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ABSTRACT Variational modules, sets of pleiotropically covarying traits, affect phenotypic evolution, and therefore are predicted to
reflect functional modules, such that traits within a variational module also share a common function. Such an alignment of function
and pleiotropy is expected to facilitate adaptation by reducing the deleterious effects of mutations, and by allowing coordinated
evolution of functionally related sets of traits. Here, we adopt a high-dimensional quantitative genetic approach using a large number
of gene expression traits in Drosophila serrata to test whether functional grouping, defined by gene ontology (GO terms), predicts
variational modules. Mutational or standing genetic covariance was significantly greater than among randomly grouped sets of genes
for 38% of our functional groups, indicating that GO terms can predict variational modularity to some extent. We estimated stabilizing
selection acting on mutational covariance to test the prediction that functional pleiotropy would result in reduced deleterious effects of
mutations within functional modules. Stabilizing selection within functional modules was weaker than that acting on randomly
grouped sets of genes in only 23% of functional groups, indicating that functional alignment can reduce deleterious effects of
pleiotropic mutation but typically does not. Our analyses also revealed the presence of variational modules that spanned multiple
functions.
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PLEIOTROPY has the potential to generate substantial
evolutionary costs that scale with the number of traits

affected by eachmutation. Assuming amutation has the same
magnitude effect on each trait, the probability that amutation
will be favorable decreases as the number of traits (n) influ-
enced by a mutation increases (Fisher 1930). Under the as-
sumption of universal pleiotropy, the rate of adaptation may
also decline by a factor of n21 (Orr 2000). Modularity has
been proposed as a mechanism to reduce such potential costs
of organismal complexity (Wagner 1996). Variational mod-
ules occur when phenotypic traits share genetic variance
through pleiotropy, while displaying lower covariation with

traits belonging to different variational modules (Wagner
1996; Schlosser and Wagner 2004; Wagner et al. 2007). In-
dependently, functional modularity describes an architecture
where traits within a functional module share a common
function (Wagner et al. 2007), which implies that the effects
on fitness of a trait depend on the other traits contained in its
functional module. Functional integration is predicted to se-
lect for variational modularity because: (i) variational mod-
ularity reduces the range of effects of deleterious mutations,
as mutations would only affect the traits belonging to the
targeted functional module rather than the entire organism;
(ii) all traits of a module can respond to natural selection as
a unit; and (iii) it preserves the module’s function during
evolutionary change (Olson and Miller 1958; Wagner and
Altenberg 1996; Wagner and Mezey 2004). Several different
approaches to theoretical modeling have determined that co-
incidence of functional and variational modules can indeed
promote adaptation under some conditions (Welch and
Waxman 2003; Griswold 2006; Pavlicev and Hansen 2011;
Melo and Marroig 2015).
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Despite the intuitive, and theoretically supported, poten-
tial evolutionary benefits of variational modules coinciding
with functional modules, it is difficult to establish empirically
whether functionally related sets of traits correspond to var-
iational modules. Macroevolutionary approaches can identify
evolutionarymodules (sets of traits that canpotentially evolve
independently of other such sets) as groups of genes with
conserved physical proximity, cooccurrence in the genome, or
fused genes. If variational modules help preserve functional
modules, selection will favor the conservation of those mod-
ules and thus evolutionary modules are also expected to
coincide with functional modules (Cheverud 1984). Compar-
ative genomic analyses of functional modules have provided
some evidence that evolutionary modules are, overall, more
stable between genes that interact functionally than between
unrelated genes, although there are large discrepancies be-
tween modules and some functions are more conserved than
others (Snel and Huynen 2004; Spirin et al. 2006; Peregrin-
Alvarez et al. 2009; Moreno-Hagelsieb and Jokic 2012). Evo-
lutionary preservation of functional modules may also cause
differential rates of gene sequence evolution between func-
tional modules. Consistent with this, Chen and Dokholyan
(2006) reported that, in yeast, protein sequences and expres-
sion levels within functional modules evolve at more similar
rates than between modules.

Coordinated selection that operates on functional interre-
lationships of traits can preserve functional modules among
taxa. By comparing the topologic structure of metabolic net-
works among species and the environment where they live, it
was found that metabolic network modularity varies with
environmental conditions in bacteria (Parter et al. 2007;
Kreimer et al. 2008), archae (Takemoto and Borjigin 2011),
and across archae, bacteria, and eukarya (Mazurie et al.
2010), consistent with the role of natural selection in shaping
variational relationships between traits belonging to func-
tional modules (note that results using metabolic network
modularity should be taken with care as the samemodularity
scores can be obtained with very different metabolic network
structures; Zhou and Nakhleh 2012). The preservation of
interactions between traits belonging to functional modules
might also reflect a bias in the variation generated by muta-
tion. However, potential biases in mutation rates within mod-
ules, and how mutation can contribute to maintaining the
organization of functional modules, remain little explored.

Microevolutionary studies within species offer the oppor-
tunity to directly determine the distribution of phenotypic
effects of new mutations and selection on these mutations.
Identifying variational modules requires the study of many
traits belonging to diverse functionalmodules.Morphological
studies, for example, have limited use for testing the key
hypothesis: statistical tests for lower covariance outside the
module are relatively weak because only relationships among
similar types of traits (morphology) are considered, and co-
variance between morphological and behavioral or physio-
logical traits, which might contribute to a common function,
are not considered. Systems biology, which involves a shift in

focus from the function of individual genes in isolation to the
interaction among gene products to achieve a biological func-
tion (Ideker et al. 2001; Kitano 2002; Civelek and Lusis
2014), has provided the tools to study modularity across di-
verse functional modules. Work in model organisms has em-
pirically revealed the function and functional interactions of
thousands of genes, valuable information that can be applied
to nonmodel taxa through tools such as the database of The
GeneOntology (GO) Consortium (Ashburner et al. 2000) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way resources (Kanehisa et al. 2006).

Gene expression data allow questions about the distribu-
tion of variational and functional modules to be asked while
considering a diverse range of biological functions. The de-
velopment of high-throughput methods for the simultaneous
measurement of the expression of thousands of genes has led
to statistical developments allowing the identification of clus-
ters of coexpressed genes (e.g., Eisen et al. 1998; D’haeseleer
et al. 2000; Tanay et al. 2002). When gene expression has
been measured within a quantitative genetic breeding de-
sign, high levels of covariance among expression traits have
been found, which imply the existence of variational modules
(Denver et al. 2005; Rifkin et al. 2005; Ayroles et al. 2009;
Blows et al. 2015). Many studies have subsequently applied
enrichment analyses to determine whether coexpressed
genes were associated with the same GO terms more often
than expected by chance (e.g., Ayroles et al. 2009; Blows et al.
2015; Rose et al. 2015; Storz et al. 2015). Although it appears
from these studies that variational modules can predict func-
tional group membership to some extent, it is unknown what
proportion of pleiotropic covariance resides within prede-
fined functional groups, and whether pleiotropic covariance
among functional groups is of a similar magnitude to that
found within functional groups. Further, the role of selection
in generating these variation modules remains relatively
unexplored.

Here, we adopt a high-dimensional quantitative genetic
approach to directly test whether trait functional associations
predict the pleiotropic covariance of gene expression traits.
Using 41 mutation accumulation (M) lines of Drosophila
serrata inwhichwidespreadmutational pleiotropy among small
random sets of 3385 gene expression traits has been demon-
strated (McGuigan et al. 2014b), we identified 13 groups of
genes involved in a particular function (using GO terms and
KEGG pathways), which were significantly enriched with
genes that had mutational variance and that showed signif-
icant mutational covariance; the opportunity for genes to
contribute to . 1 of the 13 groups was explicitly limited.
Using this set of M lines and a matched set of set 30 inbred
lines derived from an outbred population of D. serrata, we
determined whether coexpression, which was due to pleio-
tropic effects of new mutations in the M lines or of alleles
already present in the inbred lines, was greater within these
functionally related sets of genes than it was among random
sets of the same number of genes whose functions were
not known. We also investigated whether we could detect
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pleiotropic mutations that spanned a larger array of func-
tions. In addition to directly testing whether pleiotropic
effects were stronger within functional modules, our experi-
mental design (specifically the matched estimates of muta-
tional and standing genetic variance) allowed us to directly
estimate the strength of stabilizing selection acting against
function-specific mutational pleiotropy and compare it to
selection against mutational pleiotropy spanning multiple
functions.

Materials and Methods

Experimental populations and data collection

We used two sets of highly inbred lines of D. serrata, which
were established, maintained, and assayed in a similar way
(McGuigan et al. 2014a), to measure the mutational and
standing genetic covariance in sets of gene expression traits
assigned to functional groups. Briefly, the first set of lines
consisted of 45 M lines derived from a single inbred ancestral
population. Each M line was maintained during 27 genera-
tions through full-sib inbreeding. The second set of 42 lines
were derived from females collected from a wild outbred
population and inbred for 15 generations of full-sib mating
(G lines). As M lines were founded from a population
depleted of standing genetic variance, the differences
among M lines originated frommutations, filtered by relaxed
selection, and M lines captured mutational variance. On the
other hand, the differences among G lines originated from
the natural standing genetic variance captured in the original
outbred population; hence, the G lines captured standing ge-
netic variance. We neglected the contribution of new muta-
tions accumulated in the G lines because, as determined from
the M lines, mutational variance is small relative to standing
genetic variance (Table 1).

In generation 26 in the M lines and generation 14 in the G
lines, we set up four replicate vials per M line and three
replicate vials per G line in preparation for RNA extraction
in the following generation. From these vials, 40 (M) and
60 (G) virgin male offspring were collected for each line. The
use of replicate vials for each line ensured that microenviron-
mental variation was not confounded with the among-line
(mutational or genetic) variation. Males were held in groups
of five until 3 (G lines) or 4 (M lines) days after emergence,
when two RNA extractions on a subsample of 20 (M lines) or
30 (G lines) males were conducted. Given the scope of this
study (ratioof variancebetween the twotreatments compared
between functions and within functions), we do not expect
any of these small discrepancies in handling the two sets of
lines to have impacted our results. Flies were snap-frozen
using liquid nitrogen; total RNA was extracted using TRIzol
(Invitrogen, Carlsbad, CA) and purified using RNeasy kits
(QIAGEN, Valencia, CA), all according to the manufacturers’
instructions.

As detailed in Allen et al. (2013) and McGuigan et al.
(2014b), microarrays designed from a D. serrata expressed

sequence tag (EST) library (Frentiu et al. 2009) were manu-
factured by NimbleGen (Roche); cDNA synthesis, labeling,
hybridization, and microarray scanning (NimbleScan) were
performed by the Centre for Genomics and Bioinformatics,
Bloomington, Indiana. Microarrays contained 20K random
probes plus 11,604 features from ESTs, targeted by five
60-mer oligonucleotide probes; each probe appeared twice
on each array. A single sample was hybridized to each array
with a single color (Cy-3). Twelve arrays appeared on each
slide, and samples were randomly assigned to a slide. We
performed quality control analyses with the oligo package
in Bioconductor (Gentleman et al. 2005) and removed data
due to poor quality or high background signal. The expres-
sion data for the 41 M lines and 30 G lines remaining after
this process are analyzed below, and are available through
the National Center for Biotechnology Information (NCBI)’s
Gene Expression Omnibus (GEO) (Edgar et al. 2002; Barrett
et al. 2011) (M: GSE49815 and G: GSE45801).

To determine which of the 11,604 phenotypes on each
microarray were associated with mutational or standing ge-
netic variation, and therefore informative for analysis of
variational and functional modules, we use linear mixed
model analyses to partition the variance in each expression
trait. First, a linear mixed model to characterize the muta-
tional variance in the standardized (mean = 0 and SD = 1)
log10 mean expression of each probe (McGuigan et al. 2014b)
was implemented within a Restricted Maximum-Likelihood
framework using the function lme in R 3.1.2 (library nlme;
Pinheiro and Bates 2000):

Yijk ¼ mþ SFþ Linei þ RepjðiÞ þ eijk (1)

whereSFwasafixedeffect for a segregating factorobserved in
the M lines that must have been present in the ancestor and
was therefore not a product of mutation during the ex-
periment [see supporting information in McGuigan et al.
(2014b)]. To prevent this factor from contributing to esti-
mates of mutational (among-line) variance, we added a fixed
effect to remove the mean difference in trait expression be-
tween the two groups of lines with the alternative forms of
this segregating factor. Line was a random factor representing
the among M line variance, Rep was a random factor nested
within lines representing the two replicate extractions per
line, and the residual error, e, was the variance among the
five probes per gene. To be consistent with the bivariate anal-
yses (see below), we used the general-purpose optimization
based on the Nelder–Mead algorithm (method “optim”).
From the Line variance component, we calculated the
broad-sense mutational heritability of gene expression for
each gene according to H2

M ¼ VB=2t, where t is the number
of M generations, here 27 [see details in McGuigan et al.
(2014b)]. Of the 11,604 gene expression traits analyzed,
3385 showed among-line variance in the M lines, with statis-
tical support for mutational variance in 1035 traits, 533 of
which remained significant at the 5% false discovery rate
(FDR) threshold. Selecting genes according to a significance

Variational and Functional Modularity 1603



Ta
b
le

1
D
es
cr
ip
ti
o
n
o
f
th
e
13

se
le
ct
ed

fu
n
ct
io
n
al

m
o
d
u
le
s

G
ro
u
p

G
O

ID
O
n
to
lo
g
y

Te
rm

B
ac
kg

ro
u
n
d

Sa
m
p
le

(F
B
g
n
)

Sa
m
p
le

(g
en

es
)

En
ri
ch

m
en

t
(P
-v
al
u
e)

D
eg

re
e

O
ve

rl
ap

G
en

es
w
it
h

si
g
n
ifi
ca
n
t

H
2 m

M
ed

ia
n

H
2 m

M
ed

ia
n

H
2 g

C
ho

rio
n

G
O
:0
00

52
13

M
F

St
ru
ct
ur
al

co
ns
tit
ue

nt
of

ch
or
io
n

8
8

9
0.
00

11
1

0
3

0.
00

16
0.
00

00
*

A
m
in
o
A

G
O
:0
00

00
96

BP
Su

lfu
r
am

in
o
ac
id

m
et
ab

ol
ic
pr
oc
es
s

14
9

10
0.
02

22
12

0
4

0.
00

14
0.
44

53
N
eu

ro
T

G
O
:0
03

05
94

M
F

N
eu

ro
tr
an

sm
itt
er

re
ce
pt
or

ac
tiv
ity

29
15

15
0.
02

45
10

0
5

0.
00

16
0.
38

40
G
T

G
O
:0
01

50
20

M
F

G
lu
cu
ro
no

sy
ltr
an

sf
er
as
e
ac
tiv
ity

25
15

17
0.
00

49
17

0
10

0.
00

18
0.
62

55
*

Pr
o-
D
N
A

G
O
:0
06

50
04

BP
Pr
ot
ei
n–

D
N
A
co
m
pl
ex

as
se
m
bl
y

35
18

20
0.
00

86
15

0
2

0.
00

09
0.
31

98
Ba

ct
er
iu
m

G
O
:0
00

96
17

BP
Re

sp
on

se
to

ba
ct
er
iu
m

51
25

30
0.
00

33
7

4
15

0.
00

25
0.
46

21
C
hi
tin

G
O
:0
00

80
61

M
F

C
hi
tin

bi
nd

in
g

47
28

32
0.
00

01
2

0
10

0.
00

13
0.
44

38
Se
ns
or
y

G
O
:0
00

76
06

BP
Se
ns
or
y
pe

rc
ep

tio
n
of

ch
em

ic
al

st
im

ul
us

62
32

32
0.
00

02
5

1
10

0.
00

13
0.
57

77
Io
n
Ts
p

G
O
:0
03

00
01

BP
M
et
al

io
n
tr
an

sp
or
t

91
35

39
0.
03

73
12

2
10

0.
00

07
0.
33

64
H
em

e
G
O
:0
02

00
37

M
F

H
em

e
bi
nd

in
g

99
43

49
0.
00

37
2

1
24

0.
00

17
0.
50

43
*

C
ut
ic
le

G
O
:0
04

23
02

M
F

St
ru
ct
ur
al

co
ns
tit
ue

nt
of

cu
tic
le

59
43

49
,

0.
00

01
3

0
21

0.
00

14
0.
50

22
C
el
lF
at
e

G
O
:0
04

51
65

BP
C
el
lf
at
e
co
m
m
itm

en
t

13
3

59
65

0.
00

01
44

2
11

0.
00

09
0.
25

68
*

En
do

pe
p

G
O
:0
00

42
52

M
F

Se
rin

e-
ty
pe

en
do

pe
pt
id
as
e
ac
tiv
ity

14
3

62
73

0.
00

04
7

3
31

0.
00

13
0.
61

43
**

*
G
en

es
in
cl
ud

ed
in

fu
nc
tio

na
lg

ro
up

s
38

6
43

4
15

6
0.
00

13
*

0.
44

69
**

*
Bi
ol
og

ic
al

ba
ck
gr
ou

nd
:
ge

ne
s
w
ith

no
nz
er
o
m
ut
at
io
na

l
va
ria

nc
e
th
at

w
er
e
no

t
as
si
gn

ed
to

an
y
of

th
e
13

fu
nc
tio

na
lg

ro
up

s

23
97

29
51

87
9

0.
00

11
0.
38

41

M
F
an

d
BP

de
sc
rib

es
w
he

th
er

th
e
G
O

te
rm

is
a
M
ol
ec
ul
ar

Fu
nc
tio

n
or

a
Bi
ol
og

ic
al

Pr
oc
es
s.

Ba
ck
gr
ou

nd
is
th
e
co
un

t
of

al
l
89

78
ge

ne
s
as
so
ci
at
ed

w
ith

Fl
yB
as
e
G
en

e
ID
s
re
co
gn

iz
ed

by
D
A
V
ID

th
at

ar
e
as
so
ci
at
ed

w
ith

th
e

co
rr
es
po

nd
in
g
G
O
te
rm

.S
am

pl
e
(F
Bg

n)
is
th
e
nu

m
be

r
of

ge
ne

s
th
at

ar
e
as
so
ci
at
ed

w
ith

th
e
G
O
te
rm

an
d
ha

ve
H
m
2
.

0
w
he

n
co
ns
id
er
in
g
D
.m

el
an

og
as
te
r
Fl
yB
as
e
G
en

e
ID
s.
Sa

m
pl
e
(g
en

es
)i
s
th
e
co
rr
es
po

nd
in
g
nu

m
be

r
of

ge
ne

s
on

th
e
m
ic
ro
ar
ra
y;

w
he

n
m
ul
tip

le
ge

ne
s
w
ith

in
th
e
fu
nc
tio

na
l
m
od

ul
e
co
rr
es
po

nd
to

th
e
sa
m
e
D
.
m
el
an

og
as
te
r
ho

m
ol
og

,
th
e
to
ta
l
nu

m
be

r
of

ge
ne

s
in

th
e
fu
nc
tio

na
l
m
od

ul
e,

lis
te
d
un

de
r
Sa
m
pl
e
(g
en

es
),
is
la
rg
er

th
an

th
e

nu
m
be

r
of

Fl
yB
as
e
G
en

ID
s,
lis
te
d
un

de
r
Sa
m
pl
e
(F
Bg

n)
.E

nr
ic
hm

en
t
(P
-v
al
ue

)i
s
th
e
P-
va
lu
e
of

en
ric
hm

en
t
fo
r
th
is
te
rm

.D
eg

re
e
is
th
e
nu

m
be

r
of

ot
he

r
G
O
te
rm

s
to

w
hi
ch

a
G
O
te
rm

re
la
te
s,
ac
co
rd
in
g
to

th
e
G
O
te
rm

to
po

lo
gy

as
re
ve
al
ed

in
D
ire

ct
ed

A
cy
cl
ic
G
ra
ph

s.
O
ve
rla

p
is
th
e
nu

m
be

r
of

ge
ne

s
th
at

ca
n
al
so

be
fo
un

d
in

at
le
as
t
on

e
ot
he

r
fu
nc
tio

na
lm

od
ul
e.

G
en

es
w
ith

si
gn

ifi
ca
nt

H
m
2
sh
ow

th
e
nu

m
be

r
of

ge
ne

s
in

th
e
gr
ou

p
w
ith

si
gn

ifi
ca
nt

H
m
2
(P
-v
al
ue

).
M
ed

ia
n
H
m
2
an

d
H
g2

sh
ow

th
e
m
ed

ia
n
m
ut
at
io
na

l
an

d
br
oa

d-
se
ns
e
he

rit
ab

ili
ty
,
re
sp
ec
tiv
el
y,

fo
r
th
e
sa
m
pl
ed

ge
ne

s
of

th
e
gr
ou

p;
m
ed

ia
n
H
m
2
is
ca
lc
ul
at
ed

on
ly

fo
r
th
e
ge

ne
s
th
at

ha
d
no

nz
er
o
m
ut
at
io
na

l
va
ria

nc
e.

Le
ve
l
of

si
gn

ifi
ca
nc
e
(*

P
,

0.
05

,*
*
P
,

0.
01

,a
nd

**
*
P
,

0.
00

1)
gi
ve
n
by

th
e
m
ed

ia
n
P-
va
lu
e
of

10
00

M
an

n
–
W
hi
tn
ey

te
st
s
co
m
pa

rin
g
th
e
un

iv
ar
ia
te

va
ria

nc
es

of
th
e
ge

ne
s
of

th
e
gr
ou

ps
to

th
e
sa
m
e
nu

m
be

r
ge

ne
s,
ra
nd

om
ly
ch
os
en

am
on

g
th
os
e
th
at

w
er
e
no

t
in
cl
ud

ed
in

an
y
fu
nc
tio

na
lm

od
ul
e.

G
O
,
ge

ne
on

to
lo
gy
;
ID
,
id
en

tifi
er
;
M
F,

m
ol
ec
ul
ar

fu
nc
tio

n;
BP

,
bi
ol
og

ic
al

pr
oc
es
s;
D
A
V
ID
,
th
e
D
at
ab

as
e
fo
r
A
nn

ot
at
io
n,

V
is
ua

liz
at
io
n
an

d
In
te
gr
at
ed

D
is
co
ve
ry
.

1604 J. M. Collet et al.



threshold, particularly in large data sets, is prone to limit the
detection of pleiotropy (Hill and Zhang 2012). We did not
wish effect size and subsequent type II error to affect the
interpretation of our measure of function-specific pleiotropy.
Therefore, we selected the entire subsample of 3385 genes
showing nonzero mutational variance for further consider-
ation. Second, the analysis of the G lines to estimate the
standing genetic variance in each of the 3385 expression
traits with nonzero mutational variance followed the same
model but removed the segregating factor effect. As we de-
tected consistent differences in mean signal intensity among
the five replicate probes of each gene in the G lines, we in-
cluded a fixed effect for probe when analyzing the G lines
(McGuigan et al. 2014b).

EST annotation

To establish the function of the genes present on our micro-
arrays, D. serrata ESTs were first classified as putative
D. melanogaster homologs. D. melanogaster was chosen as
the reference as it is a relatively well-annotated model organ-
ism that has been incorporated into many analysis tools. Ho-
molog identifiers (IDs) were assigned following basic local
alignment search tool (BLAST) analysis of the D. serrata
ESTs against 12 Drosophila species’ genomes obtained from
FlyBase (McQuilton et al. 2012) followed by mapping of the
FlyBase gene IDs to homolog IDs from the ortholog database
(Waterhouse et al. 2013), which allowed us to identify
D. melanogaster homologs of the D. serrata genes even when
they had a BLAST hit to a gene in a taxon other than
D. melanogaster. The D. melanogaster gene’s annotations
were then assigned to the D. serrata gene and used for en-
richment analysis. To allow for highly divergent homologs to
be identified, tblastx with a liberal e-value threshold of
10 was applied; median e-value was 1e278. The method iden-
tified 10,843 (93%) genes on the microarray as homologs of
9500D.melanogaster genes. For some genes, severalD. serrata
ESTs corresponded to a unique D. melanogaster homolog and
we established that those D. serrata genes could be consid-
ered as independent (see Supplemental Material, Supple-
mental Information and Table S1 in File S1).

Enrichment analyses and identification of
functional groups

We restricted our investigation of potential GO functions to
those functional groups that were the best candidates to
harbor function-specific mutational variance. If a functional
group experienced a function-specific pleiotropic mutation,
several (or perhaps all) of the genes that are part of that
function will each exhibit univariate mutational variance.
Therefore, we performed GO term and KEGG pathway
enrichment analyses that detected functional groups within
the 3385 genes potentially affected by mutations (nonzero
mutational variance) compared to all 11,604 genes contained
on the microarray. Of the 3385 variable genes, 2783 were
identified as unique D. melanogaster homologs, of which
2604 were assigned a gene ID using DAVID 6.7 (Huang

et al. 2009). Of the 9500 genes contained on the microarray
that were assigned a unique D. melanogaster gene ID from
FlyBase genes, 8978 were recognized and assigned an ID in
DAVID. Therefore, we were able to apply the enrichment
analysis to 2604 genes of interest (i.e., mutationally variable
candidates for functional groups) against the reference back-
ground containing 8978 genes.

We did not consider enrichment on Cellular Component
GOdomain for two reasons. First, our goal in this paperwas to
identify functional modules for which we had the greatest
expectation of correspondence to pleiotropic variationalmod-
ules, and while both Biological Process and Molecular Func-
tion domains are likely to capture multiple functions of a
single gene (He and Zhang 2006; Su et al. 2010), colocaliza-
tion of gene products has a less direct link to definitions
of pleiotropy. Second, gene groups identified through the
Cellular Component GO domain might be more likely to be
affected by Pearson’s rule of neighborhood, where geograph-
ically closer elements are more likely to be correlated than
distant elements (Whiteley and Pearson 1899), which is a
known source of bias in interpretations of coincidence of
functional and variational modules at the phenotypic level
(Mitteroecker 2009). Therefore, we only looked for enrich-
ment in Biological Process and Molecular Function in the GO
terms, and analyzed the list for GO terms and KEGG path-
ways with the “Functional Annotation Chart.”

Functional groups defined by GO terms typically contain a
lot of genes in common with other groups because of parent–
child relationships between GO terms, because the same
set of genes can belong to different types of functional groups
(i.e., a Molecular Function and a Biological Process), or be-
cause similar biological processes can be categorized in dif-
ferent regions of the GO. This is a commonly recognized
problem for using analyses of GO terms to identify pleiotropic
(multifunctional) genes. Most methods developed to deal
with the lack of functional uniqueness or independence of
GO terms use indices measuring the semantic similarity be-
tween terms that share common ancestors or children [see
the comparison of methods in Harispe et al. (2014)], and
more rarely the similarity between terms using their proba-
bility of sharing genes (Pritykin et al. 2015). Here, we limited
gene sharing among our GO term-defined functional groups
to maximize our chances of detecting a difference in pleio-
tropic covariance within vs. among functional groups. We
achieved this using the following method. We started by
selecting the group with the lowest enrichment P-value when
testing mutational variance enrichment (GO term: group
Cuticle, P = 3.3e211, Table 1). Retaining this group with
the lowest enrichment P-value, we then sequentially com-
pared all groups with increasing enrichment P-values, retain-
ing groups only if they shared, 10% of their genes with any
of the previously retained (i.e., lower enrichment P-value)
groups. Fourteen GO terms with low levels of gene composi-
tion overlap were selected using this process including
seven molecular functions and seven biological processes,
spanning structural molecule activities (two groups), metabolic
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processes (three groups), developmental processes (two
groups), responses to stimulus (two groups), or binding (two
groups) (Table 1). However, one of the 14 identified groups
failed a randomization test to determine if the observed mu-
tational covariance was above the random expectation when
the mutational covariance among traits was destroyed (see
Supplemental Information in File S1). We removed this group
from further analysis. We further identified two independent
significantly enriched KEGG pathways, but they identified the
same putative functional modules as identified by the GO term
enrichment analysis, and we only report GO term results here
(see Supplemental Information in File S1).

We tested whether the 434 genes assigned to the 13 func-
tional groups were a representative sample of the mutational
and standing genetic variance found in the entire set of
mutationally variable genes. For each functional group, we
used Wilcoxon signed-rank tests to compare the mutational
and standing genetic variance of the genes contained within
thatgroup to1000setsof the samenumberofgenes, randomly
chosen fromthe2951geneswithnonzeromutationalvariance
that were not assigned to any of our 13 studied functional
groups.

Mutational and standing genetic covariance within
functional groups

We determined the genetic covariance between each pair of
expression traits using bivariate models within each func-
tional group of genes in both the M and G lines separately.
For each pair of genes within a functional group, we imple-
mented the bivariate form of the model (1):

Y ¼ mþ Zldl þ Zrdr þ e (2)

where Zl and Zr are design matrices for the line and replicate
within-line random effects. We modeled the covariance
structure among traits at the line (dl) and replicate (dr) lev-
els, using unstructured 23 2 covariance matrices, and e was
a diagonal matrix containing the residual (among-probe)
variances for each trait. The segregating factor and a probe-
level fixed effect were included as before for the M line and G
line analyses, respectively.

For each functional group, we used the among-Line uni-
variate variance component (model 1) and covariance compo-
nent (model 2) from the respective M and G lines to construct
mutational (M) and genetic (G) variance–covariancematrices.
Constructing the M and G matrices enabled us to test for the
presence of shared genetic variance in any multivariate trait
combination (not just pairwise combinations) in the most ef-
ficient fashion, by focusing on the presence of mutational or
genetic variance in the major axes represented by the domi-
nant eigenvectors of the respective matrices of each functional
group.

Ourgoalwas todetectwhether the levels ofmutational and
standing genetic covariance found in our candidate functional
groupswere specific to that function, and exceeded the typical
levels of mutational and standing genetic covariance found in

traits that were not identified by the enrichment analysis as
sharing the same function. To achieve this, we compared the
mutational or genetic variance in the dominant eigenvectors
of a matrix (mmax and m2 for mutational variance, and gmax

and g2 for standing genetic variance; Table 2) of a given
functional group, to the observed eigenvalues of a distribu-
tion of eigenvalues that represented biological variation char-
acterized by the background level of mutational or genetic
covariance among random sets of genes. We first created
150 data sets of 73 genes that were sampled at random from
the subset of 2951 genes that showed mutational variance
but were not assigned to any of the 13 functional groups
under consideration. We did not know the functions of the
genes included in these data sets. Thus, some of the genes
included in each data set may share a common function, but it
was unlikely that they all had the same function. Moreover,
none of the genes included in those data sets were assigned to
any of the GO terms in Table 1. Sampling was done with
replacement, so that some genes were included in several
of the 150 data sets. For each of the 150 created data sets,
we estimated Mbb and Gbb covariance matrices (Table 2) by
applying the univariate (model 1) and bivariate (model 2)
mixed models, as described above. To obtain Mbb and Gbb

covariance matrices of a size that matched each functional
group (i.e., the number of genes in each functional group,
Table 1), we randomly selected the number of genes required
for each functional group from the 73 genes in each data set.
Each draw of the appropriate number of genes was sampled
from the set of 73 genes with replacement, creating random
overlap between biological simulations of the 13 functional
groups. The functional groups of the same size (groups Chitin
and Sensory, and groups Heme and Cuticle) were compared
to the same sample of biological background genes. A small
number (seven) of the 2 3 150 = 300 Mbb and Gbb covari-
ancematrices estimated in this fashion returned extreme out-
lying eigenvalues (. 1010) after diagonalization, and we
removed these data sets, resulting in 143 estimates of the
biological background covariance in the M and G lines for
each functional group. Because several functional groups
had average univariate genetic variances that were signifi-
cantly higher than the genes that were not selected in any
functional groups (Table 1), we could not directly compare
the shared genetic variance contained in those functional
groups with the biological controls. Instead, we compared
the proportion of variance represented by each eigenvector,
calculated by dividing each eigenvalue by the trace of the
matrix, to the 95% C.I. of the proportion of variance for each
vector obtained from the biological controls. This comparison
was used to determine whether the genetic covariance found
within functional groups was larger than among background
(random) genes, independent of the level of genetic variance
displayed by each gene.

Selection on pleiotropic effects within functional groups

Oneof theprimary evolutionary advantages ofmodularity has
been predicted to be the mitigation of the adverse effects of
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deleterious mutation through restricting the extent of their
pleiotropic effects. We would therefore predict that selection
on the genetic variance within functional groups should be
weaker than selection among groups. We tested this predic-
tion using two approaches. First, we estimated s, the selection
coefficient, from our estimates of the mutational variance
and standing genetic variance for gene expression, using:
s ¼ VM=VG

(Barton 1990; Houle et al. 1996). Specifically,
we calculated s for the multivariate traitsmmax andm2 using:

s ¼ lmn=54
mT

n G mn
(3)

where lmnwas the eigenvalue of the nth eigenvector of M
divided by twice the number of generations to give the per-
generation input of variance (Lynch and Walsh 1998) and
mT

n G mn represents the projection of the normalized mn

vector through the standing genetic space of G. To return s
to the original log10 scale, we multiplied it by the ratio of
phenotypic variances of mn in the G and M lines. To do this,
we used the linear equation of each of themn eigenvectors to
generate phenotypic scores in both M and G lines. We kept
the probe level of information by applying the linear equation
of the eigenvectors five times; each of the five times, we
randomly chose one of the five probes that targeted each trait
(without replacement). We analyzed these phenotypic trait
scores for the mn index with model (1) to estimate the phe-
notypic variance associated with each mn trait combination
in the M and G lines. We repeated the same analyses for

the groups of genes in the biological background. In three
(out of 26) estimates for the two vectors in the observed data
for the 13 functional groups, the calculation of s returned
negative values, as mn fell within the null space of the esti-
matedGmatrix. In these three cases, we bentG using nearPD
(library Matrix, R 3.1.2) to obtain the closest positive definite
matrix.

To directly estimate the amount of sampling error associ-
ated with the estimates of mutational and genetic variance in
s, it is necessary to take into account that the estimation of s
can be inflated as a result of restricted maximum likelihood
enforcing positive-definite constraints. To account for this
upward bias, we applied equation (3) to random pairs of
the 50 estimates of Mse and Gse for each functional group
representing the amount of sampling error generated by our
experimental design for a givenmodule size (see Supplemen-
tal Information in File S1 and Table 2). We then used these
50 estimates of s representing sampling error to remove
the magnitude of the inflating effect in our observed estimate
of s by taking the difference between the observed estimate
and the median of these 50 estimates of sampling error
(McGuigan et al. 2014a).

To estimate the 95% C.I.s of s based on the biological
background, we used the difference between the 143 ob-
served biological background estimates and the correspond-
ing median sampling error estimate obtained for each
function-specific group. Since the univariate estimates of mu-
tational and genetic variance in the functional groups were
on average higher than in genes included in the biological

Table 2 Definitions of the used mathematical terms

Name Quantifies
Number of data
sets/permutations Description

Terms describing experimental variances
mmax or gmax m2 or g2 Eigenvectors of most (max) and second most (2)

mutational (m) and genetic (g) variance
Estimated by diagonalizing the respective M or G
matrix

M26 G26 Mutational (M) or standing genetic (G)
covariance among functional groups

Phenotypic scores were estimated for
individuals for the trait combinations
described by the first and second major axes of
within-function mutational or standing genetic
variance for each of the 13 functional groups
(i.e., 26 traits). These scores were then analyzed as
per observed traits to estimate the 26 trait variance
covariance matrix, which was then diagonalized.

Terms used to build distributions used in estimating C.I.s
Mse Gse Sampling error within the mutational (M) or

standing genetic (G) data sets
50 Data shuffled among lines, disrupting the mutational

or genetic covariances between traits while
retaining the observed levels of variance for each
individual gene expression trait

Mbb Gbb Biological background levels of mutational (M)
or standing genetic (G) covariance among
genes for which there is no a priori
expectation of functional relatedness

143 Uses random sets of genes taken from the list of
genes that were not assigned to one of the
14 functional groups. Each of the 117 data sets
was then subsampled to the same number of
genes as in the respective functional group.

M26se G26se Sampling error within the among functional
group mutational (M26) or standing genetic
(G26) covariance matrices

50 Data shuffled among lines, disrupting the mutational
or genetic covariances between traits while
retaining the observed levels of variance for each
composite trait present in M26 and G26
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background (Table 1), the C.I.s for the biological background
could be biased if the observed ratio of tr(M)/tr(G) for a
group differs from the set of 143 biological background esti-
mates. For two groups (Chorion and Cuticle), the observed
tr(M)/tr(G) was higher than the biological background. In
both cases, the lower and upper 95% C.I.s for these estimates
are therefore likely to be smaller in magnitude than would
occur if the traces of the observed matrices matched the
traces of the matrices for the biological background (as
shown by the negative lower confidence interval obtained
in Chorion). Therefore, for those two groups, a lower ob-
served estimate of selection than the C.I. would be a conser-
vative result.

As described above, estimates of s are only informative of
selection operating on the major axes of mutation, but selec-
tion may act instead on other dimensions. We therefore took
a second approach to test the hypothesis that mutations act-
ing within a functional group were under weaker selection
than mutations affecting functionally unrelated sets of traits.
We determined the level of overlap between M and G ma-
trices using Krzanowski’s common subspaces approach
(Krzanowski 1979; Aguirre et al. 2014):

S ¼ ATB BTA (4)

where A and B contain the two first eigenvectors ofM and G
as columns, respectively. The sum of the eigenvalues of the
resultant matrix S then ranges between 0 (complete orthog-
onality of the subspaces) and 2 (coincident subspaces). If
selection is weak, G is not predicted to have diverged from
the structure generated by mutation, and a big overlap be-
tween M and G subspaces, and thus a higher S, is expected.
This approach to estimating selection does not assume that it
acts directly on the eigenvectors of M, but rather on any
combination of expression traits contained within the first
two dimensions of M or G. Note that the upper and lower
95% random values of the sum of the eigenvalues of S de-
crease with the size of the groups. Since we only considered
the two first axes whatever the size of the group considered, it
is expected that the proportion of the common subspace
shared between two matrices in those two axes will be lower
when those axes represent a smaller proportion of the total
subspace.

Data availability

Data are archived at the NCBI’s GEO (N lines: GSE49815 and
S lines: GSE54777).

Results

Mutational and standing genetic variance in genes
included in functional groups

The enrichment analysis of the 3385 genes showing nonzero
mutational variance identified 13 independent candidate GO
terms most likely to harbor function-specific mutational co-
variance. Enrichment for one term (Cuticle) passed the 5%

FDR threshold. A total of 434 genes were assigned to the
13 functional groups, while the remaining 2951 genes with
nonzeromutational variance had functions that did not fit our
criteria to belong to candidate functions. Even though the
enrichment analyses did not take into account the level of
mutational or genetic variance, the median standing genetic
variance in 5 of the 13 functional groups was significantly
higher than expected from the other genes with nonzero
mutational variance that were not assigned to our candidate
functional groups (Table 1). Overall, the genes assigned to
the 13 functional groups had significantly higher mutational
variance (median H2

M= 0.0013 vs. 0.0011, median Wilcoxon
W for the 1000 tests = 103,544, median P = 0.012) and
standing genetic variance (median H2

G = 0.4469 vs. 0.3841,
median Wilcoxon W for the 1000 tests = 104,144, median
P=0.006) than the genes not assigned to our functional groups
(Table 1).

Mutational and standing genetic covariance within
functional groups

We found little support for functionally related genes being
universally affected by pleiotropic mutations. The functional
group “structural constituents of chorion”was the only one of
the 13 functional groups in which all genes assigned to that
function had mutational variance above zero (Table 1, all
eight genes from the DAVID term had above-zero mutational
variance). Our enrichment analysis further showed that the
functional group Chorion was the only GO term of the entire
DAVID 6.7 repository for which all genes showed above-zero
mutational variance.

We next testedwhether functional modules were enriched
in function-specific mutational covariance by determining if
the observed mutational covariance within a functional mod-
ule exceeded that of the biological background based on
random, size-matched, sets of genes whose functions were
not known. Only three functional groups showed levels of
mutational covariance above that found among random sets
of genes (captured by Mbb) (Pro-DNA, Heme, and Cuticle:
Table 3). Furthermore, we found one functional group
(NeuroT) that showed lower levels of mutational covariance
than random groups of genes of the same size that did not
belong to a common function (Table 3). Therefore, it appears
that genes within a functional module are not typically af-
fected by pleiotropic mutations to a greater extent than func-
tionally unrelated sets of genes (Table 3).

To illustrate the variation in mutational pleiotropy repre-
sented by our functional groups, the mutational covariance
structure of two groups of similar size [39 and 49 genes for
groups Ion Tsp and Cuticle, respectively (Table 1)] is graph-
ically displayed in Figure 1. Most functional groups were
similar to group Ion Tsp, where the mutational pleiotropy
found in the first two axes did not exceed the level of pleiot-
ropy found in random groups of genes of the same size (Figure
1A and Table 3), thus showing no sign for function-specific
mutational covariance. In contrast, group Cuticle was an
example of where mutational covariance exceeded the

1608 J. M. Collet et al.



background level for mmax (Figure 1D and Table 3). The
difference in mutational covariance between groups Ion Tsp
and Cuticle is clearly illustrated by the difference in the fre-
quency of pairwisemutational correlations. 0.99within each
of these functionally defined modules (Figure 1, B and E).

Function-specific standing genetic covariance was even
less common than function-specific mutational covariance.
Only functional group Chorion showed higher levels of
standing genetic covariance (on two axes) within the func-
tional groups thanwhat was seen among random sets of the
same number of genes (captured by Gbb) (Table 3). In all
other groups, the level of function-specific standing genetic
covariance matched the typical levels of standing genetic
covariance found in the biological background, as illustrated
with groups Ion Tsp and Cuticle on Figure 1, C and F.

Stabilizing selection on mutational pleiotropic effects
within functional modules

To test whether mutations with pleiotropic effects on func-
tionally related sets of traits were less deleterious than
mutations with pleiotropic effects on sets of random traits,
wefirst estimated the selection coefficients (s) for bothmmax

and m2 for each of the 13 functional groups. One of the
three s obtained after bendingG (functional group Chorion)
was extreme (1.306) as a consequence of the very small
genetic variance in the direction of mmax; without groups
with similar estimates of selection, we must consider this
value as an outlier. The 25 remaining s values formmax and
m2 ranged from 0.010 to 0.062, with a median s of 0.024
and 0.022, respectively (Table 3). While these selection
estimates are slightly stronger than the median reported
for random sets of five expression traits (0.016; McGuigan
et al. 2014a), the within functional module swas within the
range of what was typically observed for the same number
of randomly chosen genes (i.e., estimates fall within the
95% C.I. estimated from Gbb and Mbb; Table 3). Only one
functional group, Cuticle, showed the predicted weaker
within-module selection for mmax (Table 3).

Using an alternate measure of selection, which did not
restrict selection to occur only along mmax or m2, three
groups were revealed that showed a higher common sub-
space than expected (Table 3), consistent with weaker
selection within these functional groups than among ran-
dom sets of genes. Importantly, two of those three groups
showed levels of mutational covariance higher than the
95% C.I. interval of the mutational covariance obtained
in the biological background (Table 3), and the third group
exhibited mutational variance close to the upper C.I. (bac-
terium: lmmax 0.630, upper C.I. 0.631), indicating that
considerable mutational covariance was generated, which
was not subsequently removed by selection.

Stabilizing selection on mutational pleiotropic effects
among functional modules

Overall, mutational and genetic covariance was not typi-
cally greater than observed in the biological background,Ta
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suggesting that much of the mutational covariance was
not restricted to functional modules. To investigate this ob-
servation further, we estimated among-function covariance
contained in the 26 trait combinations with the greatest
within-function covariance (i.e., mmax and m2, or gmax and g2,
within each of the 13 functional groups). This approach of
reducing the within-module complexity to allow us to ex-
plore the among-module relationships is analogous to the
eigengene network analysis approach developed by Langfelder
and Horvath (2007).

Weused the linear equationsof thefirst twoeigenvectors of
M and G of each of the 13 functional groups to generate
phenotypic scores for these new index traits. We applied
the same univariate (model 1) and bivariate (model 2) mixed
models to obtain two 263 26 covariance matrices (M26 and
G26, Table 2), which contained any mutational or genetic
covariance between functional groups that occurred among
the major axes of variance within functional groups. We

repeated this procedure on shuffled data to generate
50 M26se and G26se (Table 2) matrices representing sam-
pling error to enable an assessment of the significance of
the eigenvalues ofM26 and G26 and the extent of covariance
among functional groups (see details on how we obtained
randomized distributions in the Supplemental Information
in File S1 and McGuigan et al. 2014b).

The first two eigenvalues resulting from the diagonaliza-
tion of M26 exceeded the magnitude expected solely from
sampling error (Figure 2A), indicating that among-functional
group covariance was greater than expected from sampling
error alone. These first two of the 26 eigenvalues of M26

represented 72.4% of the total mutational variance con-
tained in the 26 traits. Therefore, most of the mutational
covariance found within functional groups was also shared
among the functional groups; as we explicitly limited the
opportunity for the same gene to belong to different func-
tional groups, this observation reveals strong mutational

Figure 1 Function-specific genetic variance in two groups of similar sizes: Ion Tsp (A–C) and Cuticle (D–F). (A and D) Proportion of the mutational
variance contained in mmax and m2 against the distribution of the proportion of mutational variance in the nonfunction-specific biological background
(Mbb, Table 2).mmax andm2 are represented by black and gray vertical lines, respectively. The density functions of the unspecific biological variance are
represented for bbmmax (black) and bbm2 (gray) with a Gaussian smoothing kernel. The shaded area corresponds to the highest 2.5% of the
distribution. (B and E) Illustration of how many strong links among pairwise traits there are within a functional group. Each circle represents a gene
and the black lines represent mutational correlations between pairs of genes . 0.99 (this cutoff was chosen for the clarity of the illustration and has no
role in our analyses or interpretation). (C and F) Plot as for (B and F) except graphing genetic rather than mutational variances.
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pleiotropic links among functions. For G26, again only the
first two eigenvectors had eigenvalues larger than expected
from sampling error (Figure 2B), but in this case only repre-
sented 40.1% of the variance included in G26. Therefore,
there appears to be less pleiotropic covariance among func-
tional groups in the standing genetic variance than that gen-
erated when new mutations first arise in the absence of
selection.

Hine et al. (EmmaHine, Daniel E. Runcie, KatrinaMcGuigan,
and Mark W. Blows, unpublished results) recently applied a
high-dimensional Bayesian sparse factor (BSF: Runcie and
Mukherjee 2013) analysis to estimate the mutational co-
variance across all 3385 genes in our set of 41 M lines and
here we compare this broad-scale distribution of variance to
our functional groups to gain further insight into the distri-
bution of variance across traits. The BSF model identified
21 factors that displayed significant mutational heritability
and explained 46% of the total estimated mutational vari-
ance. These 21 factors combined had significant contribu-
tions from 1263 of the 3385 genes. Figure 3 shows how the
genes contained in each functional group analyzed here

contributed significantly (average error rate , 0.005) to
each high-dimensional factor. All of the 13 functional groups
contained at least one gene that was significantly associated
with at least one of the 21 high-dimensional factors; the
21 variational modules identified from the BSF model were
typically associated with more than one functional group.
This comparison indicates that genes within the functional
groups are almost always part of a wider variational module,
with much of the mutational variance within functional
groups shared across groups within much wider variational
modules, as suggested by the analysis of M26.

As modularity is expected to reduce the strength of selec-
tion acting within functional groups, the trait combinations
highlighted as displaying strong covariance among functional
groups are expected to be under particularly strong selection.
We estimated selection against the first two axes of M26

by estimating the Krzanowski S subspace comparison of the
two-dimensional subspaces of M26 and M26 in the G lines.
Surprisingly, the sum of the eigenvalues of the S matrix was
1.11, considerably higher than the average S found within
functional modules, suggesting that selection has had little
effect on the mutational covariance that is originally wide-
spread among functional groups.

Discussion

A genotype–phenotype map in which pleiotropic effects are
relatively restricted to groups of functionally integrated traits
has been predicted to be evolutionarily beneficial (Wagner
1996). Here, we provide a test of whether variational (pleio-
tropic) and functional modules coincide, and whether func-
tional relationships among genes influence the strength of
stabilizing selection acting on new mutations. Enrichment
analyses assigned 434 mutationally variable genes to 13 in-
dependent candidate Biological Processes or Molecular Func-
tions that also formed variational modules. In general,
expressional levels of groups of genes related by function
(GO terms) rarely had higher covariance than genes assigned
to groups at random. Similarly, mutations jointly affecting
functionally related genes were rarely under weaker selec-
tion thanmutations affecting random sets of genes. Our anal-
yses revealed widespread pleiotropic effects as we found
consistent covariance among functionally unrelated traits
(biological background) and we observed that pleiotropic
effects spanning functional groups generate much of the
mutational variance within functional groups. We now con-
sider both the implications of these results and potential
caveats on our interpretation.

Pleiotropy and selection on gene expression traits

We found weak evidence that variational modules were re-
stricted to functional modules; in only four of 13 functional
groups did covariance within functional groups exceed the
background level of either mutational or genetic covariance
found among random, size-matched sets of genes. Further-
more, most (72%) of the mutational covariance established

Figure 2 Spectral distribution of the mutational variance contained in
M26 (A) and G26 (B) (see Table 2). The dots are the variances associated
with each eigenvector in a descending order. The gray shaded area rep-
resents the 95% C.I. of the 50 simulations estimating sampling error (se).
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within functional groups was shared among the functional
groups. Again, consistent with previous analyses of these data
(McGuigan et al. 2014a) and studies in other taxa (Denver
et al. 2005; Lemos et al. 2005; Rifkin et al. 2005), we ob-
served that expression traits were generally under relatively
strong stabilizing (purifying) selection that typically matched
levels of selection reported for life history traits (Houle et al.
1996). However, the strength of selection on mutations
affecting traits within a functional group was not typically
statistically distinguishable frommutations affecting random
groups of genes not associated with a common function; only
three of the 13 functional groups exhibited significant signa-
tures of weaker than background stabilizing selection.

Towhatextentmightour results reflectmisidentificationof
functionalmodules?The lack of support for highermutational
or standing genetic covariance within GO terms might reflect
missing or inaccurate information on gene function. GO terms
are incomplete descriptions of functional groups (i.e., not all
genes involved in that function have necessarily been identi-
fied), allowing the potential for strong covariance among
randomly chosen genes to reflect undetected functional mod-
ules. Further, as many genes are attributed to functional
groups without experimental evidence (for example, in the
well-studied Arabidopsis thaliana, only 39% of annotated
genes have had their function determined by experimental
evidence: Rhee and Mutwil 2014), the potential exists for
genes to be incorrectly assigned to functional modules
(Clark and Radivojac 2011), which would result in the un-
derestimation of covariance within putative functional mod-
ules. However, the joint analyses of coexpression and GO

terms have successfully identified gene functions in many
studies (e.g., Luo et al. 2007; Nayak et al. 2009; Ayroles
et al. 2011; Proost and Mutwil 2017). Although we cannot
exclude the possibility that current information on functional
groups is so poor that functional and variational modules will
not coincide, it seems likely that pleiotropy may generate
covariance among functions in an unpredictable manner to
a substantial extent.

Functional groups within wider variational modules

While pleiotropy clearly exists within functional groups, it is
the widespread and extensive nature of pleiotropy among the
GO term-defined functional groups, and among random sets
of expression traits in general (McGuigan et al. 2014b; Blows
et al. 2015), that is the overriding feature of the mutational
and standing genetic covariance in these expression traits.
The 21 variational modules of gene expression uncovered
by the high-dimensional BSF model applied by Hine et al.
(unpublished results) provided a very useful framework
within which to interpret the mutational covariance among
functional groups. At one extreme, genes from functional
group NeuroT displayed within-group mutational covariance
that was lower than in the biological background and only
three of its genes were independently part of a wider varia-
tional module, indicating that mutations in these genes had
highly specific effects. At the other extreme, genes from func-
tional group Endopep had genes contributing to 14 of the
21 high-dimensional variational modules. The comparison
of our analyses of functional group Cuticle to the 21 BSFs
is of particular interest. Functional group “structural constituent

Figure 3 Contribution of the genes contained in the 13 gene ontology terms functional groups to the 19 heritable phenotypic common factors
identified in a Bayesian sparse factor (BSF) analysis (Hine et al., unpublished results). Each line represents a functional module (see Table 1) and each
column a BSF. The number of genes within each functional module that also had a significant contribution to the BSF (5% false discovery rate) is listed,
with shading from light to dark indicating few to many genes.
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of cuticle” was the only group to meet all the expectations for
correspondence between variational and functional modules:
(i) this was the only functional group to show significant en-
richment after FDR correction; (ii) mutational variance inmmax

was higher than in the biological background; and (iii) there
was weaker selection on mutational variance than expected
from the biological background. Group Cuticle had 19 (over
one-third) genes significantly contributing to the second com-
mon factor from the Bayesian analysis. This second factor
spanned multiple functions as 11 of our 13 functional groups
had genes significantly contributing to it. Thus, what appeared
in group Cuticle as aligned functional and variational modular-
ity may reflect the contribution of a functional module to a
larger variational module.

The sizes of the variational modules in gene expression
were considerably larger than the relatively small number of
genes contained by the functional groups explored here.
A minimum average variational module size to explain the
extent of mutational covariance among small random sets of
these traits was predicted by McGuigan et al. (2014b) to be
70 genes, but it was also suggested that some variational
modules were likely to be much larger than this. Analysis of
the transcriptome-wide covariance structure of the standing
genetic variation in the G lines indicated the presence
of one variation module that affected a very large number
of expression traits (Blows et al. 2015). Here, the analysis of
M26 was also consistent with the existence of large varia-
tional modules.

How biologically specific a functional module is, and
whether its function is essential or localized, might also help
explain some of our observations. A first step toward account-
ing for the different roles of our 13 functional groups is to
consider the structure ofGO. Analyses of GO terms as directed
acyclic graphs (DAGs) (or gene or protein interaction net-
works more generally) have identified common topological
features, and highlighted the functional or evolutionary sig-
nificance of certain types of nodes (genes or gene products) or
edges (interactions) [reviewed in Hu et al. (2016) and Zhang
et al. (2016)]. The 13 functional groups (individual GO
terms) considered here varied considerably in the topology
of their networks (DAGs), including in their degree (the num-
ber of other GO terms to which they relate, Table 1). Under
the hypothesis that selection on function drives evolution
of pleiotropy to match functional groupings, GO terms em-
bedded within broader functional networks (i.e., with high
degree) might be expected to have reduced within-term co-
variance compared to GO terms with more specific functions
(low degree). However, the estimated Spearman’s correla-
tion between degree and the proportion of variance associ-
ated with each of the first two axes of mutational or standing
genetic variance was mainly not in the predicted direction
(mmax: r=20.20;m2: r= 0.04; gmax: r= 0.09; and g2: r=
0.02). These correlations were not statistically supported as
distinct from zero (mmax: P = 0.50; m2: P = 0.90; gmax: P =
0.78; and g2: P = 0.94), but it should be noted that we had
very low power given a sample size of 13. Thus, whether or not

the studied GO term belonged to a broader functional module
might help explain our results, but analysis of more functional
modules with a range of degrees will be needed to test this
robustly. It is important to remember that the effects of the
genes identified in our functional groups are not restricted to
this group.

Indirect evidence for the embedding of a number of func-
tional groups within larger variational modules comes from
several published studies. In humans, Pickrell et al. (2016)
combined genome-wide association studies on 42 traits or
diseases and identified 341 loci that associated with multiple
functionally unrelated traits, highlighting that pleiotropy
spanned multiple functions. When considering clusters of
coexpressed genes, Allocco et al. (2004) found that in yeast,
pairs of coregulated genes belong to significantly closer GO
terms than randomly chosen pairs of genes. However, many
coexpressed and coregulated genes belonged to very distant
GO terms. Thus, although clusters of coexpression between
unstudied genes and genes of known biological function have
proven a powerful tool for the identification of putative func-
tion of unknown genes and of candidate genes for biological
traits or functions of interest (e.g., Luo et al. 2007; Nayak et al.
2009; Ayroles et al. 2011; Proost and Mutwil 2017), there is
nonetheless considerable evidence that pleiotropic variation
is not strongly restricted to occur only within functional
groups.

Selection on pleiotropic mutations

One of the key assumptions of theoretical predictions that
variationalmodules should evolve to correspond to functional
modules is that pleiotropic effects across functions will be
associated with greater loss of fitness than pleiotropic effects
within functions. Evidence for this has been equivocal, with
some studies reporting that more highly connected genes,
putatively highly pleiotropic genes functioning as hubs be-
tween different functional groups, are under stronger selec-
tion than genes with more functionally limited interactions
(Jeong et al. 2001; Fraser et al. 2002; Krylov et al. 2003;
Carter et al. 2004; Han et al. 2004; Butland et al. 2005;
Zhao et al. 2007; Lin et al. 2015; Pritykin et al. 2015), while
other studies have failed to detect any evidence that the
strength of selection scales positively with the extent of plei-
otropy, essentiality, or network position (Pál and Hurst 2003;
Hahn et al. 2004; Salathé et al. 2006; Jovelin and Phillips
2009; Kopp and McIntyre 2012). Here, we also obtained
mixed support for this prediction. We observed the predi-
cated significantly weaker selection within functional groups
than among random sets of genes for only 3 of the 13 func-
tional groups. Again, variation among functional groups in
their network topology could account for variation in the
strength of selection acting on functional groups, with bio-
logically more specific groups expected tomore closelymatch
this prediction. The relationship between degree and selec-
tion was in the predicted direction for two of our indices of
selection (sm2: r=0.38, P=0.20 and Krzanowski S: r=20.31,
P=0.30), but not for the other (smax: r=20.15, P=0.62), and

Variational and Functional Modularity 1613



in no case were we able to support a significant relationship
between selection and degree. Surprisingly, our results even
suggested that selection against pleiotropic mutations affect-
ing many functions may be lower than the selection observed
within functional modules. The greater similarity of the mu-
tational and genetic subspaces that represented the among
functional group covariance, compared to within functional
group covariance, is inconsistent with the evolution of mod-
ularity in response to deleterious pleiotropic mutation.

Collectively, our results confirm that while focusing on
individual GO terms as functionalmodules can to some extent
predict variational modularity, it will miss many important
biological connections among functionalmodules. Considering
higher-order interactions generated by broader variational
modules spanning various functions will be a necessary part
of understanding the evolution of genetic covariance.
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