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Foe or friend? Janus-faces of the
neurovascular unit in the formation
of brain metastases
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Abstract

Despite the potential obstacle represented by the blood–brain barrier for extravasating malignant cells, metastases are

more frequent than primary tumors in the central nervous system. Not only tightly interconnected endothelial cells can

hinder metastasis formation, other cells of the brain microenvironment (like astrocytes and microglia) can also be very

hostile, destroying the large majority of metastatic cells. However, malignant cells that are able to overcome these

harmful mechanisms may benefit from the shielding and even support provided by cerebral endothelial cells, astrocytes

and microglia, rendering the brain a sanctuary site against anti-tumor strategies. Thus, cells of the neurovascular unit have

a Janus-faced attitude towards brain metastatic cells, being both destructive and protective. In this review, we present the

main mechanisms of brain metastasis formation, including those involved in extravasation through the brain vasculature

and survival in the cerebral environment.
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Introduction

Brain metastases are life-threatening pathologies with
limited therapeutic options, representing a major cause
of death.1 Although endothelial cells of brain capillaries
are tightly interconnected, therefore difficult to pene-
trate, metastases occur 10 times more frequently than
primary brain tumors in adults and have a prevalence
of 8.3–14.3/100,000 persons.2 The number of diagnosed
brain metastases is constantly increasing partly because
of the improved diagnostic techniques and partly due to
better therapeutic possibilities targeting primary
tumors and non-cerebral metastases, prolonging the
life of patients, thus allowing tumor cells to disseminate
into and proliferate in the brain.

Although several different cancer cell types can col-
onize the brain (renal, colorectal, ovarian, prostate,
etc.), tumors originating from lung cancer, breast
cancer and melanoma are the most common, repre-
senting 67–80% of metastases of the central nervous
system (CNS).2 Lung cancer accounts for 39–56% of
brain metastases; non-small cell lung cancer (NSCLC),
especially adenocarcinoma being the most frequent

source of metastatic brain disease.2 In addition, the
brain is a common secondary tumor site for small
cell lung cancer (SCLC).3 The second most frequent
cause of CNS metastases is breast cancer (representing
13–30% of the cases)2; brain metastases occurring
more frequently in triple negative (i.e. negative for
estrogen receptors, progesterone receptor and Her2)
and Her2 overexpressing mammary tumors.4

Although much less prevalent than lung cancer or
breast cancer, melanoma (responsible for 6–11% of
brain metastases)2 has the highest risk to spread into
the CNS among all cancer types.5 According to
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autopsy reports, approximately 75% of patients dying
of melanoma have brain metastatic lesions.6 Patients
with BRAF or NRAS mutations are more likely to
have CNS involvement7; however, direct correlation
between BRAF mutations and development of brain
metastatic lesions is a question of debate.8 Brain
involvement – and generally metastasis formation –
is an early event in melanoma and lung cancer and
typically occurs late in breast cancer.9,10

The most frequent intracranial metastatic site is the
brain parenchyma (cerebrum, cerebellum and brain-
stem), most commonly the cerebral gray matter–white
matter border; however, the dura, the leptomeninges,
the pituitary, the pineal gland, the choroid plexus and
the ventricles can also be affected.11 Brain metastases
often occur in conjunction with extracranial metastases,
of which lung metastases are the most frequent. Brain
metastatic lesions are either single or multiple, the
prevalence of these latter increasing from 39% in the
1980s to 71% between 2005 and 2009.12 Brain second-
ary tumors present the tendency of having sharp bor-
ders; although infiltrative growth patterns have also
been described with a variable prevalence (0–
64%).13–16 The surrounding brain parenchyma is
often edematous. The main symptoms are non-specific,
like headache, vomiting, nausea, hemiparesis, visual
changes and seizures.

Despite significant therapeutic advances in non-cer-
ebral malignancies, management of brain metastases is
still a significant challenge. Besides palliative treat-
ments, surgery and radiotherapy (whole-brain radio-
therapy and stereotactic radiosurgery) remain the first
therapeutic choices.17 In addition, chemotherapy,
immune therapy and targeted therapy can be
applied.18–20 Unfortunately, uptake of systemic agents
is highly limited by the blood–brain barrier (BBB)21

and brain metastases have an extremely poor progno-
sis. Therefore, development of new preventive and
therapeutic strategies is urgently needed. This, on the
other hand, depends on the expansion of our know-
ledge on the biology of brain metastasis formation.

Unique aspects of brain metastasis
development

Initial steps of brain metastasis formation are common
with the development of non-cerebral metastases, i.e.
escape of cells from the primary (or another metastatic)
tumor, intravasation into and survival in the circulation
and arrival to capillaries of the metastatic site. These
general steps have been detailed elsewhere22–24; here we
focus on unique aspects of brain metastasis develop-
ment (Table 1). These aspects largely depend on the
complex interaction of tumor cells with the

Table 1. Unique aspects of brain metastasis formation.

Unique aspect of brain

metastasis formation Description Remarks References

Lack of classical lymphatic

vasculature in the brain

parenchyma (only hema-

togenous dissemination of

metastatic cells)

Extravasation of tumor cells through

vessels of the 1. brain parenchyma

or 2. choroid plexus

Molecular mechanisms of transmigra-

tion of tumor cells through fene-

strated capillaries of the choroid

plexus and through the blood–

cerebrospinal fluid are largely

uncharacterized

219

Interaction of metastatic cells

with endothelial cells of

the BBB

1. Metastatic cells have to overcome

this tight cellular barrier; 2. The

brain endothelium may support

transmigration and growth of tumor

cells in the CNS

Janus-faced role of the neurovascular

unit

Unique immunology of the

brain (partially immune

privileged organ)

Immune cells may have both supporting

and inhibitory effects on tumor cells

Brain metastases harbor an active

inflammatory microenvironment

dependent on both resident

microglia and infiltrating leukocytes

220,221

Highly specific neural

environment

Both cellular (e.g. astrocytes and

microglial cells) and non-cellular

elements (extracellular matrix,

growth factors, etc.) of the brain

parenchyma influence the fate of

tumor cells, being either harmful

or protective

Janus-faced role of the neurovascular

unit
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neurovascular unit (NVU) comprising cerebral endothe-
lial cells (CECs), pericytes, glial cells and neurons. The
NVU (which is a morphological unit) has important
functional roles, including the BBB, regulation of cere-
bral blood flow and homeostasis. Since brain metastasis
formation depends on the characteristics of both cancer
cells (the seed) and the brain microenvironment (the
soil),25 here we present both tumor cell properties –
needed for transmigration through brain microvessels
and for survival in the brain environment – and the reac-
tions of the central nervous tissue to invading malignant
cells. We describe in details the Janus-faced (two con-
trasting) attitudes of cells of the NVU (including CECs,
astrocytes andmicroglia) towards tumor cells, i.e. killing
the vast majority of brain invading metastatic cells, but
protecting those which are able to overcome the detri-
mental mechanisms.

Model systems used for studying brain
metastasis formation

The number of studies focusing on mechanisms of
brain metastasis formation has been constantly increas-
ing in the last few years. Main methodological
approaches addressing this problem include in vitro
studies, mouse models and analyses of clinical samples.
Although translational relevance of data obtained in
cell cultures is limited, in vitro models26 can primarily
differentiate between mechanisms involved in extrava-
sation of tumor cells through the BBB and those
responsible for survival and proliferation in the brain
environment. In vivo models recapitulate the complex-
ity of the human disease; however, they have limita-
tions as well. Xenograft models (i.e. human tumor
cells injected into immunocompromised mice) exclude
the involvement of the full immune response, which
might have a crucial importance.27 Clinical relevance
of results obtained in allograft (syngeneic) mouse
tumor systems, on the other hand, is limited by inter-
species differences between human and mouse. This
might especially be important in melanoma, since
mice rarely develop this disease.28 Several results
obtained in mouse models (mainly changes in the
expression of certain proteins) were partly confirmed
in patient samples. In addition, matched pairs of
primary and metastatic tumor tissues were used to
distinguish among genetic and epigenetic alterations
driving formation of the primary tumor, those involved
in general metastatic capacity of tumor cells and those
required for the tropism of metastatic cells specifically
to the CNS.

In the present paper, we comprehensively discuss
mechanisms involved in brain metastasis formation,
taking into account the relevance of different model
systems in each aspect of the disease.

Mechanisms of extravasation
through the BBB

Selective molecular characteristics of brain-seeking
tumor cells

Structure of the microvasculature of the host tissue may
have decisive roles in metastatic infiltration. In this
respect, sinusoids or fenestrated capillaries might be
more permissive than endothelial cells of the BBB inter-
connected by continuous tight junctions (TJs),29 sup-
ported by pericytes and astrocytic endfeet. Therefore,
metastatic cells might need to acquire specific charac-
teristics to extravasate into the brain. However, several
molecular aberrations found to be associated with
brain metastasis formation can also mediate tumor
spread to other metastatic locations, which is consistent
with clinical data indicating that patients with brain
involvement frequently have extracerebral metastases
as well. For example, basal-like (mainly triple negative),
less-differentiated and claudin-low (typically negative
for claudin-3, -4 and -7)30 breast cancer cells were
found to exhibit a high probability to metastasize to
the brain and lung, probably because these cells may
initiate the metastatic cascade.31 Similarly, cyclooxy-
genase COX-2 – an inducible cyclooxygenase – and
the epidermal growth factor receptor (EGFR) ligand
HB-EGF (heparin-binding EGF-like growth factor)
mediate breast cancer metastatic infiltration of both
the brain and the lungs.32 COX-2 is also responsible
for driving breast cancer cells from the parenchyma
into the cerebrospinal fluid; these cells being able to
move further to the systemic circulation to potentiate
metastatic recurrence.33

It would be important indeed to identify clues pre-
dicting risk for CNS involvement or relapse, because
these molecules could be exploited in the clinics as
potential biomarkers or therapeutic targets.
Therefore, several studies were conducted to find medi-
ators guiding transmigration of tumor cells selectively
through the brain endothelium (Table 2). However, low
overlap among the results of different studies and lack
of validation of the data obtained suggest that it is
challenging to differentiate between molecular features
responsible for affinity of tumor cells for the CNS or
the cerebral endothelium and characteristics determin-
ing general metastatic potential of cancer cells. In add-
ition to potential marker molecules of neurotropism, a
few others were found to differentiate tumor cells
metastasizing to the brain parenchyma from those
with affinity to the meninges (Table 3).

More and more data indicate that organotropism of
tumor cells is primarily determined by released extra-
cellular vesicles (EVs, mainly exosomes), which are
taken up by organ-specific cells. By transforming
resident cells, exosomes are able to prepare the
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pre-metastatic niche, facilitating metastasis formation
of tumor cells.34 Exosomes are equipped with adhesion
molecules addressing them to specific organs; e.g. integ-
rin expression profile of exosomes correlates with their
tissue organotropism.35 Exosomes carry several
bioactive compounds, including microRNAs (miRs),
protecting them from degradation and delivering
them to distant sites.

Several recent studies have explored the role of miRs
in mediating metastatic diseases. Brain metastases of
breast cancer show reduced levels of miR-509 com-
pared to primary tumors. Importantly, miR-509 sup-
presses transendothelial migration of tumor cells by
blocking RhoC-induced matrix metalloproteinase-9
(MMP-9) expression and prevents TNF (tumor necro-
sis factor)-a-induced BBB opening. Therefore, downre-
gulation of miR-509 might have a substantial role in the
formation of brain metastases of breast cancer.36 In
contrast to miR-509, miR-181c promotes brain metas-
tasis formation of breast cancer cells. Brain-seeking
breast cancer cells release EVs containing miR-181c,
which downregulates 3-phosphoinositide-dependent
protein kinase-1 (PDPK1) resulting in cofilin depho-
sphorylation, modulation of actin dynamics and conse-
quent breakdown of the BBB.37 Moreover, breast
cancer cells secreting EVs with high levels of miR-
105, acquire greater metastatic potential through des-
troying endothelial barriers in the lungs and in the
brain.38 In addition, breast cancer stem-like cells
(CSCs), which are highly metastatic to the brain, were
shown to have reduced levels of miR-7, resulting in
increased expression of Kruppel-like factor 4 (KLF4).
Low miR-7 and high KLF4 expression was found in
brain metastases of breast cancer and correlates with
the ability of CSCs to migrate through the brain endo-
thelium.39 Downregulation of miR-7 and miR-509 and
upregulation of miR-105 and miR-181c in brain meta-
static breast cancer cells have been confirmed in in vitro
BBB models and mouse xenografts.

In NSCLC brain metastases and those primary
lesions which give rise to brain metastases miR-378 is
overexpressed, contributing to the cerebrotropism of
NSCLC cells.40 In addition, combination of miR-328
and miR-330-3p was found to differentiate NSCLC
patients positive and negative for brain metastasis.41

MiRs have been exploited as prognostic and diagnostic
biomarkers in melanoma as well. In a recent study,
a molecular signature of four miRs (miR-150-5p,
miR-15b-5p, miR-16-5p and miR-374b-3p) was found
to greatly improve prognostic accuracy of brain metas-
tasis development in primary melanoma. Among these,
expression of miR-150-5p is likely to derive from infil-
trating leukocytes and not from the tumor cells them-
selves, indicating the importance of immune response in
controlling the disease.42 Interestingly, two of these
miRs (miR-150 and miR-15b) were identified as
serum biomarkers for recurrence in melanoma.43,44

As a conclusion, several molecular markers deter-
mining transmigration of metastatic cells selectively
through the BBB have been identified; however, many
of these turned out to be responsible for metastasis for-
mation in general (Table 2). Certain exosomal proteins
and miRs are the most promising candidates to predict
cerebrotropism of metastatic cells; however, further
studies are needed to validate the data obtained so far.

Steps of extravasation of metastatic tumor cells
through the BBB

Extravasation of malignant cells through the BBB con-
sists of arrest in the brain vasculature, followed by
adhesion to the luminal surface of CECs and finally
transmigration through the endothelium (Figure 1).
Recently, incorporation into the endothelial monolayer
has been described as an intermediate step between
adhesion and transmigration.45

Arrest of tumor cells in the brain vasculature –
which usually takes place at vessel branching points

Table 3. Molecular characteristics which differentiate tumor cells metastasizing to the brain parenchyma and those with high affinity

to the meninges.

Mediator of parenchymal metas-

tasis formation

Tumor cell type/model

used Observation References

TGF-b2 Melanoma cells/mouse

allograft

Molecular determinant of parenchymal

vs. leptomeningeal and ventricular

metastases

228

Cytokines and cytokine recep-

tors (lymphotoxin-b, CCL20,

CCL2, PDGFR-b, CXCL1,

GM-CSF, CXCL2, etc.)

Breast cancer cells/mouse

allograft

Lymphotoxin-b: approximately 45-fold

higher expression in parenchymal

compared to dural cancer cell

variants

161

NOD-like receptor signaling

pathway

Breast cancer cells/mouse

allograft

Pyrin: approximately 3-fold higher

expression in parenchymal com-

pared to dural cancer cell variants

161

Wilhelm et al. 567



in capillaries and venules58 – might depend on size
restriction and complex hemodynamic conditions.
In vitro, tumor cells preferentially tether to adhesive
hot spots.46 This initial step of extravasation implies
build-up of tether/adhesion forces between tumor cells
and the endothelium, which are determined by surface
molecules (glycocalyx, adhesion molecules) and regula-
tory signaling pathways. Using single cell force spec-
troscopy, the total adhesion strength between
melanoma cells and the brain endothelium was
observed to be of approximately few hundred pN and
composed of elementary units of roughly 20 pN in
size.47 The number of elementary events and the total
tether/adhesion force was found to grow in the presence
of ROCK (Rho-kinase) inhibitors.48 Increase in the
adhesion force between melanoma and brain endothe-
lial cells in response to ROCK inhibition probably
depends on flattening of melanoma cells (i.e. increase
in the adhesive surface) and possibly on selectins, on
the molecular level. Mechanical and molecular proper-
ties of the endothelial glycocalyx probably also strongly
modulate the adhesion force; however, this aspect of
metastasis formation has only been studied in non-cer-
ebral endothelial cells.49 Nevertheless, adherent
NSCLC and breast cancer cells degrade the glycocalyx
of CECs to expose adhesion molecules.50,51

Mechanisms of adhesion of tumor cells to micro-
vascular endothelial cells are presumably partly similar

to that of leukocytes52,53; however, much less known.
Cancer cell extravasation depends on adhesion mol-
ecules expressed in tumor cells and on the luminal sur-
face of CECs. As shown in mouse xenograft and
allograft models, ALCAM (activated leukocyte cell
adhesion molecule)/ALCAM and VCAM (vascular
cell adhesion molecule)-1/VLA-4 (very late antigen-4,
a4b1 integrin) interactions play a major role in breast
cancer seeding to the brain.54 Furthermore, both
in vivo and in vitro models indicate that the ability of
melanoma cells to cross the BBB depends on their high
expression of melanotransferrin55 or low expression of
claudin-1.56 In addition, according to data obtained in
preclinical models, breast cancer and melanoma cells
can also utilize gap junction proteins (connexin-43
and connexin-26, respectively) to initiate extravasation
into the brain.57

The time of extravasation – starting form arrest of
the metastatic cell in the brain vasculature of mice until
completion of transendothelial migration – is much
longer in the brain than in other organs. The difference
is given by the time spent inside the vessel lumen and
not the transmigration itself. Therefore, successful
brain metastasis formation depends on the ability of
arrested tumor cells to survive for long time (at least
two to three days) intravascularly,58,59 which seems to
be a critical step only in the brain. Some surviving cells
may start proliferating in the vascular lumen, serving

Figure 1. Extravasation of tumor cells through the BBB. Successful metastasis formation is dependent on arrest of tumor cells in the

microvessels, followed by the adhesion and transmigration step. Extravasating tumor cells survive for days in the capillary lumen before

transmigration is completed. During this process, tumor cells activate the Rac and PI3K signaling pathways and release TGF-b and

proteases. CECs may also enhance transendothelial migration of metastatic cells through activation of COX-2 and secretion of MMP-

2. Reactive astrocytes and microglia are recruited at initial steps of extravasation. Astrocytes may secrete cytokines, chemokines and

proteases to enhance transendothelial migration of tumor cells. Microglia may also enhance invasion of the brain serving as trans-

porters for malignant cells.
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as a sustained release source of tumor cells,60 while
others proceed to transmigration.

The transmigration step is completed within a few
hours; however, aggressive melanoma cells can migrate
through the brain endothelium in already 20min, at
least in vitro.61 Theoretically, cells can either migrate
through the endothelium by using the paracellular
pathway (through interendothelial junctions) or the
transcellular pathway (through the cytoplasm of endo-
thelial cells) (Figure 1). Transcellular migration is well
characterized for leukocytes,62,63 while in case of tumor
cells, the majority of data refer to the paracellular
pathway.

Melanoma cells are able to degrade TJ proteins and
to disintegrate the junctional complex of CECs, which
is indicative of paracellular transmigration.64 Similarly,
SCLC cells can also disrupt TJs of CECs65 through
release of placental growth factor which activates Rho
and ERK (extracellular signal-regulated kinase) signal-
ing.66 In mammary tumor cells, b4 integrin expression
mediates VEGF secretion, which enhances adhesion to
the intercellular junctions instead of cell bodies67 and
promotes transmigration through altering brain endo-
thelial integrity.68 Besides in vitro data, in vivo results
also suggest that VEGF contributes to brain metastasis
formation of breast cancer cells69; however, in these
latter studies, the angiogenic effect of VEGF cannot
be separated from its possible direct role on extravasa-
tion. Breast cancer cells can also induce TJ opening
through secretion of the neuropeptide substance P,
which activates CECs to secrete TNF-a and angiopoie-
tin-2 (Ang-2), resulting in redistribution of TJ pro-
teins.70 Brain endothelial Ang-2 secretion can also be
induced in response to the VEGF released by breast
cancer cells, and both VEGF and Ang-2 contribute to
increase in BBB permeability.71 Therefore, breast
cancer cells might open the TJs of CECs to extravasate
paracellularly. However, recent in vitro data indicate
that melanoma cells are more effective in breaking
down the paracellular barrier than breast cancer
cells,61 while breast cancer cells might possibly be
more effective in the transcellular type of migration.
Nevertheless, transcellular migration of tumor cells
has only been described for intravasating breast
cancer cells,72,73 and not during extravasation into the
brain. Therefore, the possibility of transcellular migra-
tion of tumor cells through the BBB needs further
investigations.

Transendothelial migration of tumor cells may be
facilitated by other cell types of the NVU. Reactive
astrocytes – having increased expression of intermedi-
ate filament proteins – were described in close proxim-
ity to cancer cells already before extravasation.58

Astrocytes may facilitate melanoma cell transendothe-
lial migration through secretion of MMP-9,58 the

CCR4 ligand CCL1774 and IL-23 which upregulates
MMP-2 in melanoma cells.75 In addition, microglia –
activated by metastatic breast cancer cells – enhance
invasion of breast cancer cells through activation of
JNK (c-Jun N-terminal kinase) in tumor cells.
Microglia were observed to actively prepare the way
for breast cancer cells to invade and colonize the
brain tissue in a Wnt-dependent way.76

Among non-cerebral cells, cancer-associated fibro-
blasts (CAFs) were shown to mediate BBB disruption
and transmigration of breast cancer cells in in vitro
models.77 Indeed, circulating CAFs can be detected in
the blood of metastatic breast cancer patients78; how-
ever, their role in brain metastasis formation is largely
uncharacterized. Similarly, the role of other circulating
cell types, like neutrophils, macrophages and platelets
might also be relevant, as shown in non-cerebral
metastases.79–81

Proteolytic mechanisms involved in the transmigra-
tion of tumor cells through the BBB

Proteolytic enzymes secreted by both tumor cells and
host cells might play key role in several steps of brain
metastasis formation, including extravasation through
the brain endothelium.

The best-studied proteases in the pathogenesis of
cancer and metastasis formation are matrix metallopro-
teinases (MMPs). They are Ca2þ-dependent Zn2þ-endo-
peptidases which participate in many physiological and
pathological processes in the brain and at the BBB,82

including metastasis formation.83,84 Accordingly,
increased serumMMP-9, but not MMP-2 lytic activities
could be detected in patients with brain metastasis com-
pared to healthy controls.85 In addition, higher expres-
sion and activity of MMP-1 and MMP-2 were detected
in brain metastasis variants of melanoma86 and higher
expression of MMP-1 and MMP-9 was found in brain-
seeking breast cancer cells in comparison to bone-
seeking and parental cells.87 MMPs have the ability to
degrade components of the endothelial glycocalyx88;
however, proteolytic degradation of the glycocalyx of
CECs by tumor cells during brain metastasis formation
has not been adequately addressed so far.50,51 The brain
endothelial junctional complex is also a target ofMMPs,
and high expression of MMP-1 in brain metastatic
breast cancer cells contributes to the degradation of
key TJ proteins and opening of the BBB.89

Proteolytic mechanisms might also be involved in
opening of brain endothelial junctions induced by mel-
anoma-released S100A4,90 a Ca2þ-binding protein dys-
regulated in many human cancers.91 The mechanism of
S100A4-induced VE (vascular endothelial)-cadherin
downregulation may be chelation of Ca2þ or stimula-
tion of MMP production in endothelial cells.

Wilhelm et al. 569



Besides MMPs, other types of proteases are also
involved in brain metastasis formation, including the
cysteine proteinase cathepsin S expressed by brain
metastatic breast cancer cells92 and serine proteases
involved in transmigration of melanoma cells through
the BBB. Melanoma cells express plasminogen activa-
tors (PAs), which catalyze proteolytic conversion of the
inactive plasminogen to the active serine protease plas-
min, which was found to mediate extravasation of mel-
anoma cells into the brain.93 In vitro, gelatinolytic
serine proteases – including the membrane-bound
seprase – were shown to be involved in the transmigra-
tion of melanoma cells through the BBB.64 Seprase
(fibroblast activation protein-a/FAP-a) expression cor-
relates with the invasive phenotype of melanoma and
carcinoma cells94 and is transcriptionally upregulated
in invasive melanoma cells via the canonical TGF
(transforming growth factor)-b signaling pathway.95

After transmigration through the brain endothelium,
breast cancer and melanoma cells migrate along the
external surface of brain vessels to distant sites, but
remain perivascular.60,96 Proliferation of metastatic
cells in the brain starts along the vessels, the basement
membrane acting as an active substrate for tumor cell
growth. Interestingly, tumor cell clones with highest pro-
pensity to colonize the brain express high levels of hepar-
anase,97,98 an endoglycosidase which cleaves heparan
sulfate to remodel the extracellular matrix, releasing
growth factors, chemokines, angiogenic factors and bio-
active heparan sulfate fragments.99 Heparanase expres-
sion is inversely regulated by miR-1258, levels of which
are reduced in highly brain metastatic breast cancer
cells.100 Moreover, heparanase – which can be secreted

not only by tumor cells, but astrocytes as well101 – can
activate EGFR signaling in brain metastatic breast
cancer cell, which is a survival pathway for the tumor
cells.102 Besides heparanase, MMPs secreted by tumor
and host cells can also modulate the extracellular
matrix.82 Brain metastases have gelatinase activity and
express high levels of MMP-2, -3 and -9 proteins.103

MMPs, besides degrading the extracellular matrix,
may have other pro-metastatic effects, e.g. MMP-1
secreted by brain metastatic breast cancer cells can acti-
vate latent TGF-a, a ligand for EGFR.104

On the whole, proteases play an important role in
the transmigration of tumor cells through the BBB, by
degrading components of the capillary wall (TJs, base-
ment membrane proteins and probably the glycocalyx).
Therefore, it is not surprizing, that the protease-depen-
dent mesenchymal type of movement (Figure 2) is
primordial in the transmigration of tumor cells through
the BBB.48

Signaling pathways activated in tumor cells during
extravasation into the brain

Interaction of malignant cells with the cerebral endo-
thelium involves complex signaling mechanisms, which
are not well understood. The two best-characterized
signaling pathways involved in transmigration of
tumor cells through the brain endothelium are PI3K
(phosphoinositide 3-kinase)/Akt and small GTPase
(Rho and Rac) signaling.

PI3Ks are key regulators of growth and cancer
development-related processes. Key elements of the
pathway involved in tumorigenesis are: PIK3CA,

Figure 2. Phenotypes of migrating tumor cells. During individual migration, tumor cells either acquire the amoeboid (leukocyte-like)

or the mesenchymal (fibroblast-like) phenotype. Amoeboid cells have a rounded morphology and can change their shape to move

through narrow gaps. The needed force is generated by the actin cytoskeleton, which is controlled by the small GTPase RhoA and its

effector Rho-kinase (ROCK). On the other hand, the mesenchymal type of movement is proteolysis-dependent. Mesenchymal cells are

elongated, having lamellipodia and filopodia produced under the control of the small GTPase Rac1. Cancer cells can shift from one

migration type to the other depending on the environment they are moving in. During transmigration through the BBB, the mes-

enchymal phenotype seems to be more favorable.
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encoding the class IA PI3K catalytic subunit p110a, the
negative regulator PTEN (phosphatase and tensin
homolog), Akt (PKB/protein kinase B) and the
mTOR (mammalian target of rapamycin) complexes
(mTORC1 and mTORC2). The oncogene PIK3CA
and the tumor suppressor PTEN are frequent targets
of somatic mutations in several cancer types105; there-
fore, dysregulation of the PI3K/PTEN/Akt/mTOR
pathway is clearly associated with the development of
tumors, including breast cancer and melanoma.106,107

Development of brain metastases and penetration of
malignant cells through the BBB have also been linked
to alterations in PI3K signaling. PI3K-aberrant squa-
mous cell lung cancers appear as an aggressive subset
associated with brain metastases.108 In metastatic mel-
anoma, cerebrotropism also seems to highly depend on
this pathway.109,110 Loss of PTEN – i.e. activation of
the PI3K pathway – in melanoma cells is associated
with significantly shorter time to brain, but not to
liver, lung or bone metastasis formation.111

Furthermore, PLEKHA5 – which has been associated
with transmigration of melanoma cells through the
BBB – has a phosphoinositide-binding specificity;
therefore, it was suggested that its crosstalk with the
PI3K/Akt pathway might be responsible for the guid-
ance of the cerebrotropic phenotype in melanoma
cells.112 In addition, inhibition of PI3K was shown to
significantly reduce the number of transmigrating
breast cancer and melanoma cells in in vitro BBB
models.61

The PI3K pathway was shown to regulate Rac sig-
naling in breast cancer cells.113,114 Rac1 is a member of
the Rho family of GTPases playing important role in
actin dynamics. Rac activation is involved in the acqui-
sition of the mesenchymal (fibroblast-like) phenotype
of tumor cells, characterized by elongated morphology
and extracellular proteolysis.115–117 On the other hand,
the amoeboid (leukocyte-like) type of tumor cell migra-
tion is characterized by rounded morphology, increased
acto-myosin contractility and extensive RhoA signal-
ing. Cancer cells can switch between these two pheno-
types (Figure 2) depending on environmental
conditions.118 It has been proposed that during trans-
migration of tumor cells through the BBB, the mesen-
chymal migration is preferred to the amoeboid one.
Inhibition of Rho/ROCK signaling (i.e. triggering of
the mesenchymal phenotype) induces a significant
increase in the number of melanoma cells migrating
through CECs and promotes formation of parenchy-
mal brain metastases.48 On the other hand, inhibition
of Rac impedes transmigration of breast cancer cells
and melanoma cells through cultured CECs.61

In addition to PI3K and Rac signaling, activation of
Src kinases can also be critical in extravasation of
Her2-positive and triple negative breast cancer cells

into the brain parenchyma. Src-activated cells are able
to more efficiently disrupt TJ integrity of CECs to
facilitate brain metastasis formation.119

Therefore, activation of PI3K, Rac and Src signaling
pathways in tumor cells coming in contact with the
cerebral endothelium promotes their extravasation
through the BBB. However, activation of these path-
ways is not restricted to the development of brain
metastases.

Changes in the brain endothelium during
extravasation of tumor cells

Interaction of tumor cells and CECs is bidirectional
and these latter also suffer changes during extravasa-
tion of malignant cells. During transendothelial migra-
tion, metastatic cells damage the integrity of the
endothelium. Vessel wall destruction is probably not
very extensive; however, fibrin deposition and platelet
aggregation were observed in vivo,58 while apoptosis
could only be detected in vitro.64 Signaling pathways
activated in the cerebral endothelium during tumor cell
transmigration were studied in in vitro models. The
Rho/ROCK pathway was shown to be involved in
the transendothelial migration of SCLC cells.65 This
is in contrast with Rho/ROCK activation in tumor
cells, which impedes extravasation through the BBB.48

As a consequence of Rho/ROCK activation in CECs,
actin reorganization occurs through phosphorylation of
myosin light chain and cofilin, and cytoskeletal changes
proved to be responsible for TJ reorganization.65

In addition, TGF-b-dependent endothelial-mesench-
ymal transition (EndMT) has been recently described
as a potential mechanism involved in brain metastasis
formation of melanoma and breast cancer cells.120,121

In response to TGF-b released by cancer cells, CECs
lose their endothelial markers and junctions, gain
expression of fibroblast-specific and mesenchymal pro-
teins and differentiate into a-smooth muscle actin-
positive myofibroblasts. This process was demonstrated
to play an important role in metastatic transendothelial
migration in vitro. Since EndMT development is a
long-lasting process, one can speculate whether the
long time spent by tumor cells inside the blood vessels
of the brain might be needed for ‘‘mesenchymal
transformation’’ of the underlying endothelium.
Importantly, TGF-b secreted by melanoma cells not
only acts on brain endothelial cells, but also in an auto-
crine manner to regulate seprase activity and invasive
capacity of melanoma cells.95

In addition to being a barrier against tumor cells,
CECs can also facilitate their transmigration.
According to an in vitro study, this phenomenon is
dependent on activation of COX-2 in brain endothelial
cells, which in turn upregulates expression and activates
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MMP-2 in response to interaction with breast cancer
cells.122

An interesting question is the role of environmental
factors in brain metastasis development. Pollutants like
polychlorinated biphenyls can upregulate adhesion
molecules and alter expression of brain endothelial TJ
proteins to promote brain metastasis formation in
in vivo models.123,124 On the other hand, physical
exercise might help in the maintenance of BBB integrity
thereby protecting the brain during metastatic
progression.125

The brain metastatic environment

Early interaction of extravasated tumor cells with the
brain vasculature

The majority of extravasated brain metastatic cells die
in the brain tissue and only a small proportion prolif-
erates to form micro- and macrometastases.59 Survival
of metastatic cells depends on their interaction with
cellular and non-cellular elements of the highly
unique microenvironment of the CNS. After transmi-
gration through brain microvessels, brain metastatic
lung cancer, breast cancer and melanoma cells remain
in contact with the extraluminal surface of capillaries,
attaching to them in a pericyte-like position.59,126

Angiotropism (attachment to vascular abluminal sur-
faces) of melanoma cells has recently been shown to
correlate with the expression of serpin B2, leading to
migration and spreading of tumor cells along the
abluminal vascular surfaces of microvessels, called peri-
cytic mimicry.127

Nevertheless, loss of perivascular contact leads to
cancer cell death. Even if directly injected into the
brain, tumor cells preferentially attach to vessel
walls126 and incorporate endothelial cells and pericytes,
detaching astrocytic endfeet.128 Interaction of tumor
cells with endothelial cells may be mediated by integrins
– e.g. LFA-1 (lymphocyte function-associated antigen-
1, integrin aLb2) expressed by breast and lung cancer
cells129 – and gap junctions – i.e. connexin-43- and
connexin-26-based gap junctions used by breast
cancer and melanoma cells, respectively.57 These inter-
actions provide growth signals and protection to malig-
nant cells.

Besides gap junction communication and endothelin
signaling,130 another line of CEC-dependent chemopro-
tection is provided by efflux transporters.131 Among
these, ABCB1 (P-glycoprotein/P-gp, MDR1/multidrug
resistance protein 1) and ABCG2 (BCRP/breast cancer
resistance protein) are probably the most important.132

They are expressed in both endothelial and tumor cells;
therefore, convey double resistance to anti-cancer drugs
in brain metastases.133

Extravasated tumor cells not only associate with
CECs, but have strong connections with the vascular
basement membrane in vivo. In this process, L1 cell
adhesion molecule (L1CAM) was found to be cru-
cial.134 Moreover, integrin a3b1 was shown to mediate
adhesion of NSCLC cells to laminin in the extracellular
matrix.135 Expression of a3b1 integrin is dependent on
ADAM-9 (a disintegrin and metalloprotease 9) over-
expression, characteristic to highly brain-metastatic
NSCLC cells.136

Much less is known about the direct interaction of
pericytes and tumor cells. Our current knowledge about
the role of pericytes in brain metastasis formation is
restricted to vascularization mechanisms (see later).
However, multipotent stem cell potential of pericytes137

renders them a tumor-promoting character, as shown
in primary brain tumors.138 In vitro, pericytes isolated
from normal fetal brain enhance proliferation and
migration of triple negative breast cancer cells.139

Neoplastic pericytes may derive from and can also gen-
erate CSCs to promote tumor development and can
also fuse with glioblastoma cells.140–142 However,
these mechanisms still need to be verified in secondary
tumors of the CNS.

Surviving tumor cells attached to the extraluminal
surface of the vessels either start to proliferate or
remain dormant and become active later (Figure 3).
The perivascular location is a niche favorable for cells
with stem cell-like characteristics, including neural and
glial stem cells and dormant cancer cells.143 Dormant
cells persist as single cells for several weeks or even
years without proliferating or regressing, slowly
moving in the perivascular niche.59,144 Dormant
tumor cells are reversibly growth arrested and are
resistant to therapy; therefore, they can be responsible
for the clinical phenomenon of latent disease, leading to
relapses or late manifestations.145 Several endothelial
factors are involved in mediating quiescence, survival
and drug resistance of dormant cancer cells in different
tissue-specific perivascular niches,145 including throm-
bospondin-1 localized to the basement membrane of
resting (i.e. not sprouting) microvessels.146

In conclusion, survival of metastatic cells in the
brain highly depends on their ability to remain attached
to the outer surface of the vessel wall. Interaction with
the basement membrane seems to be critical in the early
post-extravasation period.

Interaction of brain-homed tumor cells with cells
of the NVU

Besides vascular cells, other cells of the CNS are also
important in determining the fate of tumor cells.147

According to recent results obtained in mouse models
of brain metastasis, LFA-1 (integrin aLb2) seems to be
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critical in the interaction of breast and lung cancer cells
with cells of the NVU. It mediates tumor cell attach-
ment to astrocytes, microglial cells, neurons and endo-
thelial cells, upregulating COX-2 expression and VEGF
secretion in astrocytes and consequently NO release
from CECs, which enhances tumor growth.129

Metastatic tumor cells in the brain grow in close
contact not only with vessels, but with glial cells as
well. On the other hand, tumor lesions are generally
separated from neurons by edema. Islands of reactive
astrocytes and microglial cells are localized in the inter-
ior of most of the tumors and stimulate anchorage inde-
pendent growth of brain metastatic breast cancer
cells.148

Astrocytes are main determinants of tumor cell fate
in the CNS (Figure 3). Peritumoral astrogliosis starts
before extravasation and persists during transmigration
and metastatic tumor growth both in mouse58 and
human.149 In the presence of tumor cells, reactive astro-
cytes secrete PAs to generate plasmin from neuron-
derived plasminogen. Active plasmin has two targets:
it cleaves FasL from astrocytes (to kill cancer cells) and
the L1CAM adhesion molecule from cancer cells (to
block interaction with the vessels).134 Brain metastatic

breast cancer and lung adenocarcinoma cells, on the
other hand, express anti-PA serpins (neuroserpin/
serpinI1 and serpinB2) to prevent this intrinsic anti-
tumor mechanism of astrocytes (Table 4).

Astrocytes are not only harmful to tumor cells, but
may offer several advantages to the successful minority
of metastatic cells able to defend the deleterious signals
(Figure 3). This Janus-faced aspect of tumor-astrocyte
interaction is crucial in the transformation of the ini-
tially harmful environment to a tumor supporting one.
As such, melanoma cells stimulated with astrocyte-con-
ditioned medium show higher Akt activation and inva-
siveness than those stimulated with fibroblast-
conditioned medium.150 Recently, astrocyte-derived
exosomes have been shown to transfer PTEN-targeting
miR-19a to tumor cells to activate the PI3K/Akt path-
way and to promote metastatic mammary cancer cell
outgrowth in the brain microenvironment.151 Not only
astrocytes influence tumor cells, but the communication
is bidirectional. In response to metastatic cells,
astrocytes secrete proteases, growth factors and inflam-
matory cytokines (Table 4), while tumor cells release
inflammatory mediators (Table 5). The inflammatory
microenvironment seems to favor growth of tumor

Figure 3. Fate of extravasated tumor cells in the brain microenvironment. After migration through the vessel wall, large part of

metastatic cells dies in the brain microenvironment. Astrocyte-released PA is involved in killing serpin-negative tumor cells. Surviving

cells either remain dormant, closely attached to the vessel wall or start proliferating in response to signals arising from the brain

microenvironment. Strong reactive astrocytosis persists during growth of the metastatic lesion. Astrocytes support proliferation of

malignant cells through release of soluble factors and exososmes and formation of heterocellular gap junctions. Astrocyte-dependent

Notch signaling is involved in the maintenance of the CSC phenotype in brain metastatic breast cancer cells. Response of microglial

cells to cancer cells is heterogeneous. Increased secretion of cathepsin S and release of chemokines from microglia might promote

viability and migration of tumor cells in the brain.

GJ: gap junction.
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cells, probably partly by upregulation of COX-2 in
tumor cells, CECs and astrocytes.32,75,122,129

In addition, astrocytes can establish direct contacts
with metastatic cells through JAG-Notch interaction
and gap junctions. JAG1 can be upregulated in astro-
cytes in response to IL-1b secreted from brain meta-
static breast CSCs. In turn, the JAG1-Notch-signaling
pathway promotes self-renewal of CSCs.152 Notably,
activation of the Notch signaling pathway has been
shown to induce migratory and invasive properties153

and to maintain the CSC phenotype of brain metastatic
breast cancer cells.154

Gap junctions between astrocytes and brain meta-
static cells comprise protocadherin-7- and connexin-
43-dependent interactions and may result in tumor
growth,155 and resistance to chemotherapy by seques-
tering excess of Ca2þ from the cytoplasm of tumor
cells.156 It is noteworthy that gap junction communica-
tion and network formation promote survival of pri-
mary brain tumor (i.e. astrocytoma) cells as well.157

Heterocellular gap junctions between astrocytes and
metastatic cells can also lead to activation of PI3K sig-
naling, upregulation of survival genes and secretion of
inflammatory cytokines through endothelin (ET) sig-
naling.130,158 Not surprising, endothelin receptor B
(ETBR) was found to facilitate growth of melanoma
cells within the CNS.159

Moreover, astrocytes may elicit metastatic cell-type
specific effects as well. Expression of reelin, an extracel-
lular neuronal protein, is induced by astrocytes only in
Her2-positive, but not in triple negative breast cancer
cells, leading to increased proliferation of Her2-positive
cells in the brain environment.160

Besides astrogliosis, microgliosis also starts already
before extravasation. Tumor-associated microglia/
macrophages are predominantly resident microglia,
but can also be monocytes/macrophages entering the
brain from the bone marrow.161 Interestingly, micro-
glial reaction is heterogeneous throughout metastatic
growth. Some extravasated cells or lesions recruit

large amounts of activated and reactive microglia,
while others can be completely free of microglial cells.58

Microglial cells may also exhibit Janus faces towards
metastatic cells by having dual (tumor destructive and
supportive) role in brain tumor progression.162 Factors
secreted by cultured microglia may inhibit proliferation
of lung cancer cells.163 Nevertheless, surviving and pro-
liferating tumor cells take benefit of a favorable and
more permissive brain microenvironment created by
microglial cells (Figure 3). Microglia can communicate
with tumor cells through release of cytokines, chemo-
kines, growth factors, proteases and exosomes;
however, these mechanisms have mainly been studied
in primary brain tumors.164 Among proteases, micro-
glia/macrophage-derived cathepsin S was shown to
play significant role in the development of breast
cancer brain lesions. Only depletion of both tumor-
derived and stromal cathepsin S could reduce forma-
tion of experimental brain metastases.92 Although not
studied specifically in the brain, this cysteine endopep-
tidase might modify the extracellular matrix and stimu-
late angiogenesis.165

Chemokine signaling is also bidirectional and is
involved in the modulation of both tumor cells and
microglia. High CCL2 expression in brain metastases
of breast cancer was shown to recruit CCR2-positive
microglia/macrophages.151 In addition, the CCR4 lig-
ands CCL22 and CCL17 are secreted by brain stromal
cells, including microglia. Microglia-derived soluble
factors upregulate expression of CCR4 in brain meta-
static melanoma cells, promoting viability and even
migration of tumor cells through the brain endothe-
lium.74 Breast cancer cells metastasized to the brain
parenchyma may enhance activation of microglia/
macrophages towards the M2 state, with reduced
expression of MHC (major histocompatibility complex)
class II, CD11c, iNOS (inducible nitric oxide synthase)
and arginase-1 and higher expression of CD206
(mannose receptor).161 In vitro no upregulation of
M2-specific cytokines was observed in microglial cells

Table 5. Factors released by metastatic cells during crosstalk with astrocytes.

Factor released

by brain metastatic

cell

Tumor cell

type involved Models used

Mechanism of

action Effect Observation References

IL-1b Breast CSCs In vitro and

mouse xenograft

Upregulates JAG1

on reactive

astrocytes

Self-renewal

of CSCs

Through JAG1-

Notch-signaling

152

IL-6, IL-8 Breast cancer

cells

In vitro Through gap

junction and

endothelin

signaling

130

CSC: cancer stem-like cells.
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cocultured with breast cancer cells.76 Therefore, cyto-
kine profile of activated microglia of brain metastatic
lesions needs to be clarified.

Although the BBB provides a partial immune-
privilege to the CNS, infiltrating leukocytes might
also influence metastatic cells in the brain. Regulatory
T cells actively infiltrate melanoma and NSCLC brain
metastases166 and possess immunosuppressive activity,
contributing to tumor immune evasion. By inhibiting
Stat3 activity in regulatory T cells, the antitumor activ-
ity of CD3-positive/CD8-negative/CD25-negative T
cells can be restored.167

Taken together, cells of the NVU have a dual role in
the crosstalk with brain metastatic cells, being both
offensive and protective. Communication between
tumor cells and cells of the CNS is bidirectional, and
fate of tumor cells (death, dormancy or proliferation)
depends on their response to signals coming from the
brain microenvironment.

Characteristics of brain-homed tumor cells

Environmental adaptation of tumor cells requires tran-
sient activation of genes associated with homeostasis
and stress, followed by activation of genes involved in
more advanced tissue-specific functions.168

In order to identify characteristics determining adap-
tation of tumor cells to the brain, matched primary and
brain metastatic tumors were compared. These studies
revealed several copy number variations (CNVs), single
nucleotide polymorphisms (SNPs) and differentially
expressed genes. Genes found to be amplified in brain
metastatic lung adenocarcinoma tumors are involved in
migration and organ development, while those having a
lower copy number in the secondary tumor negatively
affect cell proliferation and adhesion.169 Aberrations in
brain metastatic breast tumor specimens may affect
genes related to stem cell pluripotency and genes fre-
quently amplified in primary breast cancers, like
PIK3CA. Comparison of matched pairs of primary
and brain metastatic breast cancer samples identified
both similar and divergent CNVs.170 Some studies did
not find significant differences in the mutation pro-
files,171 but identified several differentially expressed
genes (CXCL12, MMP-2, MMP-11, VCAM-1 and
MME/membrane metalloendopeptidase) between
primary breast cancers and breast cancer brain metas-
tases.172 Altered expression of cell cycle regulatory pro-
teins (particularly, upregulation of p27kip1 and cyclin
D1), growth factors and hormone receptors173 and
overexpression of DNA double-strand break repair
genes174 have been described in brain metastases com-
pared to matched breast primary cancers. Breast cancer
brain metastases may also harbor mutations absent in
the primary tumor.175 Interestingly, driver alterations

are homogeneous within multiple regions of the same
lesion and among distinct brain lesions in the same
patient. These mutations target a few signaling mol-
ecules and pathways associated with brain metastases,
including cyclin-dependent kinases, the PI3K/Akt/
mTOR pathway, Her2, EGFR, the MAPK (mitogen-
activated protein kinase) pathway and others, predict-
ing sensitivity to targeted therapies.175

These signaling pathways are indeed aberrantly acti-
vated in brain tumors. The PI3K pathway – besides its
role in extravasation of metastatic cells through the
BBB, as described previously – is involved in the sur-
vival of tumor cells in the brain. In aggressive brain
metastatic tumor cells, activating mutations of the
PI3K/PTEN/Akt/mTOR pathway can either develop
in the primary tumor or in the brain.108,175 In line
with the role of the PI3K pathway in the development
of brain metastases, expression of mTORC1/2-related
proteins was found to be increased in brain metastatic
lesions compared with primary tumors in lung adeno-
carcinoma.176 Moreover, alterations in the PI3K/Akt
pathway, i.e. activating mutations in PIK3CA or inac-
tivating mutations in PTEN, are partly responsible for
the therapy resistance of BRAF-mutant melanoma
brain metastases.177 BRAF V600K mutations have
the highest incidence in melanoma,178 resulting in con-
stitutive activation of the MAPK/ERK signaling path-
way. This pathway is also overactivated by mutations
in HRAS, KRAS and NRAS, which have been detected
in brain metastatic tumors.179 Taken together, activa-
tion of PI3K and MAPK pathways is not specific to
brain metastases, but has important implications in
the development and treatment of secondary tumors
of the CNS.

The PI3K and MAPK pathways can be activated by
members of the ErbB family – including EGFR (also
known as ErbB1 or Her1/heregulin 1), Her2 (neu,
ErbB2) and Her3 (ErbB3) – which are involved in
brain metastasis formation of breast and lung
tumors.180–182 These receptors regulate cell migration,
invasion and proliferation responding to growth factors
released in the brain. Interestingly, aberrant EGFR sig-
naling may be directly and indirectly influenced by
miR-145-5p downregulation, which was shown to con-
tribute to the development of lung cancer brain metas-
tases in humans and mice.183 Moreover, as described in
the previous chapters, the brain metastatic environment
(e.g. astrocytes) can activate EGFR signaling through
secretion and activation of its ligands.

The PI3K and the MAPK pathways are downstream
effectors of neurotrophin receptors (NTRs) as well, lig-
ands of which – neurotrophins (NTs) – are abundantly
expressed in the brain. NTs (NGF/nerve growth factor,
BDNF/brain-derived neurotrophic factor, NT-3 and
NT-4/5) are growth factors promoting neuronal
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survival, differentiation and cell death. Melanoma cells
express the low-affinity (p75NTR) and the high-affinity
tyrosine kinase NTRs (TrkA, B and C)184 which regu-
late proliferation, motility and invasive capacity of
brain metastatic melanoma cells.184,185 Therefore,
melanoma cells, which are neural crest-derived cells,
can respond to NTs secreted in the central nervous
tissue, and this mechanism has been considered decisive
in homing of melanoma cells to the CNS.186

Interestingly, NTR signaling may not be confined to
brain metastasis development of melanoma. In breast
cancer cells, TrkB can heterodimerize with Her2, result-
ing in a survival advantage in the brain.187 Moreover,
in brain metastatic breast cancer cells, NT-3 expression
may also be increased, promoting mesenchymal-
epithelial transition, upregulation of Her2, prolifer-
ation in the brain and reducing microglial activation.188

Indeed, mesenchymal-epithelial transition and re-
expression of E-cadherin were shown to be induced in
the brain environment.189

In addition to excessive activation of survival path-
ways, adaptation of energy metabolism to the brain
microenvironment is also important for survival of
tumor cells in the brain. This adaptation can comprise
a switch to anaerobic glycolysis (i.e. conversion of
glucose to lactate) which is known as the Warburg
effect,190 even in the presence of oxygen. To compen-
sate for the inefficiency of this process, brain metastatic
cells can express high levels of hexokinase 2.191 In add-
ition, breast cancer-secreted miR-122 reduces glucose
consumption in brain astrocytes (and also lung fibro-
blasts) through downregulation of pyruvate kinase M2
and the glucose transporter GLUT1 (SLC2A1), leading
to enhanced cancer cell proliferation probably partially
mediated by increased glucose availability.192 In add-
ition to anaerobic glycolysis, brain tumors are able to
oxidize glucose in the tricarboxylic acid cycle as well.
Besides glucose, acetate can also be simultaneously oxi-
dized, and conversion of acetate into acetyl-coenzyme
A is dependent on the increased expression of
ACSS2 (acyl-coenzyme A synthetase short-chain
family member 2).193

In addition to these rather general mechanisms,
brain-specific metabolic changes might also exist. One
such mechanism is the capacity to metabolize neuro-
transmitters. In this respect, brain metastatic breast
cancer cells may take up and catabolize GABA (g ami-
nobutyric acid) into succinate, entering the tricarb-
oxylic acid cycle.194 On the other hand, glutamate
seems not to be an energy source in breast cancer and
melanoma brain metastases,193 glutamate rather being
involved in signaling processes in brain metastatic mel-
anoma.195 Acquisition of neuron-like characteristics
(i.e. expression of neurotransmitter receptors) in
breast cancer194 and melanoma cells195 might also

be part of the adaptation scenario of tumor cells to
the brain environment.

In conclusion, aberrant activation of signaling and
metabolic pathways determines the ability of tumor
cells to overcome the selective pressure of the brain
environment. However, characteristics involved in sur-
vival of tumor cells in the brain tissue cannot always be
unambiguously distinguished from features required
for extravasation through the BBB or from those gener-
ally determining aggressiveness and metastatic capacity
of tumor cells.

Vascularization and the blood–tumor barrier of
metastatic brain tumors

Tumor cells that have survived and started to prolifer-
ate in the brain result in micrometastases and later in
larger lesions. These tumor masses need proper
vascularization.

As previously shown, metastatic cells start to prolif-
erate in close proximity to pre-existing microvessels,
which determines a special vascularization process,
called vascular cooption. Cooption is characteristic to
highly vascularized tissues,196 such as the brain, and is a
mechanism rendering tumors less likely to respond to
anti-angiogenic therapy.197 Indeed, this is the main vas-
cularization mechanism in the brain for breast cancer
and melanoma cells.59,126 On the molecular level, vas-
cular cooption is dependent on L1CAM and
neuroserpin.134

Besides cooption, other mechanisms of tumor vessel
formation might also be relevant in the brain.
Accordingly, melanoma cells can secrete factors acti-
vating the MAPK and PI3K/Akt survival pathways,
enhancing angiogenic properties of brain endothelial
cells.198 In addition, VEGF – which is a key factor
inducing sprouting angiogenesis – can be secreted by
brain metastatic tumor cells. VEGF release can be
induced by several mechanisms. In breast cancer cells,
activation of avb3 integrin promotes expression of
VEGF in normoxic conditions inducing angiogenesis
selectively in the brain.199 In melanoma cells, activated
Stat3 enhances brain metastasis formation through
induction of angiogenesis mediated by VEGF, basic
fibroblast growth factor (bFGF) and MMP-2.83

However, melanoma cells tend to grow by vascular
cooption in the brain despite high expression of
VEGF.200 VEGF secreted by melanoma cells can
induce dilation of coopted brain vessels with subse-
quent permeability increase. This means that VEGF
released by metastatic melanoma cells can modulate
the pre-existent vasculature (i.e. own vessels of the
brain coopted by the tumor); therefore, blood supply
of VEGF-secreting brain metastatic melanoma does
not necessarily depend on induction of sprouting
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angiogenesis.201 Therefore, vessel cooption is unques-
tionably important in the development of the vascula-
ture of breast cancer and melanoma brain metastases;
however, angiogenic neovascularization might also
contribute to the formation of tumor vessels. On the
other hand, lung cancer cells may present early angio-
genesis in the brain.59 As a consequence, anti-VEGF
treatment is more effective in inhibiting brain metasta-
sis formation in NSCLC than in breast cancer
patients202; although combination of Her2 inhibitors
with an anti-VEGF receptor-2 antibody may have a
significant survival benefit compared to Her2 inhibition
alone in cerebral metastases of Her2-amplified breast
cancer.203

The vasculature of the tumor evolved through vessel
cooption, sprouting angiogenesis or possibly other
mechanisms204 forms a similar barrier to the BBB, the
so-called BTB (Figure 4). In endothelial cells of the
BTB, VEGF and CD31 expression increases, while
ZO-1 and GLUT1 (SLC2A1) expression may
decrease.149,205 Previous results suggested that the
BTB is intact in small metastases and altered in larger
lesions.25 However, recent studies did not find correl-
ation between BTB permeability and the size of the
metastatic lesion in breast cancer brain metastasis
models.131,206 Permeability of mammary brain

metastases is highly heterogeneous, in contrast to the
relatively homogeneously high permeability of gli-
omas.207 In metastases, the BTB remains sufficiently
intact to impair drug delivery in therapeutically rele-
vant concentrations.131 However, it is not clear whether
these data derived from mouse models adequately
recapitulate the human disease in terms of drug delivery
to brain tumors.208

Recent data suggest that gadolinium-DTPA-
impermeable cerebral breast metastases have sig-
nificantly more proliferative nuclei compared to
gadolinium-DTPA-permeable tumors in the mouse
brain.209 In contrast, another study showed that mel-
anoma metastases having a permeable vasculature
grow faster than those having an intact BTB.144 This
study also demonstrated that only brain-permeable
PI3K inhibitors are active against metastatic lesions,
and that targeting micrometastases and even dormant
cells is more effective than treating large lesions.
Interestingly, TNF or lymphotoxin may selectively per-
meabilize the BTB, as demonstrated in a mouse model
of breast cancer brain metastasis.210

Important factors in the induction of an increased
BTB permeability are changes in pericytes. In mouse
intracranial melanoma, NG2 ablation-induced pericyte
deficiency (i.e. delayed pericyte maturation and reduced

Figure 4. The blood–tumor barrier. The vasculature of the growing tumor forms the BTB. Permeability of BTB in metastatic lesions

is heterogeneous and usually sufficiently low to impair penetration of relevant amounts of therapeutic agents. Tumor cells secrete

proteolytic enzymes to modulate the extracellular matrix. Astrocytes loose polarity and secrete proteases and VEGF, which increase

permeability of the BTB. Expression of PDGFR-b is decreased in pericytes. In lesions with higher permeability, pericytes are desmin-

positive and the amount laminin-a2 is decreased in the basement membrane.
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association with endothelial cells) decreases basal
lamina deposition and vessel patency, increases vessel
leakiness and results in reduced tumor progression
and intratumoral hypoxia.211,212 In experimental ani-
mals, metastatic lesions show decreased expression of
PDGFR (platelet-derived growth factor receptor)-b, a
specific protein of pericytes. In metastatic tumors with
higher permeability, vessels are surrounded by desmin-
positive pericytes. Moreover, a tendency of reduced
CD13 staining in pericytes was observed.205

Increased BTB permeability also correlates with the
decrease in the expression of the parenchymal base-
ment membrane component laminin-a2 expressed by
astrocytes and pericytes.205 Absence of laminin-a2
leads to increased permeability of blood vessels,
hypertrophy of astrocytic endfeet with lack of appro-
priately polarized aquaporin 4 (AQP4) channels.213

Loss of polarization of astrocytic endfeet was also
observed at the level of the BTB in breast cancer

metastases; however, no significant differences were
observed between highly permeable and poorly perme-
able lesions.205 In conclusion, depending on changes in
pericytes, permeability of BTB of metastatic lesions
is heterogeneous, but low enough to impede drug
delivery. Vasogenic edema increased interstitial fluid
pressure and hypoxia also contributes to low drug
penetration.214–216

Along with the growth of metastatic lesions, the
enhanced permeability and retention (EPR) effect
might enable nanoparticles and macromolecular drugs
to enter the brain tumor. This unique feature of tumor
vessels – i.e. highly increased permeability towards high
molecular weight drugs and nanosystems compared to
normal vessels – is dependent on structural abnormal-
ities in the endothelium of tumor blood vessels.217

However, the EPR effect is significantly weaker in the
cerebral microenvironment than in the periphery, as
shown in primary brain tumors.218 Further studies

Table 6. The Janus-faced attitude of cells of the NVU towards metastatic cells.

NVU cell Anti-tumor mechanism Tumor protective mechanism References

CECs Form a barrier for extravasating tumor

cells

Facilitate transmigration of tumor cells (COX-2

activation, MMP-2 release)

122

Provide chemoprotection through gap junction

communication and endothelin signaling

130

Provide chemoprotection through efflux

transporters

132,133

Provide shielding against cytotoxic immune cells

Astrocytes Secrete plasminogen which activates

plasmin to cleave FasL (to kill cancer

cells) and L1CAM (to block vessel

cooption)

134

Release exosomes containing miR-19a which

activates the PI3K/Akt survival pathway

151

Secrete proteases, growth factors and inflamma-

tory cytokines which favor growth of

tumor cells

58,75,101,155,229–231

Promote self-renewal of breast CSCs through the

JAG1-Notch-signaling pathway

152

Form gap junctions with tumor cells, leading to

sequestration of excess of Ca2þ, upregulation

of survival genes, secretion of inflammatory

cytokines, activation of PI3K signaling

130,155,156,158

Microglia May secrete factors which inhibit tumor

cell proliferation

162,163

Secrete cathepsin S to promote brain metastasis

formation

92

Secrete CCL22 and CCL17 promoting viability of

melanoma cells

74

NVU: neurovascular unit; CEC: cerebral endothelial cell; CSC: cancer stem-like cell.
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will elucidate involvement of the EPR effect in treat-
ment of cerebral metastases.

In conclusion, vascularization of the growing tumor
mass has important therapeutic implications. Vascular
cooption might render metastatic tumors of the brain
resistant to anti-angiogenic therapy. Relatively pre-
served tightness of the BTB and expression of efflux
transporters by both CECs and tumor cells highly
limit the efficacy of systemic therapies.

Conclusions

In the CNS, secondary tumors – originating primarily
from lung cancer, breast cancer and melanoma – are
much more frequent than primary malignancies.
Cancer cells invading the CNS have to overcome the
BBB, which forms a barrier for extravasating cells. On
the other hand, the BBB not only provides protection
for resident cells of the CNS, but also for tumor cells
that have reached the brain parenchyma. The brain
environment may be very hostile to metastatic cells,
causing the death of more than 90% of tumor cells
migrated through the cerebral vessel wall. However, a
few tumor cells can adapt to the specific requirements
and can even exploit the advantages of the brain envir-
onment, including dense vascularization, supporting
factors and shielding against the immune system and
drugs. Therefore, the initially detrimental environment
is transformed into a tumor supportive one. We call
this bipolar effect the Janus-faces of the NVU in the
formation of brain metastases (Table 6).

From clinical point of view, it would be important to
identify selective and specific molecular markers in pri-
mary tumors or circulating cancer cells which deter-
mine formation of brain metastases. Exosomes and
miRs are the most promising emerging biomarkers;
however, further studies are needed to find and validate
miR patterns determining cerebrotropism. Although
several alterations are common in the primary and
the brain metastatic tumor, molecular profile of the
brain secondary tumors is different from primary and
extracranial lesions. Therefore, identification of key
mechanisms of adaptation of the tumor cells to the
brain microenvironment is a prerequisite for the
design of new therapeutic strategies.
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