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Abstract

A fundamental and important challenge in modern datasets of ever increasing dimensionality is 

variable selection, which has taken on renewed interest recently due to the growth of biological 

and medical datasets with complex, non-i.i.d. structures. Naïvely applying classical variable 

selection methods such as the Lasso to such datasets may lead to a large number of false 

discoveries. Motivated by genome-wide association studies in genetics, we study the problem of 

variable selection for datasets arising from multiple subpopulations, when this underlying 

population structure is unknown to the researcher. We propose a unified framework for sparse 

variable selection that adaptively corrects for population structure via a low-rank linear mixed 

model. Most importantly, the proposed method does not require prior knowledge of individual 

relationships in the data and adaptively selects a covariance structure of the correct complexity. 

Through extensive experiments, we illustrate the effectiveness of this framework over existing 

methods. Further, we test our method on three different genomic datasets from plants, mice, and 

humans, and discuss the knowledge we discover with our model.
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CCS CONCEPTS

Information systems → Data mining; Computing methodologies → Supervised learning; Applied 
computing → Genetics; Computational genomics

1 INTRODUCTION

Increasingly, modern datasets are derived from multiple sources such as different 

experiments, different databases, or different populations. In combining such heterogeneous 

datasets, one of the most fundamental assumptions in statistics and machine learning is 

violated: That observations are independent of one another. When a dataset arises from 

multiple sources, dependencies are introduced between observations from similar batches, 

regions, populations, etc. As a result, classical methods breakdown and novel procedures 

that can handle heterogeneous datasets and correlated observations are becoming more and 

more important.

In this paper, we focus on the important problem of variable selection in non-i.i.d. settings 

with possibly dependent observations. In addition to the aforementioned complications in 

analyzing datasets arising from multiple sources, the rapid increase in the dimensionality of 

data continues to hasten the need for reliable variable selection procedures to reduce this 

dimensionality. This issue is especially salient in genomics applications in which datasets 

routinely contain hundreds of thousands of genetic markers coming from different 

populations. For example, to discover genomic associations for a certain disease, genetic 

data from patients is often collected from different hospitals. As a result, data from the case 

and control groups can be confounded with variables such as the hospital, clinical trial, city, 

or even country. Another common source of sample dependence is family relatedness and 

population ancestry between individuals [2].

Unfortunately, in many applications information on the origin of different observations is 

lost either through data compression or experimental necessity. For example, for privacy 

reasons, it may be necessary to anonymize datasets thereby obfuscating the relationship 

between different observations. As a result, the data becomes confounded and attempts to 

learn associations via existing variable selection procedures are doomed to fail [15]. In 

seeking to discover information from such rich datasets when we do not have this important 

information, it becomes necessary to deconfound our models in order to implicitly account 

for this.

Example 1.1

Figure 1 gives a concrete example of how multi-sourced data introduces confounding 

factors. In this toy example, we have collected seven samples of data from a diseased case 

group and another seven samples from the healthy control group to study 25 genetic 

variables (in this case, nucleotides). Simple statistics will tell us that the 11th variable has the 

strongest association with the disease in question. However, suppose that a closer look at the 

data reveals that these samples originate from two different populations. As a result, the 

association between disease status and the 11th nucleotide becomes confounded by 
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population membership. In this toy dataset, we cannot avoid this false discovery unless we 

know which population each sample originates from.

Existing solutions rely on traditional hypothesis testing after a dedicated confounding 

correction step, usually resulting in suboptimal performance [18, 44]. In contrast, state-of-

the-art variable selection methods usually assume that the data comes from a single 

distribution, leading to reduced performance when applied to multi-source data.

We directly address the problem of variable selection with heterogeneous data by integrating 

state-of-the-art confounding correction methods and variable selection methods, thereby 

introducing a general methodology for addressing this issue. Our main contributions are the 

following:

• We propose a general sparse variable selection framework that takes into account 

possibly heterogeneous datasets by implicitly correcting for confounders via 

linear mixed models,

• We improve this framework by introducing an adaptive procedure for 

automatically selecting a low-rank approximation in the linear mixed model,

• We apply our model to three distinct genomic datasets in order to illustrate the 

effectiveness of the method on a real application.

The remainder of the paper is organized as follows: We begin by briefly summarizing the 

previous approaches to sparse variable selection and confounding correction respectively in 

Section 2. Then in Section 3 we propose a general framework to accomplish both variable 

selection and confounder correction simultaneously. In Section 4, we show how using a low-

rank approximation can be used to improve this framework, thereby introducing the 

Truncated-rank Sparse Linear Mixed Model. The performance of our model over traditional 

methods is validated with synthetic datasets in Section 5. Finally, in Section 6, we validate 

our method on three real-world genomic datasets.

2 RELATED WORK

Variable selection is a fundamental problem in knowledge discovery and has attracted 

significant attention from the machine learning and statistical communities. The basic idea is 

to reduce the dimensionality of a large dataset by selecting a subset of representative 

features without substantial loss of information [5, 7, 24, 39]. This problem has attracted 

substantial attention in the so-called high-dimensional regime, where it is typically assumed 

that only a small subset of features are relevant to a response. In order to identify this subset, 

arguably the most popular method is ℓ1-norm regularization (i.e. Lasso regression [33]). 

More recently, nonconvex regularizers have been introduced to overcome the limitations of 

Lasso [8]. Examples include the Smoothly Clipped Absolute Deviation (SCAD) [8] and the 

Minimax Concave Penalty (MCP) [41]. These methods overcome many of the 

aforementioned limitations at the cost of introducing nonconvexity in the optimization 

problem; a recent review of these methods can be found in [42]. In applications, variable 

selection is broadly used to extract variables that are interpretable or potentially causal [16, 

38], especially in biology [12] and medicine [6, 43].
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When the data is non-i.i.d., such as when it arises from distinct subpopulations, two popular 

approaches for addressing this are principal component analysis [27, 29] and linear mixed 

models [10, 15]. Mixed models first rose to prominence in the animal breeding literature, 

where they were used to correct for kinship and family structure [13]. Interest in these 

methods has surged recently given improvements that allow their application to human-scale 

genome data [20, 28, 32]. These methods, however, ultimately rely on classical hypothesis 

testing procedures for variable selection after confounding correction. Finally, a recent line 

of work has sought to combine the advantages of linear mixed models with sparse variable 

selection [4, 9, 31, 37].

3 SPARSE VARIABLE SELECTION WITH CONFOUNDING CORRECTION

Before we introduce our general framework, we first revisit the classical linear mixed model 

[22].

3.1 Linear Mixed Model

The linear mixed model (LMM) is an extension of the standard linear regression model that 

explicitly describes the relationship between a response variable and explanatory variables 

incorporating an extra, random term to account for confounding factors. As a consequence, a 

mixed-effects model consists of two parts: 1) Fixed effects corresponding to the 

conventional linear regression covariates, and 2) Random effects that account for 

confounding factors.

Formally, suppose we have n samples, with response variable y = (y1,y2, …yn) and known 

explanatory variables X = (x1, x2, …xn).

For each i = 1, 2, …,n, we have xi = (xi,1, xi,2, …xi,p, i.e., X is of the size n × p. The standard 

linear regression model asserts y = Xβ + ε, where β is an unknown parameter vector and 

ε N(0, σe
2I). In the linear mixed model, we add a second term Zμ to model confounders:

y = Xβ + Zμ + ε, (1)

Here, Z is a known n×t matrix of random effects and μ is a random variable. Intuitively, the 

product Zμ models the covariance between the observations yi. This can be made explicit by 

further assuming that μ N(0, σg
2I), in which case we have

y N(Xβ, σg
2K + σe

2I) (2)

where K = ZZT. Here, K explicitly represents the covariance between the observations (up to 

measurement error σe
2I): If K = 0, then each yi is uncorrelated with the rest of the 

observations and we recover the usual linear regression model. When K ≠ 0, we have a 

nontrivial linear mixed model. As K is required to be known, early applications of LMMs 

also assumed that K was known in advance [13]. Unfortunately, in many cases (including 
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genetic studies), this information is not known in advance. In these cases, a common 

convention is to estimate K from the available explanatory variables. As we shall see in 

Section 4, finding a good approximation to K is crucial to obtaining good results in variable 

selection.

3.2 Sparsity Regularized Linear Mixed Model

For high-dimensional models with p ⪢ n, it is often of interest to regularize the resulting 

model to select out important variables and simplify its interpretation. This can easily be 

achieved by introducing sparsity-inducing priors to the posterior distribution. For example, 

[31] introduces the Laplace prior, which leads to a ℓ1 regularized linear mixed model as 

following:

p(β, σg, σe | y, X, K) ∝ N(y | Xβ, σg
2K + σe

2I)e−λ β

We call the result the sparse linear mixed model, or SLMM for short.

This choice of prior—which corresponds to the well-known Lasso when only fixed effects 

are considered—is well-known to suffer from limitations in variable selection [8]. In this 

paper, we extend this SLMM-Lasso model to more advanced regularization schemes such as 

the MCP and SCAD, which we call the SLMM-SCAD and SLMM-MCP, respectively. For 

simplicity, we will use f(β) to denote a general regularizer, yielding the following general 

posterior:

p(β, σg, σe | y, X, K) ∝ N(y | Xβ, σg
2K + σe

2I)e− f (β) . (3)

This allows us to combine the (independently) well-studied advantages of the linear mixed 

model for confounding correction with those of high-dimensional regression for variable 

selection.

4 TRUNCATED-RANK SPARSE LINEAR MIXED MODEL

Despite their successes, the main drawback of the aforementioned mixed model approaches 

is the estimation of K from the data X. In this section, we propose an adaptive, low-rank 

approximation for K in order to more accurately model latent population structure.

4.1 Motivation

Even though K is assumed to be known in LMMs, we have already noted that in practice K 
is often unknown. Thus, to emphasize the distinction between the true, unknown covariance 

K and an estimate based on data, we let K∼ = K∼(X) denote such an estimate. Substituting K∼

for K in (3), the posterior then becomes:

p(β, σg, σe | y, X, K∼) ∝ N(y | Xβ, σg
2K∼ + σe

2I)e− f (β) . (4)
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By far the most common approximation used in practice is K∼ = XXT [13]. Under this 

approximation, equation 1 becomes

y = Xβ + Xμ + ε = X(β + μ) + ε

where μ N(0, σμ
2). As our goal is the estimation of β, this evidently makes distinguishing β 

and μ difficult.

This approximation was originally motivated as a way to use the observed variables X as a 

surrogate to model the relationship between the observations y. The hope is that the values 

in X might cluster conveniently according to different batches, regions, or populations, 

which are the presumed sources of confounding. One straightforward observation is that 

such sources of confounding typically have a much lower dimensionality than the total 

number of samples in the data. As a result, we expect that K will have a low-rank structure 

which we can and should exploit. Unfortunately, the matrix XXT will not, in general, be 

low-rank—in fact, it can be full rank, with rank(XXT) = n. To correct for this, we propose 

the Truncated-rank Sparse Linear Mixed Model (TrSLMM).

4.2 Truncated-rank Sparse Linear Mixed Model

Instead of choosing K∼ = XXT as our approximation, we seek a low-rank approximation to 

the true covariance K. Let Γ := XXT and Γ = UΛVT be the SVD of Γ. Define Λs to be the 

diagonal matrix such that (Λs)jj = Λjj for j ≤ s and (Λs)jj = 0 otherwise (assuming values of 

Λ are in decreasing order). Then a natural choice for K∼ is Γs := UΛsVT for some 0 < s < n, 

i.e. the best s-rank approximation to Γ.

Selection of s. Of course, we have simply replaced the problem of estimating K with that of 

estimating an optimal rank s from the data. Fortunately, the latter can be done efficiently. To 

motivate the selection of s, we first investigate the distribution of Λ under different 

population structures. Let G denote the number of subpopulations or distributions used to 

generate the data. Figure 2 shows a plot of normalized Λ for 100 data samples for G = 1, 5, 

20, 100. We can clearly see that in the middle two cases (G = 5 and G = 20), the singular 

values exhibit some interesting patterns: Instead of decaying smoothly (as for G = 1 and G = 

100), there are a few dominant singular values and more small singular values following a 

steep drop-off. This confirms our intuition of a latent, approximately low-rank structure 

within Γ.

Based on this observation, we introduce a clean solution to truncate Λ: We can directly 

screen out the top, dominant singular values by selecting the top s values Λj for which

Λ j − Λ j + 1
Λ0

> 1
n

where n is the number of samples. In particular, the number of selected singular values s 
satisfies (Λs − Λs+1)/Λ0 > 1/n and (Λs−1 − Λs)/Λ0 ≤ 1/n.
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Then, we have:

(Λs)
j j

=
Λ j j if j ≤ s

0 otherwise

and finally:

K∼ = Γs = UΛsVT

A similar low-rank approximation idea has been used previously [15, 30], however, these 

procedures require specifying unknown hyperparameters, even when replaced by sparse 

PCA [45] or Bayesian K-means [19]. Another approach is to fit every possible low-rank Λs 

sequentially and selecting the best configuration of singular values based on a pre-

determined criteria [14], which is O(n) slower than our method and most importantly does 

not scale for modern human genome datasets.

4.3 Parameter Learning

In order to infer the parameters {β, σg, σe}, we break the problem into two steps: 1) 

Confounder correction, where we solve for σg and σe; and 2) Sparse variable selection, 

where we solve for β in Equation 4.

Confounder Correction—Following the empirical results in [15], we first estimate the 

variance term with:

p(σg, σe | y, K∼) ∝ N(y − y | 0, σg
2K∼ + σe

2I) (5)

where y is the empirical mean of y. We then solve Equation 5 for σg and σe, where we can 

adopt the trick of introducing δ =
σe

2

σg
2  to replace σg

2 for more efficient optimization [20].

Finally, we can then correct the confounding factors by rotating the original data:

X′ = (diag(Γs) + δI)
− 1

2VTX

y′ = (diag(Γs) + δI)
− 1

2VTy

where K∼ = UΓsV
T is the singular value decomposition, which has already been computed to 

determine s.

Sparse Variable Selection—After rotating the data to produce X′ and y′, we have a 

standard variable selection task at hand [31]. Thus, maximizing the posterior in Equation 4 
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becomes equivalent to solving a variable selection problem with X′ and y′. Note that unlike 

vanilla linear regression, which would be unchanged by rotations, the introduction of the 

random effects Zμ in (2) violates this rotation-invariance property.

For different choices of regularizer f(β), we can then solve the following regularized linear 

regression problem:

arg min
β

‖y′ − X′β‖2
2 + f (β)

where standard optimization techniques can be adopted. In our experiments, we use 

proximal gradient descent [26].

5 SYNTHETIC EXPERIMENTS

In this section, we evaluate the performance of our proposed Truncated-rank Sparse Linear 

Mixed Model (TrSLMM) against vanilla sparse linear mixed models as well as classical 

sparse variable selection methods.

5.1 Data Generation

We first simulate observed covariates coming from G different populations. We use cg to 

denote the centroid of the gth population, g = 1, …, G. First, we generate the centroids cg 

and from each centroid, we generate explanatory variables from a multivariate Gaussian 

distribution as follows:

xi j = N(cg, σe
2I)

where xij denotes the ith data from gth distribution.

We then generate an intermediate response r from X from the usual linear regression model:

r = Xβ + ε . (6)

Here β is a sparse vector indicating which variables in X influences the outcome r and 

ε N(0, σε
2).

Note that the components)of r are uncorrelated—in order to simulate a scenario with 

correlated observations, we introduce a covariance matrix to simulate correlations between 

the yi. Thus, we generate the final response y as follows:

y N(r, σy
2M) (7)
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where M is the covariance between observations and σy
2 is a scalar that controls the 

magnitude of the variance. Letting C be the matrix formed by stacking the centroids cg, we 

choose M = CCT. This has the desired effect of making observations from the same group g 
more correlated.

Figure 3 shows an illustration of the synthetic data generated according to our data 

generation recipe. The x-axis and y-axis show the first two principle components of X, and 

the z-axis shows the final response variable y. Evidently, both X and y fall into five clusters.

5.2 Experimental Results in Variable Selection

We use the following parameters in our simulations:

• n the number of data samples. The default is 1000.

• p the number of explanatory variables. The default is 5000.

• d the percentage of explanatory variables to be active variables. The default is 

0.05.

• G the number of distributions the data originate from. The default is 10.

• σe the magnitude of covariance of explanatory variables. The default is 0.1.

• σr the magnitude of covariance of response variables. The default is 1.

The results are shown as ROC curves in Figure 4. In general, across all the parameter 

settings tested, we see that the proposed Truncated-rank Sparse Linear Mixed Model 

outperforms the other methods. Unsurprisingly, the Sparse Linear Mixed Model outperforms 

traditional sparse variable selection methods, which was completely ineffective in this 

experiment. This illustrates how methods that do not account for possible sources of 

confounding can drastically underperform when the assumption that observations are 

independent is violated.

As the various parameters are changed, we observe some expected patterns. For example, in 

Figure 4(a), as n increases, and in Figure 4(b) as p decreases, the ratio of p
n  gets smaller and 

the performance gets better. As we increase the proportion of nonzero coefficients in β, the 

number of distributions, or the variance of response variable y, the problem becomes more 

challenging. In almost all of these cases, however, the TrSLMM-based methods show 

improved performance. As an example where the SLMM methods are comparable when G = 

2 SLMM-MCP and SLMM-SCAD behave better than TrSLMM-Lasso, but even they remain 

slightly inferior to TrSLMM-MCP and TrSLMM-SCAD. Traditional variable selection 

methods, for the most part, show the same behavior as these parameters are manipulated—

this suggests that the fluctuations we observe in the other methods are due to the different 

strategies by which confounding is corrected.

5.3 Prediction of True Effect Sizes

Figure 5 shows the averaged mean squared error in estimating the effect sizes β and its 

standard error over five runs for different settings when we adjust the percentage of causal 
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variables d on synthetic data. Interestingly, we can see that TrSLMM-Lasso behave the best 

in estimating β, while SLMM-Lasso closely follows-up. Traditional sparse variable selection 

methods (Lasso, SCAD, MCP) behave worse than these two methods, but mostly better than 

other TrSLMM and SLMM based methods.

5.4 Running Time

After confounding correction, we observed that the final sparse variable selection step 

converged faster. Across all the configurations of synthetic experiments, in comparison to 

the vanilla sparse variable selection methods, TrSLMM-Lasso, TrSLMM-SCAD, and 

TrSLMM-MCP only required 49%, 38%, and 29%, respectively, of the time needed for the 

Lasso, SCAD, and MCP, respectively, to converge on average. SLMM-Lasso, SLMM-

SCAD, SLMM-MCP were slightly faster, and only required 28%, 38%, 37% of the time 

needed on average. While not necessarily faster overall, this is an interesting observation and 

confirms previous theoretical work suggesting that variable selection is faster and easier for 

uncorrelated variables.

6 REAL GENOME DATA EXPERIMENTS

In order to evaluate the TrSLMM framework in a practical setting, we tested our model on 

three datasets coming from genomics studies. To provide a clearer evaluation, we tested our 

method on datasets from three different species. We then evaluate our discovered knowledge 

with some of the published results in relevant literature to show the reliability of our 

methods compared with existing approaches. Finally, we report our discovered associations.

6.1 Data Sets

6.1.1 Arabidopsis thaliana—The Arabidopsis thaliana dataset we obtained is a 

collection of around 200 plants, each with around 215,000 genetic variables [1]. We study 

the association between these genetic variables and a set of observed traits. These plants 

were collected from 27 different countries in Europe and Asia, so that geographic origin 

serves as a potential confounding factor. For example, different sunlight conditions in 

different regions may affect the observed traits of these plants. We tested the genetic 

associations between genetic variables with 44 different traits such as days to germination, 

days to flowering, lesioning etc.

6.1.2 Heterogeneous Stock Mice—The heterogeneous stock mice dataset contains 

measurements from around 700 mice, with 100,000 genetic variables [34]. These mice were 

raised in cages by four generations over a two-year period. In total, the mice come from 85 

distinct families. The obvious confounding variable here is genetic inheritance due to family 

relationships. We studied the association between the genetic variables and a set of 28 

response variables that could possibility be affected by inheritance. These 28 response 

variables fall into three different categories, relating to the glucose level, insulin level and 

immunity respectively.

6.1.3 Human Alzheimer’s Disease—We use the late-onset Alzheimer’s Disease data 

provided by Harvard Brain Tissue Resource Center and Merck Research Laboratories [40]. 
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It consists of measurements from 540 patients with 500,000 genetic variables. We tested the 

association between these genetic variables and a binary response corresponding to a 

patient’s disease status of Alzheimer’s disease.

6.2 Ground Truth for Evaluation

To evaluate the performance of TrSLMM, we compared the results with genetic variables 

that have been reported in the genetics literature to be associated with the response variables 

of interest. Although new associations may yet be discovered by the genetics community, 

Arabidopsis thaliana and mice have been studied for over a decade, and the scientific 

community has reached a general consensus regarding these species. For Arabidopsis 

thaliana, we use the validated knowledge of the genetic associations reported in [3] to 

evaluate the performance of these models. For heterogeneous stock mice, the validated gold 

standard genetic variables were collected from the Mouse Genome Informatics database.1 

Although Alzheimer’s disease is a very active area of research, there is no consensus gold 

standard available. Instead, we listed the genetic variables identified by one of our proposed 

model (TrSLMM-MCP) and verified the top genetic variables by searching the relevant 

literature. Additionally, since the genetic cause of Alzheimer’s disease is still an open 

research area, we reported the genetic variables we identified for the benefit of domain 

experts.

6.3 Selected Groups

We first validate the success of our truncated-rank approaches to identify the truly 

confounding factors from distributions of eigenvalues. Figure 6 shows the distribution of 

eigenvalues of XXT. A naïve Linear Mixed Model will correct the confounding factors with 

all these eigenvalues, resulting in an over-correction. In contrast, Truncated-rank Sparse 

Linear Mixed Model only identifies the ones that are likely to be confounding sources. As 

Figure 6 shows, TrSLMM conveniently identifies 27 data origins for Arabidopsis thaliana, 

while these 200 plants are in fact collected from 27 countries. TrSLMM identifies 65 sources 

for mice data, while these mice are from 85 different families. Although TrSLMM didn’t 

pinpoint every confounding factor exactly, the number of confounding factors is much closer 

compared to vanilla sparse variable selection methods (only one) and vanilla SLMM 

methods (number of samples by construction). On the human Alzheimer’s Disease, there is 

no consensus number of data sources available to check the correctness of TrSLMM’s 

selection, but the distribution seems to indicate that there are only a few confounding 

sources.

6.4 Numerical Results

Since we have access to a validated gold standard in two out of the three datasets, Figure 7 

and Figure 8 illustrate the area under the ROC curve for each response variables (observed 

trait) for Arabidopsis thaliana and Mice, respectively. The responses are ordered such that 

the leftmost variables are those for which our TrSLMM model outperform the others. 

Because discovering associations in genetic datasets is an extremely challenging task, many 

1http://www.informatics.jax.org/
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of these methods fail to discover useful variables. It is worth emphasizing that the discovery 

of even a few highly associated variants can be significant in practice. Overall, TrSLMM 

methods managed to outperform the other methods for almost 60% of response variables. 

TrSLMM-MCP and TrSLMM-SCAD behave similarly, as previously observed in the 

synthetic data experiments.

For Arabidopsis thaliana, TrSLMM based models behave as the best one on 56.8% of the 

traits. Since not all of the traits in our dataset are expected to be confounded, it is not 

surprising that in some cases traditional methods perform well. Without confounding, one 

expects methods that are optimized for i.i.d. data to perform best (e.g. Lasso, SCAD, MCP). 

For example, traits with GH in the name mean that the corresponding traits were measured 

in a greenhouse, where conditions are strictly controlled and potential confounding effects 

introduced by different regions are minimized. As Figure 7 shows, traditional sparse variable 

selection methods almost gain the most advantage over greenhouse traits.

For Heterogeneous Stock Mice, TrSLMM based models behave as the best one on 57.4% of 

the traits. The results are interesting: The left side of the figure mostly consists of traits 

regarding the amount of glucose and insulin in the mice, while the right hand side of the 

figure mostly consists of traits related to immunity. This raises the interesting question of 

whether or not immune levels in stock mice are largely independent of family origin.

Most importantly, our proposed model is at least as good as other SLMM based methods, 

and sometimes significantly better when confounding is present. This gain in performance 

comes with no extra parameters and no extra computation, except for one computationally 

trivial step of screening singular values.

6.5 Knowledge Discovered and Causality Analysis

Finally, we proceed to the Human Alzheimer’s Disease dataset. Because Alzheimer’s 

Disease has not been studied as extensively as plants and mice, there is no authentic golden 

standard to evaluate the performances. Here, we report the top 99 genetic variables our 

model discovered in Table 1 to foster relevant research.

Due to space limitations, we briefly justify only a few of the most important genetic 

variables here. The 4th discovered variable is associated with AOPE gene, which is the gene 

that is prominently believed to be cause Alzheimer’s disease [21]. The 5th discovered 

variable is associated with COL1A1 gene, which is associated with APOE [25]. The 6th one 

is WFDC1, which is reported to be associated with Alzheimer’s disease [23]. The 9th one is 

associated with GALNTL4, which is reported to be related with Alzheimer’s disease [11].

7 CONCLUSIONS

In this paper, we aim to solve a critical challenge in variable selection when the data is not 

i.i.d. and does not come from the same distribution. Due to confounding, traditional variable 

selection procedures tend to select variables that are not relevant. When the sources of 

confounding are known and can be controlled for, linear mixed models have long been used 

to make such corrections. The use of LMMs to implicitly correct for confounding that is not 
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explicitly known to an analyst is a recent development and a very active area of research. 

This type of situation occurs frequently in genomics applications where confounding arises 

due to population stratification, batch effects, and family relationships.

To overcome this problem, we introduced a general framework for sparse variable selection 

from heterogeneous datasets. The procedure consists of a confounding correction step via 

linear mixed models followed up by sparse variable selection. We have shown that state-of-

the-art variable selection methods such as SCAD and MCP can be easily plugged into this 

procedure. Further, we showed that the traditional linear mixed model can easily fall into the 

trap of utilizing too much information, resulting in an over-correction. To correct for this, we 

introduce a Truncated-rank Sparse Linear Mixed Model that effectively and automatically 

identifies the sources of confounding factors. Most importantly, we proposed a data-driven, 

adaptive procedure to automatically identify confounding sources from the spectrum of the 

kinship matrix without prior knowledge. Through extensive experiments, we exhibited how 

TrSLMM has a clear advantage over existing methods in synthetic experiments and real 

genome datasets across three different species: plant (Arabidopsis thaliana), mice, and 

human.

In future work, we plan to explore more complex structured problems with our proposed 

framework to select variables for response variables that are dependent [17] or for 

explanatory variables that are correlated [35]. Further, we plan to integrate our method into 

the popular genomic research toolbox GenAMap [36].
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Figure 1. 
An illustration of population as a confounding factor in genetic association studies. If the top 

row comes from one population (e.g. a hospital) and the bottom row comes from a second 

population (e.g. a different hospital), then population is a confounding factor between 

disease status and the genetic variables.
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Figure 2. 
Distributions of singular values of K for different number of distributions the data originate.
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Figure 3. 
Synthetic Data: 1000 data samples from five different distributions. Response variables are 

not only influenced by explanatory variables, but also the distribution it originate from.
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Figure 4. 
ROC curves for the variable selection experiment. We have zoomed-in to focus on the region 

of most interest. For each configuration, the reported curve is drawn over five random seeds.
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Figure 5. 
Mean squared error and its standard error with the prediction of true β
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Figure 6. 
The selected eigenvalues to consider as the sources of confounding factors
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Figure 7. 
Area under ROC curve for the 44 traits of Arabidopsis thaliana.
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Figure 8. 
Area under ROC curve for the 28 traits of Arabidopsis thaliana.
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