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The objectives of this analysis were to develop a population pharmacokinetics (PK) model of durvalumab, an anti-PD-L1
antibody, and quantify the impact of baseline and time-varying patient/disease characteristics on PK. Pooled data from
two studies (1,409 patients providing 7,407 PK samples) were analyzed with nonlinear mixed effects modeling. Durvalu-
mab PK was best described by a two-compartment model with both linear and nonlinear clearances. Three candidate mod-
els were evaluated: a time-invariant clearance (CL) model, an empirical time-varying CL model, and a semimechanistic
time-varying CL model incorporating longitudinal covariates related to disease status (tumor shrinkage and albumin). The
data supported a slight decrease in durvalumab clearance with time and suggested that it may be associated with a
decrease in nonspecific protein catabolic rate among cancer patients who benefit from therapy. No covariates were clini-
cally relevant, indicating no need for dose adjustment. Simulations indicated similar overall PK exposures following weight-
based and flat-dosing regimens.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� Durvalumab is a human monoclonal antibody that binds to
PD-L1 and blocks its interaction with PD-1 and CD80. Durva-
lumab was granted accelerated approval for second-line urothe-
lial carcinoma, breakthrough designation for stage III non-small
cell lung cancer, and is investigated in a number of malignan-
cies. The population pharmacokinetics (PK) of durvalumab has
not yet been described in advanced solid tumors.
WHAT QUESTION DID THIS STUDY ADDRESS?
� The analysis characterized the PK of durvalumab and quan-
tified the determinants of durvalumab exposure in humans to
better appraise the requirement for dose adjustment in special
populations, and whether a flat-dosing regimen would be com-
parable to the currently approved weight-based dosing regimen
of 10mg/kg q2w i.v.
WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� This study proposes a novel semimechanistic PK model of dur-
valumab able to quantify the interplay between disease status and
durvalumab exposure change over time at both the population

and the individual level by incorporation of time-varying pharma-
codynamic biomarkers on linear clearance. The model also
describes the nonlinear clearance at low doses and association
with sPD-L1 levels. As a direct application, PK model simulations
support the potential switch from a weight-based dosing to a flat-
dosing regimen.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE
� The model we propose enables PK and pharmacodynamics
(PD) to crosstalk according to a semimechanistic framework
that is statistically superior to an empirical time-varying descrip-
tion of clearance recently proposed for monoclonal antibodies
in cancer patients. It elucidates the mechanistic role of disease
status on durvalumab PK and permits quantification of the
magnitude of change over time of exposure based on disease sta-
tus and patient characteristics. These findings support the
hypothesis that decreased durvalumab clearance with time may
be associated with a decrease in nonspecific protein catabolic
rate among cancer patients who benefit from therapy.

A number of antibody-based anticancer therapies involving the
PD-1/PD-L1 (programmed cell death-1/programmed cell death
ligand-1) axis have emerged in recent years.1 PD-L1, a ligand for
PD-1, is upregulated in cancer cells and supports their evasion
from the immune system by inhibiting the action of tumor-

infiltrating T cells. Durvalumab (MEDI4736) is an anti-PD-L1
human immunoglobulin G1 (IgG1) kappa monoclonal antibody
currently being evaluated in a number of malignancies. It blocks
multiple interactions with PD-L1, thus releasing immune activity
by T cells against tumor cells. The human pharmacokinetics
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(PK) of these agents is of crucial interest for dose optimization.
Several covariates for anti-PD-1/PD-L1 antibodies have been
reported based on population PK analyses. Nivolumab and
pembrolizumab are anti-PD-1 antibodies currently approved for
several cancer indications (including melanoma and non-small
cell lung cancer (NSCLC)) while atezolizumab, avelumab, and
durvalumab are anti-PD-L1 antibodies (all received approval for
urothelial carcinoma).
The population PK analysis of pembrolizumab2 in advanced

solid tumors showed a typical IgG4 PK, with effects on exposure
of body weight, sex, performance status, renal function, albumin,
tumor type, and tumor size (all at baseline), and prior treatment
with ipilimumab, an anti-CTLA4 (cytotoxic T-lymphocyte-
associated protein 4, another immune checkpoint) monoclonal
antibody. Despite reaching statistical significance, none of these
covariates, which included a number of disease-related factors,
had a significant impact on pembrolizumab exposure at 2mg/kg
q3w. Use of the approved dose of 2mg/kg q3w was supported by
the analysis, although a more recent study3 supported the use of a
flat dose of 200mg q3w.
The population PK of nivolumab in a pooled dataset including

patients with advanced solid tumors was reported previously.4

Nivolumab, an IgG4 antibody, was found to have linear PK with
time-varying clearance, described empirically by a sigmoidal func-
tion4 decreasing over time with a 24.5% mean maximal reduction
from baseline. Statistically significant exposure covariates included
body weight, sex, performance status, albumin, race, renal func-
tion, and lactate dehydrogenase (LDH). Liu et al.5 found in a
complementary analysis that the maximum decrease in nivolumab
clearance was statistically associated with baseline disease status
and hinted that posttreatment disease status may also play a role
in nivolumab exposure. None of the covariates were found clini-
cally relevant and the same conclusion was reached in the analysis
described in the approval summary.6 While this analysis focused
on the 3mg/kg q2w (every 2 weeks) dosing regimen, a subsequent
study supported the use of 240mg q2w.7

The population PK of the IgG1 antibody atezolizumab
(approved at 1,200mg q3w) in hematologic and solid malignan-
cies was described in a recent report.8 The PK was linear over a
wide dose range. Population PK indicated several statistically sig-
nificant covariates (body weight, sex, anti-drug antibody (ADA),
albumin, and tumor burden), none of which would require dose
adjustment. Accumulation was well described, but a visual predic-
tive check (VPC) indicated a small trend of increased exposure
with time from cycle 3 onwards that was not fully captured by
their linear clearance model predictions. Lastly, avelumab, an
IgG1 antibody, reported similar PK properties as other antibodies
targeting the PD-1/PD-L1 axis, with no clinically relevant covari-
ates impacting avelumab exposure levels that would warrant dose
adaptation.9

The objective of this work was to develop a population PK
model of durvalumab, thus quantifying the effect of patient/
disease characteristics on PK, including the explanatory value of
time-varying biomarkers on durvalumab clearance. Subsequently,
the model was used to compare weight-based vs. flat-dosing
regimens.

RESULTS
Data
A total of 1,409 patients provided data following durvalumab
administration. Dose levels in Study 1108 (NCT01693562)
ranged from 0.1–10mg/kg q2w i.v. and from 15mg/kg q3w
i.v. to 20mg/kg q4w i.v. ATLANTIC (NCT02087423) used
a dose of 10mg/kg q2w i.v. The study design details are pro-
vided in Supplementary Materials Table S1. Covariate sum-
mary statistics are provided in Table 1. The population
included in this PK analysis was typical of an all-comer can-
cer patient pool, with the majority of patients being male
(56.7%), with median age 62, and median body weight at
baseline of 69.8 kg. Around two-thirds of the patients had a
baseline Eastern Cooperative Oncology Group (ECOG) per-
formance status score of 1. In the pan-tumor pool used for
this analysis, UC patients were 162 and lung cancer patients
represented the biggest pool (n5 776).
Most cancer patients were white (71.0%), with a sizeable pool

of Asians (19.2%) and 3.1% Black or African American patients.
Postbaseline ADA status was chosen in the analysis as the most
relevant immunogenicity variable to evaluate the impact of ADA
on durvalumab PK.

Primary population PK modeling
A two-compartment PK model including both linear and nonlin-
ear (Michaelis-Menten) clearance adequately described the data
(Supplementary Materials Figure S1). Durvalumab exhibited
nonlinear PK with saturable target-mediated clearance at doses
<3mg/kg and linearity was approached at doses �3mg/kg. The
best stochastic model included a random variable on clearance
(CL), central and peripheral volume (V1 and V2, respectively),
with banded-structure block correlations. The residual error was
best described by a combined error model and was moderate in
size. Model parameter estimates for the time-invariant CL model
can be found in Table 2. Population PK analysis based on step-
wise covariate modeling (SCM) identified some statistically sig-
nificant covariates. Higher baseline albumin and low creatinine
clearance (CRCL) levels were associated with reduced CL.
Patients with a baseline ECOG score of 0 had lower CL than
patients with higher scores. Patients with samples positive for
postbaseline ADA status had higher CL than patients with nega-
tive ADA status. An increase in tumor size at baseline was associ-
ated with higher CL estimates. Patients with higher body weight
(WT) were associated with higher CL and V1, whereas females
had lower CL, V1, and V2 than males. A high sPD-L1 level at
baseline was associated with an increased Vmax, hence faster non-
linear clearance of durvalumab. All other covariate PK relation-
ships were not statistically significant.
Model validation by VPC showed good predictive performance

and provided an adequate description of the entire patient pool
(data not shown). Terminal half-life (t1/2) was estimated to be
�21 days.

Time-varying CL post-hoc analysis
First, an adaptation of an empirical time-changing sigmoidal
function4 was implemented to investigate whether durvalumab
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Table 1 Summary of baseline covariates and post-baseline ADA status

Categorical covariate Patients, n (%)

ADA statusa

Missing 210 (14.9)

Negative post-baseline 1,155 (82.0)

Positive post-baseline 44 (3.1)

Race

American Indian or Alaska native (51) 0 (0.0)

Asian (52) 270 (19.2)

Black or African American (53) 44 (3.1)

Native Hawaiian or other Pacific islander (54) 5 (0.4)

White (55) 1,000 (71.0)

Other or nonspecified or missing (56) 88 (6.2)

Multi-race (57) 2 (0.1)

Gender

Male 799 (56.7)

Female 610 (43.3)

ECOG performance status

Missing 5 (0.4)

0 480 (34.1)

1 921 (65.4)

2 3 (0.2)

Tumor type

Advanced cutaneous melanoma 22 (1.6)

Bladder cancer (urothelial carcinoma) 162 (11.5)

Colorectal cancer 2 (0.1)

Gastroesophageal cancer 54 (3.8)

Glioblastoma 20 (1.4)

Hepatocellular carcinoma 40 (2.8)

HPV positive cancer 22 (1.6)

MSI-high cancer 62 (4.4)

Nasopharyngeal carcinoma 10 (0.7)

Nonsquamous NSCLC 520 (36.9)

Squamous NSCLC 235 (16.7)

Ovarian cancer 46 (3.3)

Pancreatic adenocarcinoma 36 (2.6)

Renal cell cancer 2 (0.1)

Squamous cell carcinoma of head and neck 62 (4.4)

Small cell lung cancer 21 (1.5)

Soft tissue sarcoma 20 (1.4)

Triple negative breast cancer 41 (2.9)

Table 1 Continued on next page
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clearance was time-dependent (Figure 1 left hand side). Model
parameter estimates for this empirical time-varying CL model
can be found in Table 2. A mean of 16.9% (1-exp(Tmax))
decrease in clearance from baseline described the data adequately.
However, the empirical nature of this model and its lack of stabil-
ity warranted investigating alternatives, including longitudinal
biomarkers able to explain the clearance time-dependency in a
more mechanistic manner. By visual inspection, longitudinal data
of LDH, neutrophil-to-lymphocyte ratio (NLR), albumin (ALB),
and tumor size all showed a trend over time (Figure 2). The
incorporation of time-dependent changes in albumin and tumor
size levels on durvalumab CL improved the statistical fit (DOFV
of –392 and –94, respectively, compared to the model incorpo-
rating baseline covariates) and yielded a semimechanistic time-
varying CL model (see Table 2 and Figure 1right hand side).
This model provided good stability and explained 15% of the
interindividual variability on clearance (11% being attributable to
ALB and 4% to tumor size) (see Supplementary Materials Fig-
ures S2 and S3).
Typical durvalumab clearance in the semimechanistic time-

varying CL model was 0.232 L/day, V1 was 3.51 L, V2 was
3.45 L, and the Michaelis-Menten constant (Km) was 0.344mg/
L, with moderate interindividual variability in clearance (27.0%
coefficient of variation (CV)), V1 (20.9% CV), and V2 (33.6%
CV) (Table 2). Km was poorly estimated, likely due to the lack

of data at low doses (3.78% of data is at doses �3mg/kg) at
which PD-L1 alters the kinetics of durvalumab.
Time-changing LDH and NLR did not improve the model

further and were not incorporated in the final model. Note that
tumor size at baseline measurable based on a blinded indepen-
dent central review was missing in a large portion of patients
(43.4%), suggesting that its true explanatory value on the CL
time-course was not fully quantifiable from this dataset.
The VPC of the empirical time-varying CL model and the
semimechanistic time-varying CL model performed similarly
(Figure 1); however, the semimechanistic model performed bet-
ter based on stability, parsimony, and potential mechanistic value
for extrapolation (Table 3, Supplementary Materials Figure S3).

Clinical relevance of covariates
None of the covariates that were statistically significant (P <
0.001) predictors of durvalumab PK were found to be clinically
relevant as judged by the magnitude of covariate effect on durva-
lumab PK or exposure parameters not exceeding 30%, a threshold
set a priori (Figure 3). Since the variability of observed values at
baseline did not increase with time (see Figure 2), baseline evalu-
ation of covariates as displayed in Figure 3 was sufficient to
appraise their clinical relevance. Low albumin levels gave rise to a
22% reduction in AUCss for the 10th percentile level (30 g/L)
compared to a typical patient. This level is below the upper limit

Table 1 Continued

Categorical covariate Patients, n (%)

Uveal melanoma 24 (1.7)

NSCLC (nonspecified histology) 14 (1.0)

Advanced malignant melanoma 8 (0.6)

Continuous
covariate (units) n Mean (SD) Median Range n (%) missing

Normal range
(LLN–ULN)

n (%) patients with
values�ULN or� LLN

Age (years) 1,409 60.9 (11.6) 62.0 19.0–96.0 0 (0.0) NA NA

Weight (kg) 1,409 71.7 (17.1) 69.8 34.0–149.1 0 (0.0) NA NA

Bilirubin (mg/dL) 1,394 0.5 (0.3) 0.5 0.1–3.9 15 (1.1) 0.3–1.9 9 (0.6)

AST (IU/L) 1,389 27.2 (21.6) 21.0 0.0–322.0 20 (1.4) 10.0–34.0 247 (17.5)

ALT (IU/L) 1,394 23.5 (18.8) 18.0 0.0–245.0 15 (1.1) 7.0–56.0 75 (5.3)

Albumin (g/L)b 1,386 37.3 (5.3) 38.0 20.0–57.1 23 (1.6) 35.0–55.0 446 (31.7)

Cr (mg/dL) 1,393 0.86 (0.3) 0.8 0.3–2.2 16 (1.1) 0.6–1.2 162 (8.7)

CRCL (mL/min) 1,393 90.6 (32.0) 85.7 26.6–270.5 16 (1.1) 90.0–130.0 774 (54.9)

LDH (IU/L)b 1,363 356.6 (395.0) 241.0 18–5707 47 (3.3) 105.0–303.0 493 (35.0)

sPD-L1 (pg/mL) 1,259 139.0 (115.6) 124.8 67.1–3471 150 (10.6) NA NA

NLRb 1,322 6.07 (6.0) 4.31 0.45–89.3 87 (6.2) 0.78–3.53 812 (61.4)

Tumor size (mm)b 797 84.8 (52.6) 74.8 10–366 612 (43.4) NA NA

aADA status is defined based on postbaseline ADA positive or negative criteria (binomial covariate). Hence, it was not handled as a time-varying covariate. bCovariates with
time-varying data also available in the analysis dataset (see Figure 2 for time-course distribution of values). ADA, anti-drug antibody status; ALT, alanine transaminase;
AST, aspartate transaminase; Cr, serum creatinine; CRCL, creatinine clearance; ECOG, Eastern Cooperative Oncology Group; HPV, human papillomavirus; LDH, lactate
dehydrogenase; LLN, lower limit of normal; MSI, microsatellite instability; NA, not applicable; NLR, neutrophil-to-lymphocyte ratio; SD, standard deviation; sPD-L1, soluble
PD-L1 level at baseline; ULN, upper limit of normal.
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Table 2 Parameter estimates of three candidate PK models of durvalumab (a 5 final model) (with 95% confidence interval derived
from nonparametric bootstrapping)

Parameter
Time-invariant CL model

[95% CI]
Empirical time-varying CL model

[95% CI]
Semimechanistic time-varying CL

modela [95% CI]

CL (L/day) 0.232 [0.221, 0.240] 0.249 [0.237, 0.273] 0.232 [0.224, 0.238]

V1 (L) 3.51 [3.44, 3.58] 3.50 [3.43, 3.56] 3.51 [3.44, 3.59]

V2 (L) 3.56 [3.36, 3.78] 3.20 [2.80, 3.41] 3.45 [3.26, 3.66]

Intercompartmental
clearance Q (L/day)

0.477 [0.403, 0.565] 0.511 [0.43, 0.61] 0.476 [0.406, 0.556]

Michaelis-Menten
constant Km (mg/L)

0.608 [0.117, 1.71] 0.452 [0.0408, 1.47] 0.344 [0.0317, 1.32]

Maximum elimina-
tion rate Vmax

(mg/day)

0.961 [0.59, 1.53] 0.744 [0.434, 1.17] 0.824 [0.544, 1.25]

Tmax (unitless) — 20.185 [20.344,20.101] —

TC50 (days) — 173.1 [74.2, 395] —

Lambda (unitless) — 1.817 [1.22, 4.22] —

Correlation CL.V1 0.269 [0.203, 0.312] 0.271 [0.251, 0.342] 0.279 [0.211, 0.321]

Correlation V1.V2 0.600 [0.565, 0.630] 0.627 [0.518, 0.614] 0.560 [0.512, 0.587]

Covariate 1: ALB on
CL

20.0272 [20.0306, 20.0157] 20.0241 [20.0307,20.0222] 20.0350 [20.0383, 20.0317]b

Covariate 2: WT on
CL (power)

0.400 [0.247, 0.497] 0.369 [0.295, 0.481] 0.389 [0.299, 0.477]

Covariate 3: ADA on
CL

0.256 [0.0890, 0.438] 0.308 [0.139, 0.490] 0.234 [0.0905, 0.401]

Covariate 4: CRCL
on CL (linear)

0.00128 [0.000637, 0.00208] 0.00135 [0.000601, 0.00211] 0.00149 [0.000834, 0.00218]

Covariate 5: ECOG
(0 score) on CL

20.0802 [20.117, 20.0451] 20.0763 [20.106, 20.0366] 20.0630 [20.0935, 20.0288]

Covariate 6: tumor
size on CL

0.00169 [0.00113, 0.00237] 0.00168 [0.00102, 0.00214] 0.00178 [0.00131, 0.00223]b

Covariate 7: SEX
(female) on CL

20.129 [20.165,20.0875] 20.127 [20.173, 20.0942] 20.143 [20.177, 20.107]

Covariate 8: sPD-L1
on Vmax (power)

0.00397 [0.00209, 0.0126] 0.00500 [0.00272, 0.0149] 0.00336 [0.00145, 0.0134]

Covariate 9: SEX
(female) on V1

20.166 [20.189,20.137] 20.166 [20.191,20.136] 20.165 [20.192, 20.136]

Covariate 10: WT on
V1 (power)

0.406 [0.335,0.470] 0.405 [0.345, 0.479] 0.406 [0.337, 0.474]

Covariate 11: SEX
(female) on V2

20.236 [20.302,20.175] 20.240 [20.290,20.154] 20.205 [20.261, 20.149]

Between-subject
variability CL x
(CV%)

29.3% [27.7, 32.5] 28.50% [25.8, 30.2] 27.0% [25.1, 28.7]

Between-subject
variability V1 x
(CV%)

20.9% [18.9, 22.9] 21.30% [18.9, 22.7] 20.9% [18.9, 22.8]

Between-subject
variability V2 x
(CV%)

38.4% [23.0, 44.2] 37.60% [29.4, 43.1] 33.6% [28.1, 39.3]

Table 2 Continued on next page
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of normal and is representative of a patient with hypoalbumine-
mia. This reduction in durvalumab exposure would not translate
into a substantial reduction in the target suppression coverage
since the trough concentration would still result in >99% sup-
pression of the target in the serum throughout the dosing inter-
val. Hence, albumin effect on durvalumab serum levels does not
warrant dose adaptation. Tumor size at baseline is predicted to
result in an exposure drop of –13% in AUCss at the distribution
higher end (90th percentile5 158mm) compared to a typical
patient (median target lesion size at baseline of 74.8mm). Con-
versely, an increase in AUCss by1 10% is predicted by the model
at the other extreme of the tumor size distribution (10th percenti-
le5 26.4mm) compared to a typical patient. A combined effect
of increased CL and V1 with increasing body weight did not
translate into more than a 30% difference in AUCss with –17%
respectively, for the 10th percentile patient (WT5 51.4 kg) and
120% for the 90th percentile patient (WT5 93.7 kg) compared
to a typical patient (WT5 69.8 kg). This increase in exposure
for high body weight patients is mainly linked to the weight-
based dosing scheme of durvalumab used in simulations. Females
had1 17% higher AUCss, due to the impact of sex on CL, V1,
and V2, which are reduced for women. CRCL levels at the 10th

and 90th percentiles had a marginal impact on exposure (15%
and –7% impact on AUCss for the 10th and 90th percentiles,
respectively). Patients with ECOG score of 0 showed a1 7%
increase in AUCss compared to a typical patient. Finally, patients
whose samples tested positive for ADA had lower exposure levels
of durvalumab but the reduction of –19% in AUCss did not
reach clinical relevance.
Other covariates, such as age and race, were not identified as

influencing durvalumab PK. Similar findings as described here
for AUCss were seen for other PK metrics (Cmax,ss and Cmin,ss).
Based on these cumulative results, no dose adjustment is required
for special populations.

Comparison of weight-based vs. flat-dosing regimens
The effect of weight-based and flat-dosing regimens were evalu-
ated using simulations based on the final population PK model
(semimechanistic time-varying CL). Two i.v. flat-dosing regimens
were evaluated against 10mg/kg q2w i.v.: 750mg q2w and
1,500mg q4w. Simulation results presented in Figure 4 indicated
that both regimens yield a similar median steady-state exposure
and associated variability, with no increased incidence of extreme
concentration values for a flat-dosing regimen compared to an

Table 2 Continued

Parameter
Time-invariant CL model

[95% CI]
Empirical time-varying CL model

[95% CI]
Semimechanistic time-varying CL

modela [95% CI]

Between-subject
variability Tmax x
(SD)

— 0.234 [0.132, 0.357] —

Proportional resid-
ual error r (CV%)

21.70% [20.9, 22.6] 21.40% [20.5, 22.2] 21.3% [20.5, 22.1]

Additive error stan-
dard deviation r
(lg/mL)

0.351 [0.0984, 0.474] 0.371 [0.122, 0.506] 0.301 [0.0954, 0.522]

Amount of success-
ful bootstraps out of
1000 replicates

608 495 694

ADA, anti-drug antibody status; ALB, serum albumin expressed in g/L; CI, confidence interval; CL, clearance; CRCL, creatinine clearance expressed in ml/min; CV%, coeffi-
cient of variation in percent; ECOG, Eastern Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; PK, pharmacokinetic; SD, standard deviation;
SEX is 1 for female; sPD-L1, soluble PD-L1 level expressed in pg/mL; tumor size is expressed in mm; V1, central volume; V2, peripheral volume; WT, body weight
expressed in Kg; x, standard deviation of omega; r, standard deviation of sigma.
bTumor size and albumin for the semimechanistic time varying CL model were based on samples taken during the trials where the last observation is carried forward for
each PK sample. For the other two models tumor size and albumin at baseline were used.
h-shrinkage for the time-invariant CL model were 16.8%, 21.5%, 33.3% for CL, V1, and V2, respectively. e-shrinkage estimate was 13.9%. h-shrinkage for the empirical
time-varying CL model were 17.6%, 20.9%, 37.3%, and 67.0% for CL, V1, V2, and Tmax, respectively. E-shrinkage estimate was 14.4%. h-shrinkage for the semimechanistic
time-varying CL model were 17.5%, 20.6%, and 36.2% for CL, V1, and V2, respectively. e-shrinkage estimate was 13.7%.
The functional form of the PK-covariate relationships found in the semimechanistic time-varying CL model is displayed below. Continuous covariates were centered using
the median in the patient population whereas time-changing covariates were centered based on the median baseline values:

CL50:232 � ðADA � ð110:234ÞÞ � ð120:035 � ðALB238ÞÞ � ð110:00149 � ðCRCL285:65ÞÞ � ð20:063 � ECOGÞ � ð20:143 � SEXÞ

�
�

110:00178 � ðtumor size274:8Þ
�
� ðWT=69:8Þ0:389

Vmax50:824 �
�

110:00336 � ðsPDL12124:8Þ
�

V153:51 � ð20:165 � SEXÞ � ðWT=69:8Þ0:406

V253:45 � ð20:205 � SEXÞ
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equivalent weight-based dosing regimen (see Supplementary
Materials Figure S4). This result supports a potential switch to a
flat-dosing regimen of 750mg q2w i.v. or an equivalent, but less
frequent, flat-dosing regimen of 1,500mg q4w i.v.

DISCUSSION
A semimechanistic time-varying CL model, featuring post-hoc inclu-
sion of albumin and tumor size time courses, was proposed to
explain the change in clearance of durvalumab over time. A two-
compartment PK model including both linear and nonlinear

clearance adequately described PK data for all dosing regimens. Typ-
ically, durvalumab clearance was 0.232L/day, V1 was 3.51 L, V2
was 3.45 L, and Km was 0.344mg/L with moderate interindividual
variability in clearance (27.0% coefficient of variation (CV)), V1
(20.9% CV), and V2 (33.6% CV). The estimated t1/2 was about 21
days. The PK model identified 10mg/kg i.v. q2w as the dose to
maintain exposure levels above 50 lg/mL throughout the dosing
interval, with >90% of patients expected to reach almost complete
saturation of both soluble and membrane-bound PD-L1 in serum
(>99% target suppression, based on mean Km value).

Figure 1 Left panels: Empirical time-varying CL model. Right panels: Semimechanistic time-varying CL model, where, Top: VPC (10 mg/kg q2w i.v.); Bot-
tom: Goodness-of-fit (all dose levels). Dark blue: smoother line. Red dotted line: indicators of –2 and 2 conditional weighted residuals. Black lines: line of
identity. CWRES, conditional weighted residues; DV, data value; IPRED, individual prediction; i.v., intravenous; PRED, population predicted; q2w, every 2
weeks; VPC, visual predictive check. [Color figure can be viewed at cpt-journal.com]
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Figure 2 Changes in tumor size, serum albumin, LDH, and NLR over time in the analysis dataset upon which the semimechanistic time-varying CL model
was built. An LOCF imputation technique was used for interpolation during the merging of PK data and time-varying covariate data. Blue lines represent
loess smoother and pink area is the 95% confidence interval of this regression. LDH, lactate dehydrogenase; LOCF, last observation carried forward;
NLR, neutrophil-to-lymphocyte ratio. [Color figure can be viewed at cpt-journal.com]

Table 3 Comparisons of the empirical time-varying CL model performance with the semimechanistic time-varying CL model

Model Semimechanistic time-varying CL model Empirical time-varying CL model

Statistical criteria OFV560386 (DOFV5-368) OFV560754 (reference)

Parsimony 0 d.o.f.a 14 d.o.f.a

Model stability Successful minimization and covariance step Run terminated due to rounding errors and
aborted covariance step

Mechanistic explanatory value Change in clearance explained by changes in
disease state

Change in clearance explained by an empirical
formula

Application for PK prediction Model can predict PK based on individual and
population albumin concentrations and tumor

size changes

Model has limited predictive value since its
parameters only fit changes in clearance

observed in trials

Application for PD prediction Model can be linked to a PK/PD model with
changes in PK informing PD, and also mechanisti-

cally account for changes in PD informing PK

Model can be linked to a PK/PD model, but
changes in disease state will not automatically

impact PK behavior

ad.o.f., degree of freedom relative to the time-invariant CL model presented in Table 2; CL, clearance; OFV, objective function value; PD, pharmacodynamics.
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Although population PK analysis identified statistically signifi-
cant covariates (body weight, sex, postbaseline ADA, CRCL,
ECOG performance status, sPD-L1 levels, tumor size, and ALB),
none were found to be clinically relevant (impact on PK parame-
ters <30%). Age, race, tumor type, LDH, NLR, renal function
(mild to moderate), and hepatic function (mild) had no impact
on PK.
The empirical time-varying CL model approach supported a

slight decrease in clearance of 16.9%. To investigate the possible
origin of this phenomenon, longitudinal time-varying covariates
indicative of potential changes in the patients’ health status
were selected. Durvalumab CL decreased with increasing albu-
min level, and with decreased tumor burden. Hypoalbuminemia
is a well-known marker of cachexia, inflammatory conditions,

and increased catabolic activity,10 and the impact of albumin
on PK of monoclonal antibodies has been previously reported
for infliximab,11 bevacizumab,12 ustekinumab,13 and pertuzu-
mab.14 However, these interactions were only identified based
on baseline albumin measures. The observed albumin increase
posttreatment in cancer patients responding to therapy may be
associated with an improvement in cancer inflammation and
cachexia. Recently, experimental evidence has been reported
that tumor cells can directly catabolize albumin and other extra-
cellular proteins by micropinocytosis, and potentially contribute
to hypoalbuminemia in cancer patients.15 Because albumin and
IgG share the same FcRn salvaging pathway, hypoalbuminemia
could reflect a higher protein catabolic rate in cancer patients
that also affects the clearance of durvalumab and other IgG
monoclonal antibodies. Interestingly, the time-varying clearance
was associated with the linear clearance of durvalumab, while
the nonlinear clearance was associated only with baseline sPD-
L1 levels. These results suggest that the decrease in clearance
with time in patients with tumor shrinkage is not caused by a
decrease in target-mediated clearance by tumor cells, but instead
by a nonspecific decrease in IgG catabolism. Besides, the posi-
tive association found by covariate analysis between the sPD-L1
level at baseline and Vmax implies that faster elimination of dur-
valumab at low doses is likely linked to the faster turnover of
PD-L1 compared to the rate of elimination of durvalumab
through the reticuloendothelial system and neonatal FcRn recy-
cling process.
The magnitude of individual change in CL being associated

with response status of patients was previously hypothesized by
Wang et al.16 Although more than 40% of the patients had miss-
ing tumor size information in our covariate analysis, tumor
shrinkage was associated with decreased durvalumab CL, result-
ing in higher exposure for responders. As such, the recovery of
albumin levels and reduction in tumor burden in durvalumab-
treated patients may be linked with disease status and protein
catabolic rate. This suggests an interaction of disease status and
durvalumab PK that is embedded in the semimechanistic time-
varying CL model presented here.
All models, including the time-invariant CL model, empirical

time-varying CL model, and semimechanistic time-varying CL
model, were compared and our analysis favored the more mecha-
nistic model when considering statistical fit, stability, and predic-
tive value (Table 3). The model also provides a broader
understanding of the mechanism of action of durvalumab, cross-
linking the PK and the disease status (tumor burden, cancer
inflammation, and cachexia). Quantifying the association
between PK and pharmacodynamics (or clinical endpoints) is
critical to prevent potential confounding of exposure–response
analyses in cancer treatment. Overall survival or progression-free
survival stratification by exposure (or any other biomarker) in
Kaplan–Meier univariate analysis could suggest an exposure–
response that is only apparent, due to the high correlation of PK
with disease status. This is further complicated by the fact that
disease status is evolving with time, and patients benefiting from
therapy have a higher steady-state exposure due to their decreased
catabolic status and/or improved cachexia. This can provide a false

Figure 3 Effect of baseline covariates on exposure parameter AUCss.
Simulations obtained using Berkeley Madonna software based on the
final PK model (semimechanistic time-varying CL model) estimates of
NONMEM for each covariate at baseline separately. The time-varying
nature of covariate (tumor size and albumin) was not accounted for in
this evaluation, provided that the variability at baseline did not
increase with time. Solid black vertical line and blue square show
steady-state exposure level of durvalumab for a typical patient (male,
without positive ADA, with baseline values as follows: ECOG perfor-
mance status of 1 or higher, body weight of 69.8 kg, serum albumin
level of 38 g/L, target lesion tumor size of 74.8 mm, and CRCL esti-
mate of 85.65 mL/min). Light gray area shows 30% change from the
typical patient; dark gray delineated by dotted black lines shows 20%
change. Red horizontal bar represents the covariate being evaluated
with values of the 10th and 90th percentiles of the covariate distribu-
tion displayed for continuous covariate in square brackets. The length
of each bar describes the impact of that particular covariate on durva-
lumab exposure metric, with the percent change of exposure from the
typical value being displayed (bold blue); ADA, anti-drug antibody;
AUCss, area under the curve steady state (derived from analytical solu-
tion Dose/CLss, with CLss taken on Day 365); CRCL, creatinine clear-
ance; ECOG, Eastern Cooperative Oncology Group performance status.
[Color figure can be viewed at cpt-journal.com]
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impression of predictive or prognostic value of some biomarkers,
or that higher doses may provide more efficacy, as exemplified by a
trastuzumab case study in metastatic gastric cancer.17,18 Without a
clear understanding of the degree of correlation between all these
variables, incorrect conclusions could be easily drawn when analyz-
ing data in only one dimension without accounting for potential
interplays between PK and disease variables. The pitfalls of
exposure–response without accounting for time-varying exposure
in oncology are further discussed elsewhere.10,16

A similar magnitude of change in clearance over time was pre-
viously reported for nivolumab4 and did not reach clinical signifi-
cance. Liu et al. reported the impact of baseline albumin, baseline
tumor size, and best overall response on CL of nivolumab.5 The
results from our population PK analysis allow description of the
time-varying CL of durvalumab with a more parsimonious model
that accounts for patient characteristics at baseline and during
the course of treatment.
Moreover, the strength of population PK modeling to rational-

ize dose selection and to corroborate the requirement of dose
adaptation was exemplified. These results indicate that the
change in CL over time was not clinically relevant and there is
no need for dose adjustment based on baseline patient character-
istics. One limitation of this approach is that the clinical rele-
vance of the covariate effect on exposure levels is evaluated in
isolation rather than in a multivariate manner. However, the
intent is to provide clinicians and health practitioners a simple
guide to quantify the relative effect of each covariate on exposure
levels. In clinical practice, a summation of the covariate effects
when a patient presents a combination of multiple risk factors
could be considered to evaluate the optimal dosing regimen of a
given therapeutic. Lastly, population PK modeling of durvalumab
supports the potential switch to a flat-dosing regimen of 750mg
q2w i.v. or a regimen of 1,500mg q4w i.v. The flat dose regimen
of durvalumab of 1,500mg q4w i.v. is currently pursued in multi-
ple confirmatory trials across several indications.

METHODS
Study design and patient population
This analysis is based on the pooling of two clinical studies investigating
durvalumab in solid tumors (see Supplementary Materials Table S1
and Table 1):

� CD-ON-MEDI4736-1108 (NCT01693562; referred to as Study
1108): A phase Ib/II study to evaluate the safety, tolerability, and
pharmacokinetics of MEDI4736 in subjects with advanced solid
tumors.

� ATLANTIC or D4191C00003 (NCT02087423): A phase II, noncom-
parative, open-label, multicenter, international study of MEDI4736, in
patients with locally advanced or metastatic non-small cell lung cancer
NSCLC (Stage IIIB–IV) who have received at least two prior systemic
treatment regimens including one platinum-based chemotherapy regimen.

Both studies were conducted in compliance with the Declaration of
Helsinki and the Guidelines for Good Clinical Practice. Written
informed consent was obtained from all patients.

Primary population PK modeling analysis
A nonlinear mixed-effects modeling approach was used in NONMEM
software (v. 7.3, ICON Development Solutions, Ellicott City, MD;
200619) to analyze durvalumab PK data, using a first-order conditional
estimation method with interaction maximum likelihood estimation
method. Data management and graphical exploration were conducted in
R (v. 3.3.1 or higher, Vienna, Austria).20 Model parameters’ uncertainty
was computed using the default option for the NONMEM $COV
record or by bootstrap estimation.21 A series of structural models were
evaluated based on objective function values (OFV), precision, plausibil-
ity of parameter estimates, and goodness-of-fit plots, including
simulation-based visual predictive checks (VPC).22,23 Parameter distribu-
tion assumptions are discussed in the Supplementary Materials.

Baseline covariate analysis was automated in Perl-speaks-Nonmem
(PsN) v. 4.0 or higher24–27 following the stepwise covariate model
(SCM) building technique.28,29 The SCM included two steps—a for-
ward selection and a backward elimination phase (with statistical criteria
prespecified respectively at a type-I error rate of P < 0.01 and P <
0.001). The P-values were derived from the change in the OFV provided
by NONMEM based on the likelihood ratio test (LRT) for nested mod-
els. Covariates were first investigated graphically and summarized

Figure 4 Simulated PK profiles of durvalumab following weight-based dosing regimens (10mg/kg q2w i.v.) compared with flat-dosing. (a) 750 mg q2w i.v.;
(b) 1,500 mg q4w i.v. The area (pink, gray, and green) represents the 90% prediction interval from the semimechanistic time-varying CL model according to
three different dosing schemes; they are delimited by the 5th and 95th percentiles of the simulated PK data obtained from a pool of n 5 1,000 virtual patients.
Only the body weight covariate effect was investigated (no time-varying covariate were used for simulations). [Color figure can be viewed at cpt-journal.com]
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numerically. If initial graphical exploration pointed to a relationship
between a covariate and h, suggesting an influence on the interindividual
variability (x2) of durvalumab PK, the covariate-PK relationship was
then assessed in the nonlinear mixed-effects model framework. The cova-
riates to be evaluated were selected based on scientific interest, mechanis-
tic plausibility, and prior knowledge and the implementation is described
in the Supplementary Materials.
The primary population PK analysis evaluated the impact of baseline

covariates assuming a time-invariant clearance (the time-invariant CL
model). For baseline covariate with missing information, no data imputa-
tion was performed. The primary analysis evaluated the impact of covari-
ates related to demographics (age, sex, body weight, race); disease status
(performance status, tumor type, NLR, and tumor size defined as the sum
of the longest diameter of target lesions); liver function (aspartate transam-
inase, alanine transaminase, total bilirubin, serum albumin); kidney func-
tion (CRCL, serum creatinine); metabolic marker (LDH); level of sPD-
L1; and postbaseline ADA. The significance of a covariate effect was then
evaluated by its clinical or physiological relevance. Based on the final
model parameter estimates, a final filter was applied to appraise the clinical
relevance of the covariate-PK relationship found to be statistically signifi-
cant by means of deterministic simulations in the software Berkeley
Madonna (v. 8.3.18, Berkeley, CA).30 If the magnitude of covariate effect
was less than 30% of the parameter estimates (or key predicted PK expo-
sure metrics, such as area under the concentration–time curve at steady
state (AUCss), and steady state minimum and maximum concentrations
of durvalumab (Cmin,ss, and Cmax,ss)) for a typical patient, the covariates
were not considered clinically relevant.

Post-hoc analysis of time-varying CL
The primary analysis model (time-invariant CL model) was comple-
mented with a post-hoc analysis accommodating a time-varying clearance
component. Two competing time-varying durvalumab CL models were
evaluated: an empirical time-varying CL model, and a semimechanistic
time-varying CL model. First, an empirical model already published for
other PD-1/PDL-1 mAbs4,5 was implemented to explain the time-
changing clearance of durvalumab. The empirical time-varying CL
model employed a sigmoid time-course to describe longitudinal changes
in clearance values, without links to biologically relevant explanatory var-
iables, as described below:

CLi5TVCLcov:e
EMPIRICAL

:e
hCL

EMPIRICALðtÞ5 Tmax � tLambda
TC50Lambda1tLambda

In this sigmoidal saturation model, CL is the systemic clearance,
TVCLcov is the typical value of clearance for a given covariate, hCL is
the interindividual clearance variability random effect, t is time after first
dose, Tmax is the logarithm maximum fractional change in clearance
over the trial time course, and TC50 is the time at which the change is
half of its maximum, while Lambda is an exponential shape parameter.
A semimechanistic time-varying CL model was implemented to

incorporate longitudinal time-varying covariates to explain changes in
durvalumab CL over time. Four time-varying covariates, including
tumor size, ALB, LDH, and NLR, were investigated in this approach.
The last-observation-carry-forward (LOCF) technique was employed to
interpolate the missing covariate values in the PK dataset. NLR was
evaluated as a potential covariate on PK of durvalumab, as this metric
was shown to have either prognostic or predictive value for immune
checkpoint inhibitors,31–33 but may be correlated with other variables
such as PK or other disease indices. Time-dependent profiles related to
tumor burden (target lesion size and LDH), and cancer, inflammation,
cachexia, and protein catabolic rate (NLR and albumin) were tested for
inclusion in the population PK model. They either replaced the baseline
covariate or were newly added to the existing covariate relationship.

The rationale is that accounting for longitudinal changes in these cova-
riates would explain the variation in time-dependent changes in CL in a
semimechanistic manner, thus facilitating biologically plausible extrapo-
lation of results.

A comparison of three approaches (time-invariant CL model, empiri-
cal time-varying CL model, and semimechanistic time-varying CL
model) was conducted by means of statistical comparison of overall fit
(LRTs), parameter estimates and precision, mechanistic plausibility, par-
simony, and predictive performance (VPCs).

The methodology for assessing the weight-based vs. fixed dosing simu-
lations and a brief description of assay methodology can be found in the
Supplementary Materials.

SUPPLEMENTARY MATERIAL is linked to the online version of the arti-
cle at http://www.cpt-journal.com
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