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ABSTRACT
Despite substantial clinical progress with targeted therapies, current antibody-based approaches have
limited efficacy at controlling HER2/neu-positive breast cancers, especially in the absence of
chemotherapies. Previously, we showed that the combination of IFNg and anti-HER2/neu antibody
synergistically reduces tumor growth in an in vivo implanted mammary tumor model. Here, we report a
recombinant approach to produce an anti-HER2/neu scFv and IFNg fusion protein using an engineered
effector domain (EED) scaffold. The new molecule induces in vitro apoptosis in an IFNg receptor-
dependent manner. At a very low dose in the in vivo xenografted tumor models, the new EED-IFNg fusion
protein demonstrates superior activity over the anti-HER2/neu antibody and is even active on tumors that
are resistant to anti-HER2/neu antibody therapy. Examination of tumor infiltrated macrophages and
lymphocytes reveals that the fusion protein can induce changes in tumor microenvironment to support
immune reactivity against tumors. Our studies have defined a targeted immunotherapy approach for the
treatment of cancers.
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Introduction

HER2/neu-targeted therapies originated in our laboratory after
we described that the p185neu protein residing on the cell sur-
face1 could serve as a downregulatable target for monoclonal
anti-HER2/neu antibodies.2-4 Those studies demonstrated that
the antibodies, upon disabling the Her2/neu kinase complex,
induced a reversion of the malignant phenotype.3,5 It was also
demonstrated that two antibodies binding to distinct ectodo-
main epitopes led to more complete phenotypic reversion and
inhibition of tumor growth.

Similar antibodies have since been developed for human use.
Two anti-HER2/neu antibodies (trastuzumab and pertuzumab)
and an antibody-drug conjugate (trastuzumab emtansine) are
used to treat HER2/neu positive breast cancer and stomach
cancer.6-9 In addition, kinase inhibitors that limit HER2/neu
tyrosine kinase activity have also been developed.10 HER2/neu-
targeted therapies have greatly helped HER2/neu positive
breast cancers in clinical treatments, improving overall survival
even in patients with metastatic breast cancers.11

Despite substantial progress, current targeted therapies remain
insufficient at controlling HER2/neu positive breast cancers.
Trastuzumab as a single agent only demonstrates efficacy in
about 30% of HER2/neu positive tumors,12 and currently is
administrated in combination with chemotherapy. Most impor-
tantly, about 30% of patients develop resistance to trastuzumab
and disease will recur, and almost all patients with advanced dis-
ease develop resistance to HER2 targeted therapies over time and
succumb to the disease.13 Efforts have been made to understand
the effect of immune modulation to aid targeted therapies.

It is reported that the clinical efficacy of anti-HER2/neu anti-
body is associated with the activation of both the adaptive and
innate immune system.14,15 Stagg et al. suggested that mAb ther-
apy requires type 1 and 2 IFNs, and found IFNg induced CD8C

T cells were determinants for effective tumor inhibition.16 More
recently, we have showed that a combination of IFNg and anti-
HER2/neu antibody synergistically reduces tumor growth in an
in vivo implanted mammary tumor model.17

We have been focusing on improving the effectiveness of
antibody effector functions, and report here a recombinant
approach to produce an anti-HER2/neu scFv and IFNg fusion
protein. This fusion protein is an extension of previous struc-
turally based studies using the Grababody scaffold,18 which is
an scFv protein containing an engineered effector domain
(EED). At a very low dose, the new fusion protein demonstrates
superior activity over the anti-HER2/neu antibody. Further-
more, it is active even on tumors that are resistant to anti-
HER2/neu antibody therapy. The IFNg scFv–EED represents
an approach to take advantage of the synergistic activity of
IFNg and the anti-HER2/neu antibody, while targeting the
IFNg activity precisely to the HER2-expression tumor cells.

Results

IFNg scFv–EED retains the target-binding activity
of the anti-HER2/neu antibody as well as the IFNg activity

Previously, we reported that the anti-HER2/neu scFv–EED,
namely 4D5scFvZZ, was able to bind the HER2/neu receptor
proteins that were either immobilized on Biacore chips or
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expressed on the cell surface.18 One structural component in
the scFv–EED is the EED feature, which was originally derived
from the immunoglobulin Fc binding unit of the staphylococcal
protein A (SPA), and is designed to capture circulating immu-
noglobulins to promote antibody effector functions.18

We recombinantly fused the human IFNg to the C-ter-
minus of the 4D5scFvZZ. The recombinant protein
4D5scFvZZ-IFNg was expressed in bacteria and purified to
confirm its binding activity for HER2/neu. A control con-
struct without EED was also generated (4D5scFv-IFNg).
We performed FACS analysis on T6–17 cells, which are
mouse fibroblasts overexpressing human HER2/neu recep-
tor.18 As shown in Fig. 1A, both 4D5scFvZZ-IFNg and
4D5scFv-IFNg were able to bind T6–17 cells, indicating
that both constructs were properly folded to obtain an
active 4D5scFv binding unit.

IFNg is known to induce class I MHC antigen expres-
sion in breast and ovarian cancer cells.19 To verify that the
IFNg subunit in the fusion protein is active, we examined
its activity on MHC expression in SKBR3, a human breast
cancer cell line overexpressing HER2/neu. As shown in
Fig. 1B, 4D5scFvZZ-IFNg and free IFNg were both able to
induce the expression of class I MHC. Neither IFNg nor
4D5scFvZZ-IFNg had any effect on class II MHC antigen
expression. Therefore, the engineered Fc domain fusion
protein was confirmed to mediate defined IFNg-related
activities.

The EED contributes to the anti-proliferative activity
of 4D5scFvZZ-IFNg

Human HER2/neu expressing T6–17 cells were used to
study the anti-proliferative activity of the IFNg scFv–EED
fusion protein. To confirm that the activity of the fusion
protein is through IFNg signaling in the transformed cells,
we transfected shRNA to knock down the IFNg receptor
and established the T6–17(IFNgR KD) cell line. A control
cell line, T6–17(vector) was generated with the empty
shRNA vector. As shown in Fig. 1C, 4D5scFvZZ-IFNg
demonstrated dose-dependent activity to limit the prolifera-
tion of both cell lines, but it was more active in T6–17
(vector) with the intact receptor. The calculated IC50 for
4D5scFvZZ-IFNg to inhibit T6–17(vector) and T–17(IFNgR
KD) was 2.46 mg/mL and 5.04 mg/mL, respectively. Since
the IFNg receptor expression in T6–17(IFNgR KD) cells is
only diminished, but not totally eliminated,17 the two-fold
change in IC50 suggests that the anti-proliferative activity of
4D5scFvZZ-IFNg is influenced by the IFNg receptor level
on tumor cells.

We observed that 4D5scFvZZ-IFNg caused »75% inhibi-
tion of cell proliferation at 10 mg/mL in both cell lines, an
activity that was superior to that of either 4D5scFvZZ or
4D5scFv-IFNg. In the proliferation assay, although the
scFv–IFNg fusion (4D5scFv-IFNg) had better activity than
the original 4D5scFvZZ species,18 the combination of the
EED and IFNg in one construct exhibited the highest inhi-
bition activity.

To determine if the fusion protein caused apoptosis/necrosis
in tumor cells, we performed 7-aminoactinomycin D (7-AAD)

and PE-conjugated Annexin V staining, and analyzed the
stained cells by FACS (Fig. 1D). We noticed a substantial
reduction in the frequency of live cells (bottom left quadrant)
after cells were treated for 2 d with 4D5scFvZZ-IFNg
(60.6% vs. 95.7% in control). Treatment by other agents,
including the anti-HER2/neu antibody m4D5, failed to demon-
strate a significant reduction in live cell population. Cell death
induced by 4D5scFvZZ-IFNg was determined to be primarily
necrotic, as the staining of the entire cell population was shifted
to upper right quadrant (Fig. 1D).

In vivo activity of 4D5scFvZZ-IFNg

We next examined if 4D5scFvZZ-IFNg could have better in
vivo activity than the original 4D5scFvZZ species, which
had been studied in the T6–17 tumor model.18 As shown in
Fig 2A, 4D5scFvZZ-IFNg had better activity than
4D5scFvZZ in limiting the growth of T6–17 tumors. In
addition, 4D5scFvZZ-IFNg was able to dose-dependently
reduce the growth of implanted tumors (Fig. 2B). The
humanized anti-HER2/neu bivalent antibody 4D5 (trastuzu-
mab) was used in these experiments as a positive control.
In both experiments, the activity of 4D5scFvZZ-IFNg was
superior to that seen with 4D5.

The in vivo activity of 4D5scFvZZ-IFNg is greatly improved
by replacing human IFNg with the mouse homolog

In the previous study, we have shown that the synergistic
action of anti-HRE2 antibody and IFNg is dependent on
the IFNg receptor on tumor cells (Fig. 1C). It has been
reported that IFNg is species specific, and human IFNg
activity is minimal in mouse cell lines.20 The first construct
4D5scFvZZ-IFNg is designed for use in human and it con-
tains the human IFNg sequence. Both human IFN-Ra and
IFN-Rb would be required to render mouse cells to be fully
responsive to human IFNg.20

To better assess the in vivo activity in the mouse model, we
constructed 4D5scFvZZ-mIFNg that carries the mouse IFNg
sequence. Compared with the construct containing human
IFNg, 4D5scFvZZ-mIFNg had far more potent activity in the
T6–17 tumor model and we could use the protein at a much
lower dosage. We found that the fusion protein was superior to
the co-treatment of 4D5scFvZZ and free IFNg(Fig. 2C).
Furthermore, we compared side-by-side the activity of
4D5scFvZZ-mIFNg and the 4D5 antibody, both at a low dose
of 0.125 mg/kg and five times per week via i.p. injection. As
shown in Fig. 2D, 4D5scFvZZ-mIFNg had much better activity
than 4D5 in limiting the growth of T6–17 tumors. In our expe-
rience with the T6–17 model, the activity we observed for the
fusion protein at such a low dose is comparable to that of 4D5
at the much higher dose (5–10 mg/kg).

4D5scFvZZ-mIFNg is active on 4D5-resistant tumors

Previously, CT-26-HER2 was established by engineering the
BALB/c syngeneic tumor line CT-26 to express human HER2/
neu.21 CT-26-HER2 has been confirmed to be a resistance model
for HER2/neu antibody therapies as it carries the oncogenic
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K-RasG12D mutation.22,23 To investigate if 4D5scFvZZ-mIFNg
mediates activity against this resistant tumor line, we compared
it with 4D5 in BALB/c mice carrying implanted CT-26-HER2
tumors. As shown in Fig. 2E, while 4D5 treatment had no effect
on the in vivo CT-26-HER2 tumors, 4D5scFvZZ-mIFNg was
able to significantly reduce the tumor growth.

The in vivo activity of 4D5scFvZZ-mIFNg is less affected
by the expression level of the IFNg receptor in tumor cells

In the in vitro proliferation assay (Fig. 1C), the activity of the
4D5scFvZZ-mIFNg was reduced when the IFNg receptor levels in

the transformed cell were diminished by shRNA. However, the in
vivo activity of the fusion protein is less dependent on the IFNg
receptor status in the tumor cells. As shown in Fig. 3A and B, even
in T6–17(IFNgR KD) tumors with diminished expression of the
IFNg receptor, 4D5scFvZZ-mIFNg clearly showed good activity
comparable to that in the control T6–17(vector) tumors. This study
suggests that the slightly reduced anti-proliferation activity of
4D5scFvZZ-mIFNg toward tumor cells with reduced IFNg recep-
tor levels is compensated in vivo by the host immune response that
IFNg can induce. The IFNg receptor-independent in vivo activity
of scFv–EED–IFN supports this new engineering strategy for
patients with tumors with low IFNg receptor expression.

Figure 1. In vitro activity of 4D5scFvZZ-IFNg . (A) Binding to the target. Both 4D5scFvZZ-IFNg and 4D5scFv-IFNg bind to cell surface p185her2/neu. T6–17 cells with the
expression of p185her2/neu were prepared for Fluorescence-activated cell sorting (FACS). Histograms represent staining with 0.5 mg of 4D5scFv-IFNg or 4D5scFvZZ-IFNg ,
as indicated in the figure, followed by His-Probe antibody and Alexa488-conjugated goat anti-rabbit antibodies (filled peak). The control staining (unfilled peak) was
obtained with only the His-Probe antibody and the secondary antibody. (B) Effect of 4D5scFvZZ-IFNg on MHC expression. SKBR3 cells were incubated with IFNg or
4D5scFvZZ-IFNg for 24 h at different doses. The expression levels of both class I and class II MHC antigens was analyzed by FACS using monoclonal antibodies W6/32 and
L243, respectively. (C) Proliferation by MTT assay. 2000 T6–17(Vector) or IFNgR knocked-down T6–17(IFNg R KD) cells were plated in 96-well plates and incubated with
different concentrations of proteins for 72 h. Cell viability was determined by MTT assay as described in materials and methods. (D) 4D5scFvZZ-IFNg induced apoptosis/
necrosis. HER2/neu expressing T6–17 cells were treated with control, the antibody 4D5, 4D5scFvZZ, 4D5scFv-IFNg, and 4D5scFvZZ-IFNg (10 ug/mL each), for 2 d, then
stained with Annexin V/7-AAD staining kit for FACS analysis. The lower and upper right quadrants represent early and late apoptotic cells, respectively. Only the
4D5scFvZZ-IFNg treatment induced apoptosis/necrosis significantly.

ONCOIMMUNOLOGY e1300739-3



Previously, we had reported that, in the treatment of HER2
tumors in the syngeneic MMTVneu transgenic mice, the com-
bination of IFNg and anti-HER2/neu antibody induced the
shift of tumor associated macrophages (TAMs) from M2 to M1
and reduced MDSC infiltration into tumors.17 Here, we want
to find out whether the treatment with the new fusion protein
also induced similar changes. The T6–17(vector) tumors at the
end of treatments were isolated and analyzed for TAMs and
tumor infiltrating lymphocytes (TIL) (Fig. 3). Treatment of
4D5scFvZZ-mIFNg slightly increased M1 types of TAM and
clearly reduced M2 type in a dose-dependent manner. As a
result, the M1:M2 ratio was increased after the treatment. In

addition, the treatment significantly increased CD45C TILs in
the high dose group. We also observed modestly increased PD-
L1 levels in tumors treated with 4D5scFvZZ-mIFNg, which is
in consistent with the known mIFNg effect on the expression
of this checkpoint molecule (Fig. 3).

Discussion

There is evidence that ADCC plays a role in the clinical activity
of HER2-targeted antibody therapy. In a study of 18 HER2C

operable breast cancer cases, 15 patients (83%) showed a trastu-
zumab-induced ADCC activity.24 One patient with strong

Figure 2. In vivo activity of scFv–EED–IFNg on the growth of xenografted tumors. (A & B) In vivo activity of 4D5scFvZZ-IFNg . (A) 4D5scFvZZ-IFNg has better activity than
4D5scFvZZ. T6–17 tumor cells (5 £ 105) were injected subcutaneously into both sides of the back of 6»10-week old female athymic nude mice. Tumors were palpable
5 d after the inoculation of transformed T6–17 cells. Mice were treated with control (PBS), 4D5 mAb (1 mg/kg, twice; then 7 mg/kg twice, for a total of four treatments in
2 weeks), 4D5scFvZZI-IFNg (7 mg/kg, five times per week), or 4D5scFvZZ (7 mg/kg, five times per week). Tumor growth in the 4D5scFvZZ-IFNg group was highly sup-
pressed compared with other groups. (B.) Dose-dependent activity of 4D5scFvZZ-IFNg . Mice were treated with control (PBS), 4D5 mAb (1 mg/kg, twice per week), or
4D5scFvZZ-IFNg (7 mg/kg or 1.75 mg/kg; five times per week). Tumor growth was dose-dependently suppressed by 4D5scFvZZ-IFNg . (C) 4D5scFvZZ-mIFNg has better
activity than the combination of 4D5scFvZZ and free mouse IFNg . Doses for each construct: 4D5scFvZZ-mIFNg : 0.05 mg/kg; 4D5scFvZZ: 0.05 mg/kg; mIFNg : 0.015 mg/kg.
The dose of mIFNg was adjusted to contain the equal molar amount of IFNg as the 4D5scFvZZ-mIFNg . (D) 4D5scFvZZ-mIFNg has better activity than the HER2/neu anti-
body 4D5. For both C & D, T6–17 tumor cells (5 £ 105) were injected subcutaneously into both flanks of the back of 6–10 weeks nude mice. Treatment started the next
day after tumor implantation. (E) In vivo activity of 4D5scFvZZ-mIFNg on 4D5 resistant tumors. CT26-HER2 tumor cells (1 £ 106) were injected subcutaneously into both
sides of the back of 6–10 weeks BALB/c female mice. Treatment started the next day after tumor implantation. The dosages of each treatment are indicated in the chart.
Treatments were administrated five times per week via i.p.. Data represent mean C SEM t-test (two-sided) was performed to compare the difference in the tumor size for
different treatment groups. �p < 0.05, ��p < 0.01, ���p < 0.001, compared with control. All experimental groups in A–D that were compared for statistical difference had
unequal variance, except the “4D5scFvZZ-mIFN” and “4D5scFvZZ and mIFN” comparison, which and Fig. 2E had equal variance.
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ADCC activity had complete pathologic response to the treat-
ment, while four patients with intermediate induced ADCC
activity had partial response. All three patients with no induced
ADCC had significant tumor regression. In addition, objective
response rate (ORR) and progression-free survival (PFS) after
trastuzumab-based therapies are reported to be correlated with
the 158 V/V genotype of the Fc receptor FcgRIIIa, which dem-
onstrates a significantly higher trastuzumab-mediated ADCC
than other genotypes.25-27

However, studies also show that ADCC is weakened over
time in adjuvant and metastatic breast cancer patients as com-
pared with healthy controls.28 This is in contrast to the trastu-
zumab-induced ADCC observed in the neoadjuvant setting,
which only lasts about 5 week.24 It is speculated that long time
trastuzumab treatment leads to an immune suppressive mecha-
nism that inhibits ADCC. Therefore, an immunotherapy that
limits the ADCC inhibition may enhance the clinical activity of
trastuzumab.

For solid tumors, one immunosuppressive mechanism is the
hypoxia-driven adenosine accumulation in the tumor microen-
vironment. Through the A2A adenosine receptor, adenosine

can prevent T cells and NK cells from killing tumor cells.
A2AR antagonists have been tested to prevent the inhibition of
antitumor T cells and NK cells.29 Another approach is to
change immune profiles of tumor microenvironment with
immune-stimulatory cytokines. In a clinical trial with trastuzu-
mab plus IL-12 in metastatic breast cancer patients, sustained
production of IFNg and other cytokines was associated with
response to the treatment.30

Ever since the prototype of the anti-HER2/neu antibody was
developed 30 y ago,3 we and others have tried to produce engi-
neered peptides or proteins that might provide even better ther-
apeutic activity.18,31,32 The IFNg scFv–EED now represents the
first engineered antibody-like protein that demonstrates supe-
rior in vivo activity. Endowed with multiple capabilities includ-
ing disabling the receptor target, promoting the infiltration of
T cells, and shifting TAMs to M1 type, this new species of
mAb-like protein is active on trastuzumab- resistant tumors.
The fusion protein approach is an improvement from our
recent observation that IFNg and anti-HER2/neu antibody syn-
ergistically inhibit in vivo tumor growth.17 By linking IFNg
recombinantly to scFv–EED, this new therapeutic protein is

Figure 3. Effect of 4D5scFvZZ-mIFNg on host immune cells. (A & B) In vivo activity of 4D5scFvZZ-mIFNg is independent on the IFNg receptor level. T6–17(Vector) or T6–
17(IFNgR KD) tumor cells (5 £ 105) were injected subcutaneously into the back of 6 »10 week old female nude mice. The next day, mice were treated with control or
4D5scFvZZ-mIFNg , five times per week. t-test (two-sided) was performed to compare the difference in the tumor size of different groups. (A) At the end of the experi-
ment, tumors in the low dose group were significantly smaller than those in the control group (�p < 0.05, equal variance). Tumors in the high dose group were very sig-
nificantly smaller than those in the control group (��p < 0.01, unequal variance). (B) Tumors in the treatment group were significantly smaller than those in the control
group (�p < 0.05, unequal variance). (C–G) At the end of the treatments, tumors from mice in Fig. 3A were collected and examined for macrophages (C D & E) and TILs
(F). (G) Expression levels of PD-L1 in the tumors after treatments. Compared with the control group, tumors in the mice treated with high dose 4D5scFvZZ-mIFN had less
M2 TAM, higher M1:M2 ratio, and more TILs (two tail t-test, equal variance, p < 0.05). In addition, there was a significant difference in the PD-L1 expression levels
between treatment and control groups (one-way ANOVA, equal variance, p< 0.05). Data represent mean C SEM.
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able to target the IFNg effect toward the tumor and reduce the
unwanted systemic activity of this cytokine.

Currently, immunocytokines in clinical development are
mostly in the format of fusion protein with either antibodies or
antibody fragments.33 While antibody-cytokine fusion proteins
generally have longer in vivo half-lives due to binding to neona-
tal Fc receptors, their tissue penetration into solid tumor is less
than optimal.34 In contrast, fusion proteins with smaller anti-
body fragments, such as scFv, tend to have better tumor pene-
tration but shorter half-lives.35 In this study, we directly fused
IFNg to anti-HER2/neu scFv–EED. Since IgG binding domain
was shown before to extend the plasma half-life of scFv fusion
protein,36 this recombinant fusion protein is thought able to
penetrate better into solid tumor with a prolonged in vivo half-
life.

Bacterially expressed scFv–EED–IFNg was used at a very
low in vivo dose of 0.1–0.45 mg/kg. That is about 10–20-fold
less than the usual dose for a recombinant protein in this type
of experiment. The high potency of the molecule provides an
exciting opportunity to dramatically reduce the medical cost
for targeted cancer therapies. This is a very critical feature for
this approach considering the problem and burden of the high
cost of cancer drugs to the health care system.

In summary, the scFv–EED–IFNg fusion protein represents
a novel targeted immunotherapy. Its effects on TMAs repolari-
zation and TILs infiltration indicate that this new type of mole-
cules can fundamentally change the tumor microenvironment
to support immune reactivity against tumors. We have started
to generate similar species using scFvs targeting other oncogene
encoded cancer-specific receptors. The 4D5scFvZZ-IFNg
fusion protein, once properly humanized, has the potential to
be developed clinically as an immune-competent treatment of
HER2/neu positive cancers.

Materials and methods

Cells and antibodies

T6–17, a gift from Dr JH Pierce, was derived from NIH3T3 by
overexpressing the p185her2/neu receptor.37 CT26-HER2 was
kindly provided by Drs Cristina Jaime-Ramirez and William
Carson in OSUMC. The cell line was originally from Dr Sherie
L. Morrison of UCLA. SKBR3 was obtained from the American
Type Culture Collection. Authenticity of these cells was deter-
mined by confirming their known expression profiles for recep-
tors using fluorescence-activated cell sorting (FACS)
periodically. CT26-HER2 was cultured in RPMI 1640 media,
plus L-glutamine with 10% FBS, 1% Antibiotic–Antimycotic
(100X, ThermoFisher, Cat.# 15240062) and prophylactic Plas-
mocin (InvivoGen, Cat.# ant-mpp). All other cells were grown
in Dulbecco’s modified Eagle medium (DMEM) supplemented
with 10% heat inactivated fetal calf serum, L-glutamine (2mM),
penicillin (100 U/mL) and streptomycin (100 mg/mL) at 37�C
in a humidified 5% CO2 atmosphere. All cell lines are routinely
checked to confirm the absence of mycoplasma. Both T6–17
and CT26HER2 were confirmed virus free by the IMPACT II
test (IDEXX Bioresearch). Anti-class I and class II MHC anti-
gens antibodies, FITC anti-human HLA-A,B,C antibody (clone
W6/32, Cat.# 311403) and FITC anti-human HLA-DR

antibody (clone L243, Cat.# 307603), respectively, were pur-
chased from Biolegend (San Diego, CA).

Cell proliferation assay

To measure cell proliferation, we used the modified MTT assay
as described previously.18,32 For T6–17 cells, exponentially
growing cells were seeded at a density of 5,000 cells/well in 96-
well plates. For each data point, five wells of cells were prepared
for the same treatment to obtain the average value. The MTT
assay was usually repeated at least once to confirm.

Flow cytometry assays (Fluorescence-activated cell
sorting, FACS)

For the determination of cell surface expression of MHC recep-
tors in response to IFNg, cells were incubated with appropriate
FITC labeled primary antibodies for 1 h on ice. After wash and
collection, the cell pellets were resuspended in FACS buffer.
10,000 cells were run for each sample on a FACSCaliburTM

flow cytometer and analyzed using the CellQuest software.
For apoptosis assay, T6–17 cells were treated for 2 d with

10 ug/mL of control antibody 9BJ5, 4D5, 4D5scFvZZ,
4D5scFv-IFNg and 4D5scFvZZ-IFNg, respectively. Cells were
harvested and washed with phosphate-buffered saline (PBS),
and then stained with PE-Annexin V and 7-AAD according to
the manufacturer’s instructions (eBioscience, San Diego, CA).
Stained cells were analyzed with Accuri C6 flow cytometer (BD
Biosciences) and the acquired FACS data were analyzed with
FlowJo software (Tree Star, Ashland, OR).

For TILs, tumors were collected for single cell suspensions at
1 d after final treatment. Tumor tissues were cut and digested
with Collagenase D (Roche, 1 mg/mL) and DNAse (Sigma,
1 mg/mL) in 2% FBS RPMI for 30 min. Then cells were filtered
through a cell strainer (Falcon). Cell surface antigens were
stained with anti-CD45, F4/80, CD11b, CD11c, CD206 and
PD-L1 antibodies (Biolegend). Cells were analyzed with FACS
LSR (BD Biosciences) and FACS data were analyzed with
FlowJo software (Tree Star, Ashland, OR).

IFNgR knock down by shRNA

TRC mouse lentiviral shRNA clones targeting IFNgR1 and the
control pLKO.1 were obtained from The Open Biosystems
Expression ArrestTMTRC Library (Thermo Scientific). Lentivi-
ruses were produced by VairaSafeTM Lentivirus expression sys-
tem (Cell Biolabs inc., San Diego, CA) as manufacturer’s
instructions. T6–17 cells were transfected with those lentivi-
ruses and selected with 1 mg/mL puromycin and analyzed by
FACS with anti-IFNgR antibody (Biolegend).

In vivo tumor studies

All mouse procedures were performed according to the guide-
lines and protocols approved by the IACUC of University of
Pennsylvania. In general, we used four mice for each treatment
group, and we routinely implanted two tumors on each mouse.
Mice were randomly grouped and treated with various reagents
as described in the text. Control mice were treated with PBS.
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Tumor size was measured with a Vernier caliper, and tumor
volume was calculated by the formula: 3.14� length � width �

height/6.

Statistical analysis

For our routine tumor study, the minimal number of tumors in
each group is 6. By having at least six tumors in each group, the
probability is 87% that the study will detect a treatment differ-
ence at a two-sided 0.05 significance level, if the true difference
between treatments is two times the standard deviation. In our
experience, this will allow us to detect a 40% reduction in the
average tumor size of the treatment group as compared with
the control group. All data expressed as mean § s.e.m. Stu-
dent’s t-test and one-way analysis of variance (ANOVA) were
used to compare two groups (GraphPad Prism 6, La Jolla, CA,
USA). p-value < 0.05 was considered statistically significant. F-
test was performed to check for variance.
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