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ABSTRACT
Obinutuzumab (OBZ) shows stronger antibody-dependent cell cytotoxicity (ADCC) compared to
rituximab and improved clinical activity for treating certain CD20C neoplasia. However, the efficacy
of monoclonal antibody (mAb) as a monotherapy is limited. Natural Killer (NK) cells are mediators of
ADCC. Hematological cancer patients possess antitumor NK cells that are unable to control disease,
possibly because they are dysfunctional. The immunomodulatory drug lenalidomide (LEN) could be
a treatment to restore exhausted NK cell cytotoxic functions. The clinical trial GALEN is a Phase Ib/II
study of OBZ combined with LEN for the treatment of relapsed/refractory follicular and aggressive
(DLBCL and MCL) B-cell Lymphoma. During treatment, we analyzed specific aspects of NK cell
biology. Treatment reversed the immature NK phenotype of patients and increased expression of NK
activating receptors. Inhibitory receptors were either unchanged or decreased. There was a strong
NK response at the end of the 1st cycle: NK number and intracellular granzyme B (GrzB) expression
decreased, degranulation increased and NK responded better to allogeneic target challenge.
Moreover, the interaction of NK cells with B cell targets, measured by trogocytosis, decreased during
treatment. At the end of treatment, when target cells had been wiped out, the proportion of
reactive NK cells (CD69C, CD45RAROC, CD107aC, CD19C) strongly decreased. Because all patients
received LEN and OBZ, it was uncertain which drug was responsible of our observations, or even if a
combination of both products was necessary for the described effects on this lymphocyte lineage.
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Introduction

The anti-CD20 IgG1 monoclonal antibody (mAb) rituximab
(RTX) has improved the treatment of B-cells lymphocytic
leukemia (B-CLL) and B-cells non-Hodgkin lymphomas (B-
NHL). Its success is related to its capacity to induce Fc-
(antibody-dependent cell-mediated cytotoxicity (ADCC).
One receptor for human IgG1 is FcgRIIIa (CD16 a), which
is expressed on natural killer (NK) cells and macrophages.
The influence of FcgRIIIa-158VF polymorphism on RTX
clinical response strongly suggests that ADCC is critical.1

Based on these results, there has been an attempt to pro-
duce new anti-CD20 mAbs that exhibit higher affinity for
FcgRIIIa either by Fc mutations or by glycoengeenering.2,3

This later strategy, leading to low fucose content of the N-
glycan, is currently under clinical investigations in B-cell
malignancies with the mAb obinutuzumab (OBZ; previously
GA101, Roche, Genentech), which shows stronger ADCC in
vitro and in a lymphoma xenograft mouse model compared
to RTX4 and improved clinical activity for treating chronic

lymphocytic leukemia (CLL).5 This clinical benefit has been
observed in other B-cell malignancies.4,6,7 OBZ is approved
for first-line CLL in association with chlorambucil and in
combination with bendamustine for the treatment of
patients with follicular lymphoma (FL) who relapse or are
refractory to RTX-containing regimen.8

However, it is remarkable to note that the mAbs themselves
have modest clinical activity. For example, RTX or OBZ when
used as monotherapy in patients with relapsed follicular lym-
phoma have demonstrated short progression-free survival
(PFS).8 These data indicate that there is a need to optimize their
use in co-therapy. In this sense, hematological cancer patients
possess antitumor NK cells that are unable to control
disease.9,10 Blood-borne cancer cells use different mechanisms
for immune escape,11,12 e.g. inducing NK cell dysfunction.13,14

In addition, NK cell differentiation may be inhibited by the
presence of tumor cells e.g. acute myeloid leukemia (AML) cells
infiltrating bone-marrow.15,16 Therefore, the failure of mAb as
monotherapy could be related to impaired NK cell function
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and hence, there is a clinical interest to reactivate patient NK
cells.17

Lenalidomide (LEN; Revlimid; Celgene) is an immune-mod-
ulatory drug that can activate NK cells.14,18–21 LEN treatment
during and after stem cell transplantation (SCT) increases
NK cell proliferation, enhances NKp44 expression on NK
cells14 and increases circulating NK-cell numbers in leukemia
patients.22,23 LEN increases co-stimulatory receptor expression
on NK cells, such as CD16 and Lymphocytes Function-associ-
ated Antigen (LFA)14 and stabilizes NK cell:target cell immuno-
logical synapse.20,23,24 These effects lead to increased cytotoxic
activity and increased proliferation of LEN-stimulated NK
cells.14,19,20 LEN has similar effects in B-NHL patients restoring
synapse formation, ADCC, and cytotoxic functions in NK
cells.25,26 Of particular clinical importance, LEN allows NK cells
to be activated by lower doses of RTX.20 Finally, it also favors
target recognition by inducing expression of NKG2D and
DNAM-1 ligands on malignant cells.27 LEN mechanism of
action is thus predominantly immune-mediated, making LEN
a suitable treatment to restore exhausted NK cell cytotoxic
functions.

With this view, the clinical trial GALEN is a Phase Ib/II
study of OBZ combined with LEN for the treatment of
relapsed/refractory follicular and aggressive B-cell lym-
phoma (diffuse large B-cell lymphoma (DLBCL) and mantle
cell lymphoma (MCL) by the LYSA Lymphoma Study Asso-
ciation. The primary objective of the Phase IB part of the
study was to determine the recommended dose (RD) of
LEN when administered in association with OBZ. The pri-
mary objective of the Phase II part of the study was to
assess the efficacy of the association of the recommended
dose of LEN in combination with OBZ, as measured by the
overall response rate (ORR) at the end of 6 cycles in these
2 different populations of lymphoma patients. We devel-
oped a pilot exploration of some specific aspects of NK cell
biology. In this respect, we monitored the following time
points: i) C1D1 predose; ii) C1D28 and iii) C6D28 (supple-
mental Fig. 1).

Results

Effect of treatment on lymphocyte populations

Patients were treated with a combination of LEN (orally
administered) and 3 doses of OBZ in the first cycle and a
single dose on the first day of the following for total of six
consecutive treatment cycles (see supplemental Fig. 1 for
treatment and sampling protocol). We did not observe dif-
ferences in the NK cell parameters tested between the dif-
ferent lymphoma types in our pilot study, hence we
analyzed them together (both FL and DLBCL patients). We
observed a transient decrease in hemoglobin levels, a signifi-
cant decrease in leucocytes and a trend towards a decrease
in lymphocytes (Fig. 1A). T cell numbers were unchanged
and there was a transient decrease in NK cells at the end of
the first cycle (Fig. 1B). B cells (CD19C) decreased in num-
bers (Fig. 1C). The CD20C population, which is the main
target of OBZ, showed a tendency to decrease (Fig. 1C),
similar to CD5C cells (Fig. 1C). The remaining CD19C cells

showed increased expression of the major histocompatibility
complex-I (MHC-I), as has been observed in other hemato-
logical neoplasias14; but also of the stress ligands MHC class
I polypeptide-related sequence A (MICA) and MICB
(Fig. 1D). The increased expression of MHC-I and MICA/B
could have countervailing effects on NK cells because they
are recognized by KIRs, inhibitory receptors, and NKG2D,
activating receptor, respectively. Hence the final effect on
NK cell recognition in remaining target cells is unclear.

Treatment induces maturation of the immature NK cell
population

We next directly investigated the physiological status of NK
cells during treatment. In the peripheral blood, human NK cells
are mostly CD3¡CD56dim cells with high cytotoxic activity,
while CD3¡CD56bright cells excel in cytokine production28. In
vitro evidence indicates that CD56bright NK cells are precursors
of CD56dim NK cells and this might also be the case in vivo29.
In addition, combined analysis of CD56 and CD16 expression
during NK cell development indicates that their profiles
changes as follows: CD56brightCD16¡ ! CD56brightCD16dim!
CD56dimCD16dim! CD56dimCD16C. Additional markers can
be used to identify specific subsets within these NK cell popula-
tions30,31. As previously described9,10, we observed a tendency
to a higher proportion of immature NK cells in patients com-
pare to HD, which correlated with a decrease in the full mature
CD56dimCD16C (Fig. 2A). At the end of treatment most
patients lost the immature subsets and gained a NK distribu-
tion similar to healthy donors (Fig. 2A), i.e. with less immature
cells.

We next analyzed the maturation marker CD161-killer cell
lectin-like receptor subfamily B, member 1 (KLRB1) that is
expressed early in NK cell development and before CD5632.
The expression of this marker did not change during treatment
in the CD56C NK compartment (Fig. 2B).

During in vivo maturation CD56bright cells become
CD56dimCD62LCCD57¡ cells that produce perforin, while
maintaining high IFN-g production in response to cyto-
kines28,33. On the other hand, CD56dimCD62L¡CD57C cells
show low response to cytokines and higher cytotoxic capac-
ity28,34. CD62L was slightly increased in patients and the
treatment decreased the expression (Fig. 2B). In contrast
CD57 was lower in patients and remained unchanged by
the treatment (Fig. 2B). This suggests that at the end of
treatment the NK cells show decreased expression of an
immature marker, i.e. CD62L. When NK cells reach fully
mature CD56dimCD16C status, they gain full expression of
killer inhibitory receptors (KIRs) receptors. KIR expression
in patients before and after treatment was variable and
expression of the 3 KIRs taken together was similar in
patients and healthy donors (Fig. 2C).

The CD94 glycoprotein heterodimerizes with the natural-
killer group 2 (NKG2) receptors, which are type II trans-
membrane proteins. CD94/NKG2 A is an inhibitory recep-
tor that recognizes HLA-E and it is the first inhibitory
receptor expressed during NK cell maturation32,35. CD94
can also associate with the activating receptors NKG2C and
E32,35. The activating receptor NKG2D represents an
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exception: it is a homodimer32,35. CD94 was lower in
patients and increased on treatment (Fig. 2D). In contrast,
NKG2A was higher in patients and was not modified by
treatment (Fig. 2D). NKG2D, which was lower in patients,
significantly increased after treatment (Fig. 2D). In sum-
mary, NK activating receptors tend to increase while inhibi-
tory receptors are either unchanged or decreased.

Treatment decreases the activated NK cell population

The proliferation marker Ki-67 is increased in NK cells from
hematological cancer patients.9,10 Fig. 3A showed that the

elevated values remained unchanged during treatment. In con-
trast, levels of the activation marker CD69, which were similar
to healthy donors, decreased at the end of treatment (Fig. 3A).

The antitumor NK cell population is easily recognized by
expression of CD45RO (CD45RO cells) in general together
with CD45RA (CD45RARO cells). Patients show high levels
of these cells, leading to a decrease in the CD45RACRO¡

population (CD45RA cells).9,10 Patients in our cohort
clearly showed this phenotype (Fig. 3B). At the end of treat-
ment this phenotype tended to converge versus a healthy
donor phenotype with increase in CD45RA cells and a
decrease in CD45ROC cells. Taken together these data

Figure 1. Effect of treatment on lymphocyte populations. (A) Absolute values of hemoglobin (left), total leukocyte count (middle) and total lymphocyte count (right) are
reported as before the first induction (day 0), after first round of treatment (end cycle 1) and after the final round of treatment (end study) respectively (nD 16). (B) Abso-
lute count of T lymphocyte (CD3CCD56-) population and NK cell (CD3-CD56C) populations from total PBMC (n D 16). (C) Absolute count of lymphocyte populations car-
rying specific markers associated with B-cell lymphoma (n D 16). (D) Expression of HLA and the stress ligands MIC-A and MIC-B on CD19C population in term of mean
fluorescence intensity (HD: n D 4; patients: n D 10). Significance was determined by paired t-test between day 0 versus following time-points, and one-way ANOVA
between HD and patients at every time-points with � p � 0.05, �� p � 0.01 and ��� p � 0.001.
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suggest that elimination of target cells decreases NK cell
activation status.

Treatment modulates NK cell cytotoxic activity

If NK cell target cells were disappearing, we also expect to find a
decrease in NK degranulation because cytotoxicity is probably
the main antitumor function of these lymphocytes in hemato-
logical neoplasias.9,10 The proportion of granzymeC cells was
similar to healthy donors and slightly decreased after treatment

(Fig. 4A). The amount of granzyme, as measured by the median
fluorescence intensity (MFI) values, was higher in patients,
underwent a significant reduction at the end of cycle 1, and
recovered to normal values at the end of treatment (Fig. 4A). In
agreement with our previous results,9,10 we observed that more
NK cells were degranulating in patients, measured by CD107a
expression in the plasma membrane (Fig. 4B). At the end of
treatment the proportion of degranulating cells had signifi-
cantly decreased (Fig. 4B). NK cells degranulated at similar lev-
els at the beginning and at the end of the treatment against the

Figure 2. Treatment induces maturation of the immature NK cell population. (A) Analysis of NK cell subpopulations based on level of CD56 and CD16 expression that
divides NK cells in 4 subpopulations: CD56brCD16¡ (top, left panel), CD56brCD16C (top, right panel), CD56dimCD16¡ (bottom, left panel) and CD56dimCD16C (bottom, right
panel). (B) Assessment of NK cell maturation status determined by expression of the maturation markers CD161, CD62 L and CD57. (C) Expression of several KIR receptors
on healthy donor and patient NK cells: CD158 a (KIR2DL1), CD158b (KIR2DL2/3) and CD158e (KIR3DL1). (D) Expression of the inhibitory heterodimer complex NKG2 A/
CD94 and the activating receptor NKG2D. Patient: nD 16, healthy donor: nD 4. Significance was determined by paired t-test between day 0 versus following time-points,
and one-way ANOVA between HD and patients at every time-points with � p � 0.05, �� p � 0.01 and ��� p � 0.001.
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allogeneic non-Hodgkin B lymphoma cell line Daudi (Fig. 4C
and D). Interestingly, after the first cycle NK cells were more
active against the allogeneic targets (Fig. 4C and D). This sug-
gests that the presence of targets cells and the treatment activate
NK cells in vivo. CD56dim cells were responsible for CD107a
expression ex vivo, whereas CD56bright cells lacked expression
of this marker (Fig. 4E). CD56dimCD16¡ cells are considered
immature cells and precursors of CD56dimCD16C cells Unex-
pectedly, CD56dimCD16¡ cells expressed higher CD107a levels
than CD56dimCD16C cells.30,31 This is probably related to
CD16 downregulation after NK cell activation36 and also
explains the relative high CD56dimCD16¡ cell numbers in
patients (Fig. 2A).

Treatment decreases the trogocytosis of tumor-associated
markers by NK cells

These results suggested that NK cells were actively killing their
targets during treatment and the absence of such targets at the
end of treatment generated resting NK cells. To test this
hypothesis, we investigated the proportion of NK cells that
have killed CD19C targets at the different time-points. We took
advantage of the fact that NK cells gained target cell antigens,
e.g. CD19, by trogocytosis.9,10 As expected, the percentage of
CD19C NK cells was higher in patients than in healthy donors
and decreased with treatment (Fig. 5A). The CD45RARO NK

subset expressed the highest level of CD19 and treatment suc-
cessfully decreased CD19 expression (Fig. 5A). Other subsets
also decreased CD19 expression (Fig. 5A). These results suggest
that efficient treatments leading to elimination of NK cell target
cells reduce NK: target cell interaction and lead to lack of target
antigens on NK cell surface.

We next investigated which populations were responsible
for other variations in NK cell markers and focused on three of
them that changed after treatment. CD69 expression was
higher in patients and decreased after treatment (Fig. 3A).
CD45ROC cells showed higher CD69 levels, and treatment did
not decrease it. CD45RO¡ cells showed lower levels that
decreased with treatment (Fig. 5B). Therefore the decrease in
CD69 expression is linked to both the decrease in the number
of CD45ROC cells, which expressed higher CD69 levels and the
decrease of CD69 in CD45RO¡ cells.

NKG2D expression was lower in patients and increased after
treatment (Fig. 2D). NKG2D was lower in CD45ROC cells and
treatment increased expression in both CD45RO¡ and
CD45ROC (Fig. 5B). Hence the increase in NKG2D levels is
due to the decrease in CD45ROC cell numbers and the increase
in NKG2D expression by all NK cells.

CD94 expression was not modified in patients but increased
during treatment (Fig. 2D). CD45ROC cells expressed less
CD94 and both CD45ROC and RO¡ non-significantly
increased CD94 expression during treatment (Fig. 5B). The

Figure 3. Treatment decreases the activated NK cell population. (A) Proliferation potency of NK cell presented as intracellular staining of the nuclear marker Ki-67 and NK
activation status determined by expression of the activation marker CD69. (B) Analysis of NK populations based on differential expression of CD45 isoforms: CD45RAC

(left panel) and CD45RACR0C plus CD45R0C (right panel). Patient: nD 16, healthy donor: n D 4. Significance was determined by paired t-test between day 0 versus fol-
lowing time-points, and one-way ANOVA between HD and patients at every time-points with � p � 0.05, �� p � 0.01 and ��� p � 0.001.
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increase of CD94 on the whole NK cell population is thus
related to both, the decrease in CD45ROC cells and the general
increase of CD94.

Treatment does not exhaust NK cells

Finally, we investigated the effect of treatment on two receptors
regulated on NK cells by CD16-mediated activation: the

stimulatory CD137 receptor and the inhibitory PD-1 receptor
17. We used samples from a different cohort of patients in the
GALEN clinical study and investigated the effect of OBZ treat-
ment at the following time points: 1) during LEN course, just
before OBZ injection (D7 before OBZ); 2) 1 hour after the end
of OBZ infusion (D7 after OBZ); 3) at D0 of cycle 2 before
LEN (cycle 2); and 4) at assessment of clinical response after 6
cycles (end of induction). OBZ increased CD137 in both FL

Figure 4. Treatment modulates NK cell cytotoxic activity. (A) Percentage of GrzBC NK cells (left panel) and the MFI of GrzBC population (right panel). (B) Ex vivo degranu-
lation of NK cells determined by CD107 a staining (left panel: % of CD107 aC NK cells; right panel: MFI of CD107 aC NK cells. (C) Degranulation of NK cells upon overnight
incubation with Daudi target cells at [E:T] D 1:10 determined by % of CD107 aC cell (left panel) and MFI of CD107 aC NK (right panel). (D) The increase in CD107 a in in
vitro assays (DCD107 a) was calculated as the difference between the % of CD107 aC in degranulation assay versus the % of CD107 aC NK cell detected ex vivo for each
data point. (E) Percentage of the different NK cell subsets that expressed CD107 a ex vivo. Patient: n D 16, healthy donor: n D 4. Significance was determined by paired
t-test between day 0 versus following time-points, and one-way ANOVA between HD and patients at every time-points with � p � 0.05, �� p � 0.01 and ��� p � 0.001.
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and DLBCL patients (Fig. 6). The effect was found within hours
after OBZ treatment and increased until the end of treatment.
In contrast, PD-1 expression was unchanged (Fig. 6). This sug-
gests that OBZ induces NK CD137 receptor expression in the
presence of LEN and that continued infusion of the mAb keeps
levels of this activating receptor high. In contrast, under these
conditions, the inhibitory PD-1 receptor was not expressed.

Discussion

Although RTX-based therapy is efficient in a large number of
patients, there is still a need for improvement. The develop-
ment of new mAbs such as OBZ aims to fulfill this demand.
However, even the best-designed mAb could be inefficient in
some patients if they lack proper effector cells. The use of LEN
to activate NK cells could address this problem. Here we
observe that treatment with LEN reverses the immature pheno-
type of patient NK cells (Figs. 2 and 3) and induces expression
of activating ligands, i.e. NKG2D (Fig. 2) and CD137 (Fig. 6).
During treatment and in the presence of target cells (at end of

first cycle), NK cells from patients degranulated more than
those from healthy donors (Fig. 4). Once target cells disappear
(Fig. 1), the activated markers CD69 and CD45RO (Fig. 3), the
degranulation marker CD107a (Fig. 4) and the marker of trogo-
cytosis CD19 (Fig. 5) decrease on NK cell membrane. This sug-
gests that is possible to follow disease development by studying
NK cell markers; at least, when NK cells are the effectors of the
therapy, e.g. some clinical mAb. At the end of first cycle, when
target cells are still present in relative numbers, NK cells show
increased cytotoxicity in vitro and ex vivo and low GrzB levels
(Fig. 4). However, the NK cell number decreases (Fig. 1). We
propose the following scenario. NK cells are constitutively kill-
ing target cells (Fig. 5 and9,10). Some NK cells die during this
immune response generating an increase in immature cells.
OBZ and LEN induce improved target cell recognition and NK
cell activation. NK cells degranulate in larger numbers but also
die in larger numbers. At the end of treatment, most targets
cells have disappeared and NK cells are no longer dying, so
there is less de novo formation of NK cells and they are becom-
ing more mature. However, NK cells continue to show high Ki-

Figure 5. Trogocytosis of tumor associated marker on NK cell population. (A) Trogocytosis of CD19 tumor marker on the total NK population (left panel) or on different NK
cell subpopulations regarding expression of CD45 isoforms: CD45RAC, CD45RAR0C, CD45RAdim and CD45R0C. (B) The percentage of NK cells expressing CD69, NKG2D and
CD94 was analyzed in the CD45RO¡ and CD45ROC populations. Patient: nD 16, healthy donor: n D 4. Significance was determined by paired t-test between day 0 versus
following time-points, and one-way ANOVA between HD and patients at every time-points with � p � 0.05, �� p � 0.01 and ��� p � 0.001.
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67 levels. Perhaps this can be explained by adaptive differentia-
tion of NK cells and subsequent growth of a larger population
of mature “memory” NK cells, as has been suggested after
CMV infection.37 Almost all phenotypic changes observed in
NK cells disappear with the lack of target cells suggesting that
treatment keeps NK activated only in the presence of target
cells. Several populations are responsible for the changes in NK
cell phenotype (Fig. 5B) although cytotoxicity ex vivo is almost
exclusively associated to CD56dim cells (Fig. 4E). Unexpectedly,
we observed that CD45ROC NK cells showed low NKG2D
expression (Fig. 5B). We speculate that once NK cells are
engaged on killing, NKG2D expression is not anymore
required.

Our results show an increase in immature, CD56bright, NK
cells in lymphoma patients (Fig. 2A). CD56bright cells produce
high cytokine levels.28 In the context of anti-CD20-induced
ADCC, we believed that NK cell cytotoxic function would be
more relevant than cytokine production. In hematological can-
cer patients, cytotoxicity is mainly mediated by CD56dim NK
cell subsets.9,10 This is confirmed in the current study (Fig. 4E).
When we planned our analysis, we decided to maximize the
study of cytotoxic, CD56dim, NK cells and did not investigate
cytokine production because it is believed that CD56dim cells
produce low cytokine levels.28 However, in view of our current
results it would be interesting to investigate the cytokine profile
of the immature NK cell populations that accumulate in lym-
phoma patients.

LEN targets the E3 ligase cereblon that degrades the Ikaros
transcription factors IKZF1 and IKZF3.38 In vivo, LEN induces

tumor cell apoptosis and blocks bone marrow stromal sup-
port,39 but also activates immune cells, e.g. NK cells.14,18–21 Our
results support that NK cells are important mediators of the
clinical benefits of LENCOBZ.

It is noteworthy that PD-1 is absent on NK cells isolated
from healthy donors but it is expressed on those from MM
patients.40 We observe that there is a large heterogeneity of
PD-1 expression in our patient cohort, and only a few of them
constitutively express PD-1 (Fig. 6). As discussed above, there
is probably continual production of mature NK cells to replace
those dying during the immune response. These new cells are
probably not exhausted and lack PD-1 expression. Hence, the
continual renewal of NK cells might preclude PD-1 expression
on NK cells in some patients. Treatment did not significantly
affect PD-1 expression. This suggests that the role of PD-1 on
treatment is minor. Perhaps LEN partially reversed the exhaus-
tion of effector cells as previously suggested.41 LEN is probably
the most active treatment (alone or combined with anti-PD-1/
PD-L1 antibodies or other drugs) able to restore cytotoxic func-
tion to exhausted NK cells.14 Our results show the hypothesis
that LEN in combination with OBZ increases several NK cell
biological parameters associated with maturation and activa-
tion. However, because we did not obtain samples in mono-
therapy, i.e. LEN or OBZ alone, we cannot identify the relative
contribution of these two drugs.

Cancer patients show NK cell subsets that are significantly
different of those found in healthy donors.9,10 However, one
question was unresolved: what is the fate of these NK cell sub-
sets when their target cells disappear? Here we show for the first

Figure 6. NK cell increased expression of CD137, but not PD1, in FL and DLBCL patients. Expression of CD137 (TNFRSF9) and the exhaustion marker PD1 on NK cells before
the treatment (day 0 – cycle 1), before the first infusion of OBZ (day 8 – cycle 1), before the treatment of 2nd cycle (end cycle 1) and finally at the end of the last cycle (end
cycle 6). Statistical significance was determined by paired t-test between “day 0 – cycle 1” and the following time points; p values � � p� 0.05, �� p� 0.01 and ��� p� 0.001.

e1409322-8 D.-N. VO ET AL.



time that in our situation the NK cell subsets come back to a
normal situation, i.e. similar to healthy donors, for the vast
majority of markers. This is probably related to the disappear-
ance of target cells because both LEN and OBZ are NK cell acti-
vating molecules that should not promote NK cell resting
markers. This suggests that NK cells strongly react to effective
treatment and that NK cell monitoring could be interesting to
follow-up anti tumor treatments; mainly those involving mAb
therapy.
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Patients and methods

Patients

All patients belong to the BioGALEN study and signed specific
informed consent form before biological samples collection of
BioGALEN. This study is recorded in website ClinicalTrials.
gov with number NCT01582776. Phase Ib was for follicular
lymphoma (FL) patients and Phase II for follicular and aggres-
sive (DLBCL and MCL) B-cell lymphoma patients. 3 £ 3 ml of
heparinized blood or 4 ml of bone marrow aspirate were col-
lected at day 0. At the end of first cycle or at the end of treat-
ment (supplemental Fig. 1) 3 £ 3 ml of heparinized blood was
collected.

Cell culture

The B cell lymphoblastoid Daudi cell line was maintained in
logarithmic growth in RPMI 1640 medium (Gibco� Gluta-
MAXTM media) with 10% fetal bovine serum (FBS) (Gibco�).
Cells were cultured at 37�C in a humidified chamber with 5%
CO2 in air, and passaged 1:10 twice a week.

Peripheral blood mononuclear cell (PBMC) purification

Bone marrow and peripheral blood samples were obtained
from patients and total PBMC were isolated using Ficoll.
Briefly, 3–6 ml of 1:2 diluted blood or 1:3 diluted bone marrow
samples in RPMI were added on top of 5 ml of Histopaque
(Sigma). Cells were centrifuged at 1600 rpm and at 20�C with-
out break for 30 minutes. Mononuclear cells were collected
from the white ring at the interface. After washing in RPMI,
cells were cryopreserved in liquid nitrogen in medium com-
prise of FBS plus 10% culture-grade DMSO (CliniMACS) until
analyzing.

Flow cytometry analysis

Isolated PBMCs were stained with 7AAD (Beckman) to identify
viable cells and with the following -CD45RO-FITC, -CD161-
FITC, -CD3-PE, -CD19-PE, -CD62 L-PE, -CD69-PE, -CD314
(NKG2D)-PE, -CD3-ECD, -CD19-ECD, -CD56-PECy7, CD3-
APC, -CD56-APC, -GzB-AlexaFluor700, -CD19-AlexaFluor
700, -CD20-APC-AlexaFluor750, -CD45RA-APC-AlexaFluor
750, -CD5-PacificBlue, -CD16-PacificBlue, -CD57-PacificBlue,
-CD16-KromeOrange (Beckman), -CD158 a-V450, -CD158b-
FITC, -CD158 a-PE, -CD107 a-HV500, -Ki-67-V450, HLA-
ABC-BV711 (BD Biosciences), MIC-A/B-PE, -CD45RA-FITC,
-CD45RO-PE, -CD159 a(NKG2 A)-PE, -CD94-PE-Vio770,
-CD45RO-APC, -CD19-VioBlue, -CD158e-VioBlue (Miltenyi
Biotec) antibodies against surface markers. Briefly, 1 to 10 £ 106

cells were incubated with the different antibodies in PBS contain-
ing 2% FBS at 4 �C for 30 minutes. Cells were then washed with
PBS and suspended in 200–250 ml PBS 2% FBS. Finally, sample
acquisition was performed using Gallios flow cytometer (Beck-
man) or Fortessa (BD Biosciences). Acquired samples were later
analyzed using Kaluza software v5.1 (Beckman).

In vitro CD107a degranulation assay

In vitro degranulation assay was performed to evaluate NK
reactivity to the B cell target Daudi by measuring CD107a
expression on the surface after cytotoxic granule release. In
summary, isolated PBMC were pre-stained with CD3/CD56 to
determine NK frequency in the sample. Next, PBMC were
incubated with Daudi cells at a 1:10 ratio NK:Daudi in the pres-
ence of 1.5 ul of anti-CD107a (BD Biosciences, Franklin Lakes,
NJ) and 1 ul Golgi-stop (BD Biosciences) (containing monen-
sin) to inhibit vesicle trafficking. Cell mixture was then resus-
pended in RPMI Glutamax 10% supplemented with 10 IU/ml
Interleukin 2 (eBiosciences) and incubated overnight. After
stimulation, cell mixture was collected and stained for FACS
using an antibody cocktail containing 7AAD, the anti-
CD45RO-FITC, -CD69-PE, -CD19-ECD, -CD56-PECy7,
-CD3-APC, -CD45RA-APCAlexaFluor750, -CD107a-HV500
and -CD16-KO antibodies (BD Biosciences, Beckman). A
bivariate plot of CD56 versus CD3 was used to acquire at least
10,000 NK cells.

Multicolor staining for intracellular markers

Cell permeablization and intracellular staining was performed
as previous described.9,10 Briefly,1–10 million cells were incu-
bated with 10% normal human serum at RT for 15 min and
then stained with an antibody mix for cell surface markers
(anti-CD45RO-FITC, -CD19-ECD, -CD56-PC7, -CD3-APC,
-CD45RA-APCAlexaFluor750 and -CD16-KO antibodies)
(BD Biosciences, Beckman). After surface staining, cells were
washed twice and permeabilize with CytoFix/CytoPerm (BD
Biosciences) reagent according to the manufacturer protocol.
After fixation and permeablization, cells were washed twice in
BD Perm/Wash solution and follow FACS staining for
intracellular markers Granzyme B- PE (Miltenyi Biotec) and
Ki-67-V450 (BD Biosciences) at 4�C for 30 minutes in the
dark. Finally, cells were washed twice in BD Perm/Wash
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solution and resuspended in PBS 2% FBS prior to acquisition
on flow cytometer Gallios (Beckman). A bivariate plot of
CD56 versus CD3 was used to acquire at least 10,000 NK cells.

Statistics

Experimental figures and statistical analysis were performed
using GraphPad Prism (v6.0). Statistical significance between
day 0 and the following time-points was determined using
paired Student t-test on the sample patients for each sampling
point. To determine statistical significance between healthy
donors and patients, one-way ANOVA test was used to com-
pare between healthy donors versus patients at every time-
points. All statistical values presented as �: p<0.05; ��: p<0.01;
���: p<0.001. Average values were expressed as mean plus or
minus the standard error (SD).
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