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Abstract

Mobile devices have become an essential part of our daily lives. By virtue of both their increasing 

computing power and the recent progress made in AI, mobile devices evolved to act as intelligent 

assistants in many tasks rather than a mere way of making phone calls. However, popular and 

commonly used tools and frameworks for machine intelligence are still lacking the ability to make 

proper use of the available heterogeneous computing resources on mobile devices. In this paper, 

we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources 

available on commodity android devices while running deep learning models. We leveraged the 

heterogeneous computing framework RenderScript to accelerate the execution of deep learning 

models on commodity Android devices. Our system is implemented as an extension to the popular 

open-source framework TensorFlow. By integrating our acceleration framework tightly into 

TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous 

computing resources on mobile devices without the need of any extra tools. We evaluate our 

system on different android phones models to study the trade-offs of running different neural 

network operations on the GPU. We also compare the performance of running different models 

architectures such as convolutional and recurrent neural networks on CPU only vs using 

heterogeneous computing resources. Our result shows that although GPUs on the phones are 

capable of offering substantial performance gain in matrix multiplication on mobile devices. 

Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 
times faster in our experiments) due to GPU support.
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1. INTRODUCTION

Recent developments in artificial intelligence and machine learning have made huge leaps in 

the accuracy of machine perception algorithms in different domains such as object detection 

[16], speech recognition [13], and natural language understanding [10]. A lot of this 

progression comes due to the renaissance of deep neural networks (a.k.a. deep learning [12]) 

methods. Running the deep learning model locally - on device - saves the time and money 
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spent on sending data to remote servers and reinforces the user privacy. However, running 

deep learning models involves a massive amount of calculations. Therefore, a lot of 

applications prefer to send the data from the mobile device to remote servers where the 

model runs and sends the result back to device despite the obvious benefits of running the 

models locally on mobile devices. Therefore, an easy to develop with accelerated deep 

learning framework on mobile devices becomes a necessity.

Although popular deep learning frameworks (e.g. Caffe [15], Torch, Theano [8], and 

TensorFlow [6]) accelerate the computation of deep learning models by utilizing 

heterogeneous hard-aware (CPU/GPU) resources and even custom hardware accelerator 

such as tensor processing units (TPU) used in Google data centers. When running the mobile 

device versions of these frameworks (e.g. Caffe Mobile [2], Torch Android [5], and 

TensorFlow for Android [4]), we observe that all of them run entirely on the device CPU. In 

this paper, we introduce RSTensorFlow an extended version of TensorFlow that supports 

heterogeneous computing resources for commodity Android devices. RSTensorFlow is 

implemented by modifying the kernels of TensorFlow operations to leverage the 

RenderScript heterogeneous computing framework on Android devices. As a result, 

running models with RSTensorFlow will seamlessly utilize the power of available 

computation resources while running models trained with TensorFlow without requiring 

the use of any other external tools.

In this paper, we make the following contributions:

1. we introduce and implement RSTensorFlow a modified version for 

TensorFlow that supports both CPU and GPU on commodity android devices.

2. We benchmark and evaluate the trade-offs of running common deep learning 

operations (namely matrix multiplication and convolution) on CPU vs GPU on 

commodity android phones.

3. We benchmark and evaluate the trade-offs of running different model 

architectures for common tasks (namely, image recognition and gesture 

recognition) on heterogeneous computing resources.

4. we provide our framework RSTensorFlow as an open-source project1 for the 

research community.

Although recently research was done on using other computing resources on mobile devices 

for accelerating the runtime of deep learning models (e.g. DeepX [17], CNN-Droid [19]), 

these frameworks are either proprietary and not available for the community, or requires 

specific hardware devices and does not integrate well with the existing popular deep learning 

frameworks such as Tensorflow.

We evaluate the performance of our system on different Android devices (Nexus 5x, Nexus 

6). We notice that matrix multiplication operations gain significant speed when running on 

GPU, given that matrix size is big. As a result, we notice up to 3 times speedup in running 

1https://nesl.github.io/RSTensorFlow/
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the inception model on Nexus 5X phone. On the other hand, we notice that convolution 

operation runs on CPU faster than GPU. Therefore, optimizing convolution operation to run 

mobile phones GPU remains an interesting research goal.

The rest of this paper is organized as follow: Section 2 provides a summary of the related 

work, Section 3 provides a brief background about deep learning and the RenderScript 

framework. Section 4 has our system design and implementation details. Section 5 lists our 

experiments and evaluation results. Finally, Section 6 concludes the paper.

2. RELATEDWORK

In desktop/server environments, GPU vendors provide accelerated computing libraries for 

developers such as cuBLAS [21] and cuDNN [9] from Nvidia and AMD Core Math Library 

(ACML [7]). These libraries provision useful primitive for deep learning engineers to utilize 

accelerated computing in their frameworks. However, unfortunately there are no equivalent 

primitives libraries provided by mobile GPU vendors. Although, OpenCL existed for a while 

as an industry standard for heterogeneous computing that supports mobile devices. 

Unfortunately, OpenCL is no longer officially supported on most android devices. As a 

result the current versions of Deep-learning frameworks running on mobile devices: Caffe 

Mobile [2], Torch Android [5] run only on CPU without acceleration. TensorFlow [6] also 

supports running on different mobile and embedded platforms: Rasberry pi, iOS and 

Android. In Android TensorFlow also runs on the device CPU while making use of low-

precision quantized matrix multiplication library GEMMLowp [3] to provide faster inference 

time and reduce the memory size of the model. However, it still does not make use of the 

mobile device GPU.

Recently, different research efforts considered the acceleration of deep learning framework 

running locally on mobile devices. For example, DeepX [18] accelerates the deep learning 

inference on mobile devices by using the DSP, GPU and using runtime layer compression to 

decompose the deep model across available hardware resources. However, in their paper 

results, DeepX [18] used the GPU only on the Nvidia Tegra K1 Soc and relied on using DSP 

on the more popular Snapdragon Qualcomm SoC. Also, DeepX is not available for the 

public developers to use and does not integrate within popular deep learning frameworks. 

However, possible future work would be to make use of the model compression and 

decomposition algorithms proposed by DeepX to further improve our implementation.

In comparison to recent work by [20] which also used RenderScript framework to 

accelerate the runtime of convolutional neural networks on mobile devices. Although they 

report very impressive speed up gain (more than 200x) by using RenderScript, this result 

is magnified due to the fact that they are comparing their RenderScript-based convolution 

against their own java serial implementation of convolution operation. However, we have the 

same advantage of using RenderScript but we compare ourselves against Eigen [14] library 

which is the state of art of optimizing deep learning models runtime on top of ARM NEON 

SIMD instruction set. We also accelerate other important operations, namely matrix 

multiplications. Therefore, our RSTensorFlow can be used to accelerate other models than 

convolution neural networks. Finally, our system can be used to run models trained with 
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TensorFlow out of the box without any model conversion or preparation as needed by [20], 

and [18].

3. BACKGROUND

3.1 Deep Neural Networks

Neural networks are a sub-class of machine learning models that are loosely inspired by how 

the human brain functions. The computation model for neural networks consists of layers of 

transformations applied to input data to approximate a target function. Deep learning uses a 

large number of hidden layers to learn a hierarchical representation of the input data in order 

to increase the model accuracy. Deep learning methods can be broadly classified into major 

model types including:

Feed forward neural networks: also called multi-layer perceptrons (MLPs), are the 

fundamental form of neural network. MLPs have no feedback connections, therefore 

information flow from one layer to the next one. The layer output Y is computed as the 

result of applying a transformation of the input X (multiplying it by weight vector then 

adding a bias value), then applying a non-linear activation function σ to it. Commonly used 

activation function include: the sigmoid function, tanh function, and the rectified linear 

unit relu function. Implementing a feed-forward (fully connected) layer involves a matrix 

multiplication operation. Since both input X and output Y are usually represented as 

matrices containing several (batch) examples together and the weights matrix W is also a 

matrix representing the input weights of different units within the same layer.

Convolutional neural networks (CNNs): are specialized versions of MLPs that are 

currently the state of art model architecture for image recognition tasks. ConvNets are 

similar to MLPs but ConvNet models start with groups of convolution and pooling layer 

pairs.

Recurrent neural networks (RNNs): are neural network models with feedback loops that 

give them an advantage for modeling patterns in sequential data with variable lengths. They 

are widely used for different time-series applications such as language translation in natural 

language processing (NLPs), time-series forecasting, and classifying sensors data.

3.2 TensorFlow

TensorFlow is a widely used framework for machine intelligence. It was originally 

developed and used by Google internally, until it was released as open-source project in 

2015. TensorFlow represents a model computation as a data-flow model in the form of a 

directed graph. The graph is composed of a set of nodes that represent operations while 

edges between the nodes are tensors holding arbitrary dimensionality arrays of values. 

TensorFlow relies mainly on the Eigen [14] and cuBLAS [21] as a library for underlying 

linear algebra subroutines. On commodity Android devices, Eigen [14] is the library being 

used. While Eigen is very well optimized library for running on ARM processors using the 

ARM advanced SIMD instruction-set ( NEON), it does not make use of other heterogeneous 

computing resources such as GPU and DSP.
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Recently a cooperation between Google and Qualcomm has lead to adding Qualcomm 

Hexagon 682 DSP support to TensorFlow. Hexagon 682 DSP is an integrated part of the 

Snapdragon 835 SoC. According to official statement form Qualcomm, running TensorFlow 

on DSP is 25X times faster and 8X energy efficient than running on CPU. However, phones 

with Snapdragon 835 are not launched market yet.

3.3 RenderScript

Google introduced RenderScript [1] as a framework for running computationally intensive 

tasks at high performance on Android. RenderScript parallelizes the computation work-loads 

across CPU cores and GPUs. It is commonly used to accelerate image processing and 

computer vision algorithms on mobile phones.

Developer express their data parallel tasks in terms of compute kernels with RenderScript 

code using a c-99 language in .rs files. RenderScript framework executes kernels in parallel 

across different data points and will distribute the execution across the available 

heterogeneous CPU cores and GPUs. During the build time, this code is compiled into an 

intermediate bytecode using llvm compiler. Android build tools also generate a reflected 

class with the name ScriptC_renderscript_filename for each .rs file. This class 

provides an interface to call the RenderScript functions from java/c++ code.

During the runtime on device, this bytecode is compiled again (just-in-time) into machine 

code using another compiler. The machine code is optimized for the device and is cashed so 

the just-in-time compilation happens only during the first time the code runs on device.

4. SYSTEM DESIGN

Running inferences using neural network model requires executing the forward pass of the 

model which involves different operations. We ran an experiment to decide which operations 

are more computationally expensive than others and hence it is more important to optimize 

their performance. In our experiment, we use the TensorFlow for Android library [4] to run 

the forward pass of inception [22] model on Nexus 6 phone. We observe the timing of every 

operation and of the whole model and compute the percentage of time spent running each 

operation type. The result shown in Figure 1 demonstrates convolution operations constitute 

the largest fraction of forward pass time (approx. 75%) while matrix multiplication take the 

second largest fraction of the the forward pass time (approx. 7%). Therefore, we focus our 

efforts on these two kinds of operations. The following subsections discuss our approach to 

modify TensorFlow to run these operations using RenderScript instead of the default 

Eigen ARM NEON-based implementation.

4.1 Matrix Multiplication ( MatMul)

Matrix multiplication operation ( MatMul) is an essential ingredient in all kinds of deep 

learning models as fully connected layers require matrix multiplication between the input 

matrix and the weight matrix. Fortunately, matrix multiplication is easy to parallelize as 

every element in the output matrix can be computed independently from other elements. 

Therefore, it can benefit a lot from data-parallel execution. RenderScript framework has 
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built-in implementation for multiple matrix BLAS (Basic Linear Algebra Subprograms) 

operations defined in ScriptIntrinsicBLAS class. We modified TensorFlow to make 

use of the RenderScript implementation of matrix multiplication instead of the default 

MatMul implementation that uses Eigen library.

4.2 Convolution Operation ( Conv2D)

Convolution operations are the core building block of CNN models such as the inception 

model [22] which has 22 convolution layers. Convolution layer consists of a number of 

filters (their values are learned during the training phase). The input and output of each 

convolution layer are represented as volumes where the depth of volume represents the 

number of feature maps. For the first input layer, depth will be 3 the RGB color channels. 

Convolution layer applies the sliding filters across the height and width of input volume 

transforms it into another volume with the new set of feature maps.

In order to parallelize the convolution operation using RenderScript, we developed a 

render script kernel file to execute the computation of output values in the convolution 

output volume in parallel.

5. EXPERIMENTS

We implemented RSTensorFlow by extending the TensorFlow v1.0.1 implementation. We 

used Nexus 6 and Nexus 5X mobile phones. Both phones are running Android 7.0 (Nougat, 

API 24). The two phones have different CPU and GPU models. The detailed hardware 

specifications of the two phones are shown in Table 1.

5.1 Matrix Multiplication Operation Results

We benchmark the running time of the modified matrix multiplication operation and 

compare it against the running time of the default Eigen-based implementation on the two 

different phones. We perform matrix multiplication between square-matrices of different 

sizes and measure the time for each multiplication. The timing result are shown in Figure 2.

The results of our matrix multiplication experiments show that on Nexus 5X the 

RenderScript implementation becomes significantly faster as the matrix size increases. 

When square matrix size = 1024, matrix multiplication using RenderScript took 158 milli-

seconds which is 6 times faster than the default implementation using Eigen library that 

took 904 milli-seconds. However, on Nexus 6 phone the RenderScriptbased matrix 

multiplication was slower than the default Eigen-based implementation. The reason is the 

following. RenderScript does not provide the user with control (nor guarantees) about 

which hardware resource will be used to perform the computation. By monitoring the CPU 

and GPU frequencies during the experiment, we observed that on Nexus 5X the GPU was 

used to perform the matrix multiplication which explains the speed-up we obtained, while 

on Nexus 6 RenderScript did not use the GPU and used only two cores of the available 4 

CPU cores while Eigen fully utilized the four CPU cores. This explains why 

RenderScript matrix-multiplication was faster than Eigen on Nexus 5X and slower than 
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it on Nexus 6. We repeated our experiments multiple times of different phones of the same 

type and observed similar results.

5.2 Convolution Operation Results

We also benchmarked the running time of both our RenderScript-based implementation of 

the convolution operation and compared it against the running of the default Eigen-based 

implementation. Our benchmarking results are shown in Figure 3. Unfortunately, we have 

not noticed speed up in the performance of convolution operation. Even on the Nexus 5X 

phone were RenderScript utilized the GPU, convolution operation was slower than the 

default TensorFlow implementation based ARM NEON acceleration. This might be due to the 

memory overhead associated with using RenderScript that required copying data from/to 

special buffers (referred to as allocations in RenderScript). Therefore, optimizing the 

runtime of convolution operation on mobile GPU than the Eigen-based implementation 

remains an interesting research question.

5.3 ConvNet Model Results

We also studied the effects of our RenderScript extension of TensorFlow on the total runtime 

of the forward pass of the inception [22] convolutional neural network model for image 

recognition. Inception model consists of 22 convolution and pooling layers and two large 

fully connected layers at the end of the model computation graph. It recognizes the input 

image as one of 1000 class labels of the ImageNet [11] dataset.

The results of our benchmarking experiments are shown in Table 5.3. We observe significant 

speed up when utilizing RenderScript to perform the matrix multiplication 

(approximately 3 times faster on Nexus 5X). On the other hand, using our implementation of 

the convolution operations in RenderScript, tends to bring the whole model execution 

time slower than the original TensorFlow implementation.

5.4 RNN Activity Recognition Results

We also benchmarked the performance of running recurrent neural network sequence 

classification model using Long-Short Term memory (LSTM) units. We developed an 

activity recognition RNN model consisting of 512 LSTM units that receive as input a time-

series (100 time-steps) of accelerometer and gyroscope sensor measurements to identify the 

hand gesture as one of the 11 signs which are shown in Figure 5.4. The model can achieve 

above 90% classification accuracy evaluated using 5 folds cross validation on a dataset of 

1290 examples collected by four persons.

Evaluation results shown in Figure 5.4 shows that RSTensorFlow slightly improves the 

classification runtime. Notice, that time-series classification using RNN is a computationally 

expensive task as the state update for every time step involves several matrix multiplication 

operations.

The result shows that although the RSTensorFlow is slower than the original TensorFlow 

model when the model runs on a single example, RSTensorFlow becomes faster than the 
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original TensorFlow when we increase the batch size (as a result of increasing the size of 

the matrix multiplication).

6. CONCLUSION

In this paper, we introduced RSTensorFlow an accelerated deep learning framework on 

commodity android devices using the heterogeneous computing framework RenderScript. 

Although, we noticed that GPU was not used by RenderScript on all phone models. 

When GPU is used, RSTensorFlow improves matrix multiplication operations a lot and 

therefore we observed significant speedup in running different models on Nexus 5X phones. 

Optimizing other deep learning operations and profiling the energy costs of running on CPU 

vs GPU are potential future research directions.
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Figure 1. 
The time share of each type of operations during the forward pass of Inception model
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Figure 2. 
Time of matrix multiplication between square matrices using Original TensorFlow and 

RenderScript TensorFlow
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Figure 3. 
Time of applying convolution operation on input image with size 224×224 using Original 

TensorFlow and RenderScript TensorFlow
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Figure 4. 
List of hand gestures used in our LSTM-based activity recognition model
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Table 1

Hardware specs of phones used in our experiments

Model Nexus 5X Nexus 6

SoC Snapdragon 808 Snapdragon 805

Processor 1.8GHz (8 cores) 2.7 GHz (4 cores)

GPU Adreno 418 Adreno 420

Memory 2 GB 3 GB
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Table 3

Comparison of the time (in seconds) required to run the LSTM sequence classification model.

Nexus 6 Nexus 5X

TensorFlow RSTensorFlow TensorFlow RSTensorFlow

batch size=1 0.824 3.986 1.314 2.213

batch size=64 9.456 9.234 7.698 7.253
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