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Abstract

Objective—This study evaluated genetic associations of APOE alleles with risk of MSA and α-

synuclein pathology, and also examined whether apoE isoforms differentially affect α-synuclein 

uptake in oligodendrocytes cell.

Methods—168 pathologically-confirmed MSA patients, 89 clinically-diagnosed MSA patients, 

and 1277 control subjects were genotyped for APOE. Human oligodendrocyte cell lines were 

incubated with α-synuclein and recombinant human apoE, with internalized α-synuclein imaged 

by confocal microscopy and cells analyzed by flow cytometry.

Results—No significant association with risk of MSA or was observed for either APOE ε2 or 

ε4. α-synuclein burden was also not associated with APOE alleles in the pathologically-confirmed 

patients. Interestingly, in our cell assays, apoE ε4 significantly reduced α-synuclein uptake in the 

oligodendrocytic cell line.

Conclusions—Despite differential effects of apoE isoforms on α-synuclein uptake in a human 

oligodendrocytic cell, we did not observe a significant association at the APOE locus with risk of 

MSA or α-synuclein pathology.

Keywords

Multiple system atrophy; apolipoprotein E; genetics; protection; oligodendrocyte (max 5)

Introduction

Widespread presence of glial cytoplasmic inclusions (GCIs) is the neuropathologic hallmark 

of MSA.1 GCI is the accumulation of α-synuclein protein in the cytoplasm of 

oligodendrocytes, the myelin-producing support cells in CNS. Recently, dysregulation of the 

specialized lipid metabolism involved in myelin synthesis and maintenance by 

oligodendrocytes has been associated with the unique neuropathology of MSA.2 

Apolipoprotein E (APOE) is a well-established lipid-metabolism gene. The APOE ε4 allele 

is the major genetic determinant of late-onset Alzheimer’s disease (AD) risk and has also 

been strongly associated the synucleinopathy dementia with Lewy bodies3, whereas APOE 
ε2 is known as a protective factor for AD and dementia.3 Compared to other more common 

neurodegenerative diseases, little is known about the genetics of MSA; recent reports have 

nominated variants in several genes (SNCA, MAPT, LRRK2, COQ2, GBA) as potential risk 

factors, though validation is needed.4 We hypothesized that the APOE alleles could play a 

role in the pathogenesis of MSA. In this study, we first assessed associations of the APOE 
ε4 and ε2 alleles with risk of MSA and with α-synuclein burden. We also investigated 

whether apolipoprotein E (apoE) differentially affected α-synuclein uptake in a human 

oligodendrocytic cell line in an isoform-dependent manner.
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Methods

Study subjects

168 pathologically-confirmed MSA patients5, 89 clinically-diagnosed MSA patients1, and 

1277 controls were included (Supplemental Table 1). The pathologically-confirmed patients 

were all available cases obtained from the Mayo Clinic brain bank for neurodegenerative 

disorders in Jacksonville, FL, and were diagnosed by a single neuropathologist (D.W.D.).5 

Both clinically-diagnosed MSA patients and control subjects were seen at the Mayo Clinic 

in Jacksonville, FL (MSA: N=54, Controls: N=712) and Rochester, MN (MSA: N=35, 

Controls: N=565). All controls were neurologically normal and free of a family history of a 

movement disorder. All subjects were unrelated non-Hispanic Caucasians. The primary 

comparison was between the pathologically-confirmed MSA patients and controls. As a 

secondary comparison, we combined the pathologically-confirmed and clinically-diagnosed 

MSA patients for comparison with controls.

Pathological analysis

Immunohistochemistry for α-synuclein (NACP, Mayo Clinic antibody, Jacksonville, FL)6 

was conducted to establish the neuropathological diagnosis.5 The burden of α-synuclein in 

striatopallidal fibers was measured quantitatively as described previously and was available 

for 130 of the pathologically-confirmed MSA patients.7 Braak neurofibrillary tangles stage 

(available for 163 patients) and Thal amyloid phase (available for 158 patients) were 

assigned to each case with thioflavin S fluorescent microscopy.8, 9

Genetic Analysis

Genomic DNA was extracted from peripheral blood monocytes or frozen brain tissue using 

the standard protocols. Genotyping for APOE alleles (rs429358 C/T and rs7412 C/T) was 

performed using a custom TaqMan Allelic Discrimination Assay on an ABI 7900HT Fast 

Real-Time PCR system (Applied Biosystems, Foster City, CA, USA) (primer sequences are 

available upon request).

Statistical analysis

Associations of presence of the APOE ε4 and ε2 alleles with risk of MSA were evaluated 

using logistic regression models that were adjusted for age and gender. Additionally, we also 

compared the ε3/ε3 genotype to the ε3/ε4 genotype to directly assess the effect of ε4, and 

similarly we compared the ε3/ε3 genotype to the ε2/ε3 genotype to directly assess the effect 

of ε2. Finally, we utilized Fisher’s exact test to perform a general comparison of APOE 
genotype.

In pathologically-confirmed MSA patients, we assessed associations of ε4 and ε2 with α-

synuclein burden in striatopallidal fibers, Braak stage, and Thal phase using linear regression 

and proportional odds logistic regression models that were adjusted for age at death and 

gender. Given that statistical tests of association were performed for both APOE ε4 and ε2, 

P≤0.025 was considered as statistically significant after Bonferroni correction. With 168 

pathologically-confirmed MSA patients and 1269 controls included in our primary analysis, 

we had 80% power at the P≤0.025 significance level to detect odds ratios of 1.75 
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(association with ε4) and 1.90 (association with ε2) in relation to risk of MSA. All statistical 

analysis was performed using SAS.

Materials

Human oligodendrocytic cell line, MO3.13, was purchased from Cedarlane Labs 

(Burlington, NC). Recombinant human α-synuclein, HiLyte™ Fluor 488 labeled was from 

Anaspec (Fremont, CA). Recombinant human apoE proteins were from Fitzgerald Industries 

(Acton, MA).

Flow cytometry analysis of α-Synuclein uptake

Human oligodendrocytic cell line, MO3.13, were cultured and treated with 10 nM of 

fluorescently labeled recombinant human α-synuclein with or without 50 nM of 

recombinant human apoE for 18 hours. Total of 10,000 cells were analyzed by FACS Accuri 

(BD Bioscience). The median fluorescence signals in each condition were quantified using 

CFLOW® plus software (BD Bioscience), and analyzed by one-way ANOVA with Tukey’s 

post-hoc analysis.

Confocal analysis of α-Synuclein uptake by MO3.13

MO3.13 were plated on coverslips and treated with 250 nM α-synuclein HiLyte 488 and 

1.25 μM of apoE for 18 hours. At the end of the treatment, LysoTracker® Red (Life 

Technologies) was added to label lysosomes. The images were acquired using confocal 

laser-scanning fluorescence microscope (LSM 510, Carl Zeiss).

Results

There was no significant association of APOE ε4 or ε2 with risk of MSA (Table 1) or risk of 

MSA subtypes (Supplemental Tables 2 and 3). Similarly, when making a general 

comparison of APOE genotype with controls, no difference was observed for the 

pathologically-confirmed MSA patients (P=0.78) or the combined MSA series (P=0.47) 

(Supplemental Table 4). There was no association between α-synuclein burden in the 

striatopallidal fibers and presence of either APOE ε4 (P=0.71) or ε2 (P=0.49). As shown in 

Supplemental Table 5, in the pathologically-confirmed MSA series, ε4 was associated with a 

significantly higher Thal phase (P<0.0001) but was not associated with Braak stage 

(P=0.25), while ε2 was not associated with either outcome after multiple testing adjustment 

(P≥0.047) though non-significant trends toward less AD pathology in ε2 carriers were noted.

In our cellular assay, the human oligodendrocytic cell line, MO3.13, showed reduced 

colocalization of fluorescently-labeled α-synuclein and lysoTracker when co-treated with 

recombinant apoE ε4 compared to apoE ε2, ε3, or bovine serum albumin (Fig. 1A). The 

flow cytometry analysis further confirmed the significantly reduced internalization of 

fluorescently-labeled α-synuclein by MO3.13 when co-treated with apoE ε4 (Fig. 1B and 

1C).
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Discussion

The results of our genetic study showed that neither the APOE ε4 nor ε2 alleles were 

notably associated with risk of MSA. These findings are in line with the results of previous 

small studies (n= 22; 59; 47; 40 and 12)10–14 and no signal at the APOE locus in the recent 

genome-wide association study of 331 pathologically-confirmed MSA patients.15 It also is 

worth noting that in agreement with these findings, a recent study reported no association 

between rapid eye movement sleep behavior disorder (which could be a clinical prodromal 

feature preceding the development of MSA) and risk of MSA.16

Interestingly, in our oligodendrocytic cellular assays, we showed that the apoE ε4 isoform 

significantly reduced α-synuclein uptake, which means apoE regulates α-synuclein uptake 

in an isoform-dependent manner. The mechanisms underlying this observation remains to be 

investigated. Notably, oligodendrocytes have little endogenous α-synuclein,17 nevertheless 

GCIs (the pathological hallmark of MSA) consist of α-synuclein. One possible mechanism 

is that oligodendrocytes might take up α-synuclein from the extracellular environment to 

make GCIs in the brain of MSA.17 Based on our results, we could hypothesize that apoE ε4 

may be a disease progression modifier for MSA by reducing the uptake of α-synuclein by 

oligodendrocytes. Although the lack of association between ε4 and risk of MSA in our 

genetic association analysis does not initially seem to support this result, it is important to 

highlight that although not statistically significant, the direction of the association that we 

observed was protective (OR=0.78), and based on 95% confidence limits this could 

plausibly be as low as 0.56; the possibility of a false-negative association is important to 

consider. Given our functional data, further studies may be warranted to investigate whether 

APOE allelic variation plays a role in MSA susceptibility or progression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. ApoE4 reduces α-Synuclein uptake by oligodendrocytic cell line
(A) Confocal analysis of α-Synuclein (green) internalization by MO3.13 co-treated with 

apoE or BSA. Blue: DAPI, red: LysoTracker®. Scale bar= 20 μm. (B) Flow cytometry 

analysis of MO3.13 incubated with α-Synuclein and apoE (E2: green, E3: blue, E4: red) or 

BSA (purple). (C) The median fluorescence signals in each condition. Data plotted as mean 

± SD (N= 4, One-Way ANOVA with Tukey’s post-hoc analysis, * p< 0.05, ** p< 0.01).
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