie in the interval ½0; 1� (Greene 2003;
Wray and Goddard 2010). Chen et al. (2016) showed that
the LMM homoscedasticity assumption is violated under
some population stratification scenarios, which led to inflated

Figure 2 Performance of OR transformations for type 2 diabetes phenotype in the UK Biobank. Comparison of transformed ORs from OR2 and
estimated ORs from logistic regression for type 2 diabetes in the UK Biobank. (A) Comparisons from 1,162,900 SNPs generated from logistic regression
performed using the PLINK 1.9 software and a LMM implemented in the BOLT-LMM software and transformed using OR2: (B) Comparisons for the same
set of results as A but with the transformation of Pirinen et al. (2013) used. Panels include the fitted regression line and y ¼ x line (black) for reference
with the key statistics of this regression displayed at the top of each panel.
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type I error rates in some scenarios. This flaw can be overcome
with generalized LMMmethods (Chen et al. 2016; Zhou et al.
2017), which are capable of performing association testing
in data sets with hundreds of thousands of individuals
(Zhou et al. 2017); however, efficient OR estimation is still
limited computationally. We found the method of Chen et al.
(2016) to be computationally intensive with the estimation
of effect sizes for 10 variants from a simulation using 10,000
individuals taking on average 114 hr (SD = 24 hr) across
50 simulations. The score statistic estimation of 14,000 var-
iants in the same simulation scenario took 67 min (SD =
30 min). Zhou et al. (2017) and Dey et al. (2017) showed
that the type 1 error rate for the method of Chen et al.
(2016) and other LMM approaches is poorly controlled
in the presence of unbalanced case-control ratios, which
should be considered when performing GWAS using LMM
methods. The unrestricted prediction domain of the linear
model is not necessarily a severe problem, with the proba-
bility estimates potentially being either negative or.1 due
to sampling error (Aldrich and Nelson 1984). However, if
many predicted values fall outside of [0, 1] then we must
question whether the linear probability model is a good fit
for the data. The model used to derive the transformations
makes assumptions about HWE across cases and controls
or within cases and controls. If the genotype frequencies
deviate substantially from HWE due to genetic or nongenetic
mechanisms, then our transformationsmay be biased upwards
or downward depending on whether the true genotypic vari-
ance is greater or smaller than that calculated under HWE.
This was observed in the single variant simulation, which
showed that for very large effects and high case ascertainment
that the HWE assumption breaks down and a bias is induced.
However, these scenarios are very extreme relative to those
expected in most GWAS.

Logistic LMMs are not free of the problems associated with
decreased power when covariates that are independent risk
factors for a trait, but not confounders, are included in the
model (Mefford andWitte 2012; Pirinen et al. 2012). Stringer
et al. (2011) showed that this loss of power may be in part
due to the underestimation of the effect (measured with the
ORs), which is most severe for diseases influenced by numer-
ous risk variants. In the context of logistic regression, this
underestimation effect reduces the efficiency of effect size
statistics (Robinson and Jewell 1991), which has links to
the nonequivalence of conditional and marginal ORs known
as Simpson’s paradox (Simpson 1951; Hernán et al. 2011). In
simulation we observed an upward bias in the OR estimate
from logistic regression when a binary covariate of very
large effect contributed to the simulated phenotype. Stringer
et al. (2011) outline that in the context of single variant asso-
ciation testing in GWAS via logistic regression, the conditional
(the desired measure) and marginal ORs (the measure esti-
mated in GWAS) are only equivalent if the SNP of interest, or
the genetic background, is not associated with disease status.
In linear regression, the omitting of covariates has no effect on
the precision of the estimated effect size (Robinson and Jewell

1991) but as seen in the large covariate simulation it can alter
the estimated transformed OR, which may be improved
through a meta-analysis within covariate group.

Given the ever increasing sample sizes and diversity of
biobank-baseddata sets forGWAS,whichmay include related
individuals and population stratification, the application of
LMM methods (Yang et al. 2011; Zhou and Stephens 2012;
Loh et al. 2015) is likely to remain a reasonable practical
choice for most researchers, especially given the promise of
increased power (Loh et al. 2017). However, the use of the
more correctly specified logistic regression model with ade-
quate control for confounders is likely to remain the method
of choice for GWAS of unrelated individuals. The transforma-
tions derived and validated in this study improve the compa-
rability of results from prospective and already performed
LMM GWAS on complex diseases by providing a common
comparative scale for the genetic effects that can be reliably
used across a broad range of case-control study scenarios and
genetic architectures.
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