
RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on
Commodity Android Devices

Moustafa Alzantot, Yingnan Wang, Zhengshuang Ren, and Mani B. Srivastava
University of California, Los Angeles, Los Angeles, CA 90095

Abstract

Mobile devices have become an essential part of our daily lives. By virtue of both their increasing

computing power and the recent progress made in AI, mobile devices evolved to act as intelligent

assistants in many tasks rather than a mere way of making phone calls. However, popular and

commonly used tools and frameworks for machine intelligence are still lacking the ability to make

proper use of the available heterogeneous computing resources on mobile devices. In this paper,

we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources

available on commodity android devices while running deep learning models. We leveraged the

heterogeneous computing framework RenderScript to accelerate the execution of deep learning

models on commodity Android devices. Our system is implemented as an extension to the popular

open-source framework TensorFlow. By integrating our acceleration framework tightly into

TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous

computing resources on mobile devices without the need of any extra tools. We evaluate our

system on different android phones models to study the trade-offs of running different neural

network operations on the GPU. We also compare the performance of running different models

architectures such as convolutional and recurrent neural networks on CPU only vs using

heterogeneous computing resources. Our result shows that although GPUs on the phones are

capable of offering substantial performance gain in matrix multiplication on mobile devices.

Therefore, models that involve multiplication of large matrices can run much faster (approx. 3
times faster in our experiments) due to GPU support.

Keywords

Deep learning; Android; RenderScript; TensorFlow; heterogeneous computing; Convolution;
Neural networks; LSTM

1. INTRODUCTION

Recent developments in artificial intelligence and machine learning have made huge leaps in

the accuracy of machine perception algorithms in different domains such as object detection

[16], speech recognition [13], and natural language understanding [10]. A lot of this

progression comes due to the renaissance of deep neural networks (a.k.a. deep learning [12])

methods. Running the deep learning model locally - on device - saves the time and money

Request permissions from permissions@acm.org.

HHS Public Access
Author manuscript
MobiSys. Author manuscript; available in PMC 2018 April 06.

Published in final edited form as:
MobiSys. 2017 June ; 2017: 7–12. doi:10.1145/3089801.3089805.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

spent on sending data to remote servers and reinforces the user privacy. However, running

deep learning models involves a massive amount of calculations. Therefore, a lot of

applications prefer to send the data from the mobile device to remote servers where the

model runs and sends the result back to device despite the obvious benefits of running the

models locally on mobile devices. Therefore, an easy to develop with accelerated deep

learning framework on mobile devices becomes a necessity.

Although popular deep learning frameworks (e.g. Caffe [15], Torch, Theano [8], and

TensorFlow [6]) accelerate the computation of deep learning models by utilizing

heterogeneous hard-aware (CPU/GPU) resources and even custom hardware accelerator

such as tensor processing units (TPU) used in Google data centers. When running the mobile

device versions of these frameworks (e.g. Caffe Mobile [2], Torch Android [5], and

TensorFlow for Android [4]), we observe that all of them run entirely on the device CPU. In

this paper, we introduce RSTensorFlow an extended version of TensorFlow that supports

heterogeneous computing resources for commodity Android devices. RSTensorFlow is

implemented by modifying the kernels of TensorFlow operations to leverage the

RenderScript heterogeneous computing framework on Android devices. As a result,

running models with RSTensorFlow will seamlessly utilize the power of available

computation resources while running models trained with TensorFlow without requiring

the use of any other external tools.

In this paper, we make the following contributions:

1. we introduce and implement RSTensorFlow a modified version for

TensorFlow that supports both CPU and GPU on commodity android devices.

2. We benchmark and evaluate the trade-offs of running common deep learning

operations (namely matrix multiplication and convolution) on CPU vs GPU on

commodity android phones.

3. We benchmark and evaluate the trade-offs of running different model

architectures for common tasks (namely, image recognition and gesture

recognition) on heterogeneous computing resources.

4. we provide our framework RSTensorFlow as an open-source project1 for the

research community.

Although recently research was done on using other computing resources on mobile devices

for accelerating the runtime of deep learning models (e.g. DeepX [17], CNN-Droid [19]),

these frameworks are either proprietary and not available for the community, or requires

specific hardware devices and does not integrate well with the existing popular deep learning

frameworks such as Tensorflow.

We evaluate the performance of our system on different Android devices (Nexus 5x, Nexus

6). We notice that matrix multiplication operations gain significant speed when running on

GPU, given that matrix size is big. As a result, we notice up to 3 times speedup in running

1https://nesl.github.io/RSTensorFlow/

Alzantot et al. Page 2

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://nesl.github.io/RSTensorFlow/

the inception model on Nexus 5X phone. On the other hand, we notice that convolution

operation runs on CPU faster than GPU. Therefore, optimizing convolution operation to run

mobile phones GPU remains an interesting research goal.

The rest of this paper is organized as follow: Section 2 provides a summary of the related

work, Section 3 provides a brief background about deep learning and the RenderScript

framework. Section 4 has our system design and implementation details. Section 5 lists our

experiments and evaluation results. Finally, Section 6 concludes the paper.

2. RELATEDWORK

In desktop/server environments, GPU vendors provide accelerated computing libraries for

developers such as cuBLAS [21] and cuDNN [9] from Nvidia and AMD Core Math Library

(ACML [7]). These libraries provision useful primitive for deep learning engineers to utilize

accelerated computing in their frameworks. However, unfortunately there are no equivalent

primitives libraries provided by mobile GPU vendors. Although, OpenCL existed for a while

as an industry standard for heterogeneous computing that supports mobile devices.

Unfortunately, OpenCL is no longer officially supported on most android devices. As a

result the current versions of Deep-learning frameworks running on mobile devices: Caffe

Mobile [2], Torch Android [5] run only on CPU without acceleration. TensorFlow [6] also

supports running on different mobile and embedded platforms: Rasberry pi, iOS and

Android. In Android TensorFlow also runs on the device CPU while making use of low-

precision quantized matrix multiplication library GEMMLowp [3] to provide faster inference

time and reduce the memory size of the model. However, it still does not make use of the

mobile device GPU.

Recently, different research efforts considered the acceleration of deep learning framework

running locally on mobile devices. For example, DeepX [18] accelerates the deep learning

inference on mobile devices by using the DSP, GPU and using runtime layer compression to

decompose the deep model across available hardware resources. However, in their paper

results, DeepX [18] used the GPU only on the Nvidia Tegra K1 Soc and relied on using DSP

on the more popular Snapdragon Qualcomm SoC. Also, DeepX is not available for the

public developers to use and does not integrate within popular deep learning frameworks.

However, possible future work would be to make use of the model compression and

decomposition algorithms proposed by DeepX to further improve our implementation.

In comparison to recent work by [20] which also used RenderScript framework to

accelerate the runtime of convolutional neural networks on mobile devices. Although they

report very impressive speed up gain (more than 200x) by using RenderScript, this result

is magnified due to the fact that they are comparing their RenderScript-based convolution

against their own java serial implementation of convolution operation. However, we have the

same advantage of using RenderScript but we compare ourselves against Eigen [14] library

which is the state of art of optimizing deep learning models runtime on top of ARM NEON

SIMD instruction set. We also accelerate other important operations, namely matrix

multiplications. Therefore, our RSTensorFlow can be used to accelerate other models than

convolution neural networks. Finally, our system can be used to run models trained with

Alzantot et al. Page 3

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

TensorFlow out of the box without any model conversion or preparation as needed by [20],

and [18].

3. BACKGROUND

3.1 Deep Neural Networks

Neural networks are a sub-class of machine learning models that are loosely inspired by how

the human brain functions. The computation model for neural networks consists of layers of

transformations applied to input data to approximate a target function. Deep learning uses a

large number of hidden layers to learn a hierarchical representation of the input data in order

to increase the model accuracy. Deep learning methods can be broadly classified into major

model types including:

Feed forward neural networks: also called multi-layer perceptrons (MLPs), are the

fundamental form of neural network. MLPs have no feedback connections, therefore

information flow from one layer to the next one. The layer output Y is computed as the

result of applying a transformation of the input X (multiplying it by weight vector then

adding a bias value), then applying a non-linear activation function σ to it. Commonly used

activation function include: the sigmoid function, tanh function, and the rectified linear

unit relu function. Implementing a feed-forward (fully connected) layer involves a matrix

multiplication operation. Since both input X and output Y are usually represented as

matrices containing several (batch) examples together and the weights matrix W is also a

matrix representing the input weights of different units within the same layer.

Convolutional neural networks (CNNs): are specialized versions of MLPs that are

currently the state of art model architecture for image recognition tasks. ConvNets are

similar to MLPs but ConvNet models start with groups of convolution and pooling layer

pairs.

Recurrent neural networks (RNNs): are neural network models with feedback loops that

give them an advantage for modeling patterns in sequential data with variable lengths. They

are widely used for different time-series applications such as language translation in natural

language processing (NLPs), time-series forecasting, and classifying sensors data.

3.2 TensorFlow

TensorFlow is a widely used framework for machine intelligence. It was originally

developed and used by Google internally, until it was released as open-source project in

2015. TensorFlow represents a model computation as a data-flow model in the form of a

directed graph. The graph is composed of a set of nodes that represent operations while

edges between the nodes are tensors holding arbitrary dimensionality arrays of values.

TensorFlow relies mainly on the Eigen [14] and cuBLAS [21] as a library for underlying

linear algebra subroutines. On commodity Android devices, Eigen [14] is the library being

used. While Eigen is very well optimized library for running on ARM processors using the

ARM advanced SIMD instruction-set (NEON), it does not make use of other heterogeneous

computing resources such as GPU and DSP.

Alzantot et al. Page 4

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Recently a cooperation between Google and Qualcomm has lead to adding Qualcomm

Hexagon 682 DSP support to TensorFlow. Hexagon 682 DSP is an integrated part of the

Snapdragon 835 SoC. According to official statement form Qualcomm, running TensorFlow

on DSP is 25X times faster and 8X energy efficient than running on CPU. However, phones

with Snapdragon 835 are not launched market yet.

3.3 RenderScript

Google introduced RenderScript [1] as a framework for running computationally intensive

tasks at high performance on Android. RenderScript parallelizes the computation work-loads

across CPU cores and GPUs. It is commonly used to accelerate image processing and

computer vision algorithms on mobile phones.

Developer express their data parallel tasks in terms of compute kernels with RenderScript

code using a c-99 language in .rs files. RenderScript framework executes kernels in parallel

across different data points and will distribute the execution across the available

heterogeneous CPU cores and GPUs. During the build time, this code is compiled into an

intermediate bytecode using llvm compiler. Android build tools also generate a reflected

class with the name ScriptC_renderscript_filename for each .rs file. This class

provides an interface to call the RenderScript functions from java/c++ code.

During the runtime on device, this bytecode is compiled again (just-in-time) into machine

code using another compiler. The machine code is optimized for the device and is cashed so

the just-in-time compilation happens only during the first time the code runs on device.

4. SYSTEM DESIGN

Running inferences using neural network model requires executing the forward pass of the

model which involves different operations. We ran an experiment to decide which operations

are more computationally expensive than others and hence it is more important to optimize

their performance. In our experiment, we use the TensorFlow for Android library [4] to run

the forward pass of inception [22] model on Nexus 6 phone. We observe the timing of every

operation and of the whole model and compute the percentage of time spent running each

operation type. The result shown in Figure 1 demonstrates convolution operations constitute

the largest fraction of forward pass time (approx. 75%) while matrix multiplication take the

second largest fraction of the the forward pass time (approx. 7%). Therefore, we focus our

efforts on these two kinds of operations. The following subsections discuss our approach to

modify TensorFlow to run these operations using RenderScript instead of the default

Eigen ARM NEON-based implementation.

4.1 Matrix Multiplication (MatMul)

Matrix multiplication operation (MatMul) is an essential ingredient in all kinds of deep

learning models as fully connected layers require matrix multiplication between the input

matrix and the weight matrix. Fortunately, matrix multiplication is easy to parallelize as

every element in the output matrix can be computed independently from other elements.

Therefore, it can benefit a lot from data-parallel execution. RenderScript framework has

Alzantot et al. Page 5

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

built-in implementation for multiple matrix BLAS (Basic Linear Algebra Subprograms)

operations defined in ScriptIntrinsicBLAS class. We modified TensorFlow to make

use of the RenderScript implementation of matrix multiplication instead of the default

MatMul implementation that uses Eigen library.

4.2 Convolution Operation (Conv2D)

Convolution operations are the core building block of CNN models such as the inception

model [22] which has 22 convolution layers. Convolution layer consists of a number of

filters (their values are learned during the training phase). The input and output of each

convolution layer are represented as volumes where the depth of volume represents the

number of feature maps. For the first input layer, depth will be 3 the RGB color channels.

Convolution layer applies the sliding filters across the height and width of input volume

transforms it into another volume with the new set of feature maps.

In order to parallelize the convolution operation using RenderScript, we developed a

render script kernel file to execute the computation of output values in the convolution

output volume in parallel.

5. EXPERIMENTS

We implemented RSTensorFlow by extending the TensorFlow v1.0.1 implementation. We

used Nexus 6 and Nexus 5X mobile phones. Both phones are running Android 7.0 (Nougat,

API 24). The two phones have different CPU and GPU models. The detailed hardware

specifications of the two phones are shown in Table 1.

5.1 Matrix Multiplication Operation Results

We benchmark the running time of the modified matrix multiplication operation and

compare it against the running time of the default Eigen-based implementation on the two

different phones. We perform matrix multiplication between square-matrices of different

sizes and measure the time for each multiplication. The timing result are shown in Figure 2.

The results of our matrix multiplication experiments show that on Nexus 5X the

RenderScript implementation becomes significantly faster as the matrix size increases.

When square matrix size = 1024, matrix multiplication using RenderScript took 158 milli-

seconds which is 6 times faster than the default implementation using Eigen library that

took 904 milli-seconds. However, on Nexus 6 phone the RenderScriptbased matrix

multiplication was slower than the default Eigen-based implementation. The reason is the

following. RenderScript does not provide the user with control (nor guarantees) about

which hardware resource will be used to perform the computation. By monitoring the CPU

and GPU frequencies during the experiment, we observed that on Nexus 5X the GPU was

used to perform the matrix multiplication which explains the speed-up we obtained, while

on Nexus 6 RenderScript did not use the GPU and used only two cores of the available 4

CPU cores while Eigen fully utilized the four CPU cores. This explains why

RenderScript matrix-multiplication was faster than Eigen on Nexus 5X and slower than

Alzantot et al. Page 6

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

it on Nexus 6. We repeated our experiments multiple times of different phones of the same

type and observed similar results.

5.2 Convolution Operation Results

We also benchmarked the running time of both our RenderScript-based implementation of

the convolution operation and compared it against the running of the default Eigen-based

implementation. Our benchmarking results are shown in Figure 3. Unfortunately, we have

not noticed speed up in the performance of convolution operation. Even on the Nexus 5X

phone were RenderScript utilized the GPU, convolution operation was slower than the

default TensorFlow implementation based ARM NEON acceleration. This might be due to the

memory overhead associated with using RenderScript that required copying data from/to

special buffers (referred to as allocations in RenderScript). Therefore, optimizing the

runtime of convolution operation on mobile GPU than the Eigen-based implementation

remains an interesting research question.

5.3 ConvNet Model Results

We also studied the effects of our RenderScript extension of TensorFlow on the total runtime

of the forward pass of the inception [22] convolutional neural network model for image

recognition. Inception model consists of 22 convolution and pooling layers and two large

fully connected layers at the end of the model computation graph. It recognizes the input

image as one of 1000 class labels of the ImageNet [11] dataset.

The results of our benchmarking experiments are shown in Table 5.3. We observe significant

speed up when utilizing RenderScript to perform the matrix multiplication

(approximately 3 times faster on Nexus 5X). On the other hand, using our implementation of

the convolution operations in RenderScript, tends to bring the whole model execution

time slower than the original TensorFlow implementation.

5.4 RNN Activity Recognition Results

We also benchmarked the performance of running recurrent neural network sequence

classification model using Long-Short Term memory (LSTM) units. We developed an

activity recognition RNN model consisting of 512 LSTM units that receive as input a time-

series (100 time-steps) of accelerometer and gyroscope sensor measurements to identify the

hand gesture as one of the 11 signs which are shown in Figure 5.4. The model can achieve

above 90% classification accuracy evaluated using 5 folds cross validation on a dataset of

1290 examples collected by four persons.

Evaluation results shown in Figure 5.4 shows that RSTensorFlow slightly improves the

classification runtime. Notice, that time-series classification using RNN is a computationally

expensive task as the state update for every time step involves several matrix multiplication

operations.

The result shows that although the RSTensorFlow is slower than the original TensorFlow

model when the model runs on a single example, RSTensorFlow becomes faster than the

Alzantot et al. Page 7

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

original TensorFlow when we increase the batch size (as a result of increasing the size of

the matrix multiplication).

6. CONCLUSION

In this paper, we introduced RSTensorFlow an accelerated deep learning framework on

commodity android devices using the heterogeneous computing framework RenderScript.

Although, we noticed that GPU was not used by RenderScript on all phone models.

When GPU is used, RSTensorFlow improves matrix multiplication operations a lot and

therefore we observed significant speedup in running different models on Nexus 5X phones.

Optimizing other deep learning operations and profiling the energy costs of running on CPU

vs GPU are potential future research directions.

Acknowledgments

This research was supported in part by the NIH Center of Excellence for Mobile Sensor Data-to-Knowledge
(MD2K) under award 1-U54EB020404-01, and by the U.S. Army Research Laboratory and the UK Ministry of
Defence under Agreement Number W911NF-16-3-0001. Any findings in this material are those of the author(s) and
do not reflect the views of any of the above funding agencies. The U.S. and U.K. Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

References

1. Android renderscript API guide. https://developer.android.com/guide/topics/renderscript/
compute.html

2. Caffe android library. https://github.com/sh1r0/caffe-android-lib

3. gemmlowp: a small self-contained low-precision GEMM library.

4. Tensorflow android demo. https://github.com/tensorflow/tensorflow/tree/master/tensorflow/
examples/android

5. Torch android. https://github.com/soumith/torch-android

6. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,
Isard, M., et al. Tensorflow: A system for large-scale machine learning. Proceedings of the 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI); Savannah,
Georgia, USA. 2016.

7. AMD. Core math library (ACML). 2012. p. 25URL http://developer.amd.com/acml.jsp

8. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins, G.,
Warde-Farley, D., Goodfellow, I., Bergeron, A., et al. Theano: Deep learning on gpus with python.
NIPS 2011, BigLearning Workshop; Granada, Spain. Citeseer; 2011.

9. Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E. cudnn: Efficient
primitives for deep learning. 2014 arXiv preprint arXiv:1410.0759.

10. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y.
Learning phrase representations using rnn encoder-decoder for statistical machine translation.
2014 arXiv preprint arXiv:1406.1078.

11. Deng, J., Dong, W., Socher, R., Li, L-J., Li, K., Fei-Fei, L. Imagenet: A large-scale hierarchical
image database. Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on; IEEE; 2009. p. 248-255.

12. Goodfellow I, Bengio Y, Courville A. Deep learning. 2016

13. Graves, A., Mohamed, A-r, Hinton, G. Speech recognition with deep recurrent neural networks.
Acoustics, speech and signal processing (icassp), 2013 ieee international conference on; IEEE;
2013. p. 6645-6649.

14. Guennebaud, G., Jacob, B. Eigen 2 matrix library. nd. [Online]. Available: http://
eigen.tuxfamily.org

Alzantot et al. Page 8

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://developer.android.com/guide/topics/renderscript/compute.html
https://developer.android.com/guide/topics/renderscript/compute.html
https://github.com/sh1r0/caffe-android-lib
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android
https://github.com/soumith/torch-android
http://developer.amd.com/acml.jsp
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

15. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.
Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM
international conference on Multimedia; ACM; 2014. p. 675-678.

16. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems. 2012:1097–1105.

17. Lane, N., Bhattacharya, S., Mathur, A., Forlivesi, C., Kawsar, F. Dxtk: Enabling resource-efficient
deep learning on mobile and embedded devices with the deepx toolkit. Proceedings of the 8th EAI
International Conference on Mobile Computing, Applications and Services; ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering); 2016. p. 98-107.

18. Lane, ND., Bhattacharya, S., Georgiev, P., Forlivesi, C., Jiao, L., Qendro, L., Kawsar, F. Deepx: A
software accelerator for low-power deep learning inference on mobile devices. Information
Processing in Sensor Networks (IPSN), 2016 15th ACM/IEEE International Conference on; IEEE;
2016. p. 1-12.

19. Latifi Oskouei, SS., Golestani, H., Hashemi, M., Ghiasi, S. Cnndroid: GPU-accelerated execution
of trained deep convolutional neural networks on android. Proceedings of the 2016 ACM on
Multimedia Conference; ACM; 2016. p. 1201-1205.

20. Motamedi M, Fong D, Ghiasi S. Fast and energy-efficient cnn inference on iot devices. 2016 arXiv
preprint arXiv:1611.07151.

21. Nvidia C. Cublas library. NVIDIA Corporation, Santa Clara, California. 2008; 15:27.

22. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A. Going deeper with convolutions. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition; 2015. p. 1-9.

Alzantot et al. Page 9

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1.
The time share of each type of operations during the forward pass of Inception model

Alzantot et al. Page 10

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Time of matrix multiplication between square matrices using Original TensorFlow and

RenderScript TensorFlow

Alzantot et al. Page 11

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3.
Time of applying convolution operation on input image with size 224×224 using Original

TensorFlow and RenderScript TensorFlow

Alzantot et al. Page 12

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4.
List of hand gestures used in our LSTM-based activity recognition model

Alzantot et al. Page 13

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alzantot et al. Page 14

Table 1

Hardware specs of phones used in our experiments

Model Nexus 5X Nexus 6

SoC Snapdragon 808 Snapdragon 805

Processor 1.8GHz (8 cores) 2.7 GHz (4 cores)

GPU Adreno 418 Adreno 420

Memory 2 GB 3 GB

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alzantot et al. Page 15

Ta
b

le
 2

C
om

pa
ri

so
n

of
 th

e
tim

e
(i

n
se

co
nd

s)
 r

eq
ui

re
d

to
 r

un
 th

e
fo

rw
ar

d
pa

ss
 o

f
In

ce
pt

io
n

m
od

el
 u

si
ng

 th
e

or
ig

in
al

 T
en

so
rF

lo
w

 v
1.

0.
1,

 T
en

so
rF

lo
w

 w
ith

R
e
n
d
e
r
S
c
r
i
p
t

 m
at

ri
x

m
ul

tip
lic

at
io

n
an

d
co

nv
ol

ut
io

n
op

er
at

io
ns

, a
nd

 T
en

so
rF

lo
w

 w
ith

 R
e
n
d
e
r
S
c
r
i
p
t

 m
at

ri
x

m
ul

tip
lic

at
io

n
on

ly
.

N
ex

us
 6

N
ex

us
 5

X

B
at

ch
 s

iz
e

O
ri

gi
na

l T
F

T
F

 +
 R

S
M

at
M

ul
 &

 R
S

C
on

v2
D

T
F

 +
 R

S
M

at
M

ul
O

ri
gi

na
l T

F
T

F
 +

 R
S

M
at

M
ul

 &
 R

S
C

on
v2

D
T

F
 +

 R
S

M
at

M
ul

1
0.

45
3

1.
76

5
0.

31
2

0.
69

9
2.

77
5

0.
35

1

2
0.

71
8

1.
75

7
0.

37
0

1.
23

5
2.

78
2

0.
47

1

3
0.

97
9

1.
87

9
0.

47
5

1.
78

5
2.

81
1

0.
64

9

4
1.

24
6

1.
84

1
0.

57
5

2.
33

5
2.

85
3

0.
83

9

5
1.

53
5

1.
83

0
0.

64
5

2.
98

8
2.

93
0

1.
02

5

MobiSys. Author manuscript; available in PMC 2018 April 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Alzantot et al. Page 16

Table 3

Comparison of the time (in seconds) required to run the LSTM sequence classification model.

Nexus 6 Nexus 5X

TensorFlow RSTensorFlow TensorFlow RSTensorFlow

batch size=1 0.824 3.986 1.314 2.213

batch size=64 9.456 9.234 7.698 7.253

MobiSys. Author manuscript; available in PMC 2018 April 06.

	Abstract
	1. INTRODUCTION
	2. RELATEDWORK
	3. BACKGROUND
	3.1 Deep Neural Networks
	3.2 TensorFlow
	3.3 RenderScript

	4. SYSTEM DESIGN
	4.1 Matrix Multiplication (
MatMul)
	4.2 Convolution Operation (
Conv2D)

	5. EXPERIMENTS
	5.1 Matrix Multiplication Operation Results
	5.2 Convolution Operation Results
	5.3 ConvNet Model Results
	5.4 RNN Activity Recognition Results

	6. CONCLUSION
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3

