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Abstract

We have calculated relative binding affinities for eight tetrafluorophenyl-triazole-thiogalactoside inhibitors of galectin-3
with the alchemical free-energy perturbation approach. We obtain a mean absolute deviation from experimental estimates
of only 2-3 kJ/mol and a correlation coefficient (R*) of 0.5-0.8 for seven relative affinities spanning a range of up to 11 kJ/
mol. We also studied the effect of using different methods to calculate the charges of the inhibitor and different sizes of
the perturbed group (the atoms that are described by soft-core potentials and are allowed to have differing coordinates).
However, the various approaches gave rather similar results and it is not possible to point out one approach as consistently
and significantly better than the others. Instead, we suggest that such small and reasonable variations in the computational
method can be used to check how stable the calculated results are and to obtain a more accurate estimate of the uncertainty

than if performing only one calculation with a single computational setup.

Keywords Free-energy perturbation - Galectin-3 - Independent simulations - Ligand-binding affinity - RESP charges -

AM1-BCC charges

Introduction

Predicting the affinity of a small molecule to a biomacro-
molecule is one of the greatest challenges in computational
chemistry [1, 2]. If such binding affinities could be accu-
rately predicted for arbitrary drug candidates, significant
parts of drug development could be done by computers.
Consequently, many methods have been developed for this
aim [1], e.g. docking [3], MM/PBSA (molecular mechanics
combined with Poisson—-Boltzmann and solvent-accessible
surface-area solvation) [4, 5] and linear interaction energy
methods [6]. However, the most accurate results are typically
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obtained with free-energy perturbation (FEP) and other free-
energy simulation methods [7, 8]. These are based on strict
statistical mechanics theory and should in principle be lim-
ited only by the accuracy of the energy function employed
and the sampling of the phase space.

Recent large-scale tests have shown that FEP calculations
can often provide relative binding free energies with a mean
absolute deviation (MAD) from experimental estimates of
4-6 kJ/mol [9-12]. However, the performance varies with
the protein target and the type of ligands; in some cases,
errors of over 20 kJ/mol are encountered. Likewise, the per-
formance in prospective blind test (in which the experimen-
tal affinities are not know when the calculations are run),
the performance is often worse, with root-mean-square-
deviations (RMSD) of 6-18 kJ/mol [13, 14].

It has repeatedly been pointed out that the results of FEP
calculations, as well as other binding-affinity calculations,
strongly depend on the starting conditions [15—18]. There-
fore, the uncertainty of a single calculation, even if it is quite
long, gives a too optimistic estimate of the precision of the
results. To obtain a valid error estimate, instead a number of
statistically independent simulations should be run [15-22].
Such independent calculations are typically generated by
employing different random-number seeds when setting
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up the starting velocities in the molecular dynamics (MD)
simulations (these velocities are not known and therefore
arbitrary, besides being taken from a Maxwell-Boltzmann
distribution at the studied temperature). We have shown
that the sampling can be further enhanced by employing
other more or less arbitrary choices made during the setup
of the simulations [20]. In particular, the solvation of the
macromolecule in the simulation box is arbitrary, typically
performed by overlaying an equilibrated box of solvent
molecules and removing those that overlap with the solute.
Therefore, equivalent independent simulations can be gener-
ated either by using different equilibrated solvent boxes or by
simply rotating or translating the solute before the solvation
[20]. This approach (together with different starting veloci-
ties), called solvent-induced independent trajectories, has
been used in several of our studies [23-25].

However, there are many additional choices that the user
needs to make during the setup of the simulation, e.g. selec-
tion of alternative conformation of disordered residues, the
protonation of all residues with acid or base constants in
the physiological range (in particular His residues), rotation
of many groups, especially Asn, Gln, Ser, Thr and crystal-
water molecules [20, 26]. These choices are of another type,
because they are not completely arbitrary. Instead, there are
typically better or worse choices and, in many cases, a single
choice is correct. However, it may be very time-consuming
to find the optimum choice in every case. Therefore, differ-
ent users and software employ various heuristic approaches
to make this assignment in a reasonable time, which natu-
rally gives different solutions [27-31]. We have studied how
these choices affect the results of the simulations and have
shown that unless the affected site is close to the binding
site of the ligand, the effect is minimal and therefore instead
can be employed to enhance the sampling of the simulations
[20].

In this paper, we examine another way to generate
independent simulations. The user has to make additional
choices when setting up the simulations, e.g. the force field,
in particular the atomic partial charges, as well as the details
of the FEP calculations. In the AMBER force fields [32], the
partial charges are normally obtained by a restrained fit to
the electrostatic potential (RESP) [33] around the molecule,
calculated with quantum mechanical (QM) methods, typi-
cally at the Hartree—Fock/6-31G* level of theory. However,
a cheaper method has also been developed, based on sem-
iempirical calculations and bond charge corrections (AM1-
BCC) [34]. The two sets of charges have been parametrised
to give similar results [35, 36]. In addition, it is not fully
specified how the molecule of interest should be treated
before the charges are calculated. Often, it is optimised to
give bonds and angles compatible with the QM method, but
for elongated polar molecules, the molecule may curl up to
make as many internal hydrogen bonds as possible. In this
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paper, we compare results obtained with RESP and AM1-
BCC charges and optimised with either with Hartree—Fock
or AMI1. Moreover, we compare two selections of the per-
turbed group, viz. either only the atoms that differ between
the two ligands or the whole chemical group involved (a
tetrafluorophenyl ring). The perturbed group affects both
which atoms are assigned soft-core potentials and which
atoms are allowed to have differing coordinates [37]. We
first show that the six different FEP schemes employed give
nearly identical results, without any clear trends indicat-
ing that any of the approaches is better than the others, and
therefore can be combined to provide enhanced sampling by
variations in the computational method.

As the test case, we employ the binding of eight sub-
stituted tetrafluorophenyl-triazole-thiogalactosides to the
carbohydrate-recognition domain of galectin-3 [38]. Galec-
tin-3 is a mammalian f3-galactoside binding protein involved
in glycoprotein trafficking, signalling, cell adhesion, angio-
genesis, macrophage activation and apoptosis [39—43]. It has
been implicated in inflammation, immunity, cancer devel-
opment and metastasis [44]. Previous FEP studies of this
protein have given quite large errors in the calculated relative
binding affinities [45], but in this study, all calculations give
excellent results, with MADs of 2—-3 kJ/mol.

Computational methods
Molecular dynamics simulations

The molecular dynamics (MD) and FEP calculations were
based on the X-ray crystal structure of a related compound
bound to galectin-3C (PDB id 5E89) [46]. The various
ligands were built by manually modifying this ligand. All
crystal-water molecules were kept in the simulations. Each
galectin-3 complex was solvated in an octahedral box of
water molecules extending at least 10 A from the solute
using the tleap module of the Amber software [32], so that
4965-5593 water molecules were included in the simula-
tions. The simulations were set up in the same way as in
our previous studies of galectin-3 [26, 31, 47]: All Glu and
Asp residues were assumed to be negatively charged and all
Lys and Arg residues positively charged, whereas the other
residues were neutral. His-158 and 217 were protonated
on the ND1 atoms, whereas and the other two His residues
were protonated on the NE2 atom, in accordance with NMR
measurements and previous extensive test calculations with
MD [31]. This gave a net charge of +4 for the protein. No
counter ions were used in the simulations. The protein was
described by the Amber 99SB force field [48], water mol-
ecules with the TIP3P force field [49], whereas the ligands
were treated with the general Amber force field [50].
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Three different sets of charges were employed for the
ligands: They were obtained either with the RESP method
[33], using electrostatic potentials calculated with the Har-
tree—Fock/6-31G* approach or with the cheaper AM1-BCC
approach [34, 35]. In the former case, geometries were first
optimised at the Hartree—Fock/6-31G level of theory, giving
rise to the RH charge set. In the latter case, we either used
the same geometries (BH charges) or geometries optimised
with the semiempirical AM1 method (BA charges) [51]. The
various charges are shown in Table S2 in the supplementary
material. The BH and BA charges are quite similar with a
mean absolute deviation (MAD) of 0.007 e, whereas the RH
charges are more different with a MAD of 0.11 e to the other
two charge sets.

The MD simulations were performed with the sander
module of Amber 14 [32]. The temperature was kept con-
stant at 300 K using a Langevin thermostat [52] with a col-
lision frequency of 2.0 ps~!, and the pressure was kept con-
stant at 1 atm using a weak-coupling isotropic algorithm
[53] with a relaxation time of 1 ps. Particle-mesh Ewald
summation [54] with a fourth-order B spline interpolation
and a tolerance of 107> was used to calculate electrostatic
energies and forces. The cut-off for the Lennard—Jones
interactions was set to 8 A and the non-bonded pair list was
updated every 50 fs. The SHAKE algorithm [55] was used
to constrain bonds involving hydrogen atoms so that a 2 fs
time step could be used.

Free-energy perturbations

We have calculated the relative free energy of the
eight inhibitors for galectin-3 in Fig. 1. They are all
3-(4-(2,3,5,6-tetrafluorophenly)-1,2,3-triazol-1-yl)-thioga-
lactosides with a varying substituent in the para-position on
the tetrafluorophenyl group. They will simply be named after
this varying substituent, F, OH, OMe, OEt, NH,, NHMe,
NMe,, or pyrrolidine (Pyr). These inhibitors were connected
by seven transformations, keeping the chemical differences
as small as possible: OH — F, OMe — OH, OEt — OMe,
NHMe — OMe, NMe, — NHMe, NMe, — NH, and Pyr
— F, as is shown in Fig. 1b.

Relative binding free energies (AAG,;,4) were calculated
for these transformations with FEP using a thermodynamic
cycle that involves the conversion of one ligand (L) to the
other (L,) both in the protein binding site and in solution [25,
56]. The free energies of the transformations were calcu-
lated using the multi-state Bennett acceptance ratio (MBAR)
approach, calculated with the PYMBAR software [57]. We
employed the single transformation-approach [25, 58] in
which both electrostatic and van der Waals interactions
are modified in the same step. The calculations employed
soft-core versions of both the van der Waals and Coulomb
potentials [59, 60].

F<«——OH<—OMe<——NHMe<——NMe,

| | |

Pyr OEt NH,

Fig. 1 a The eight studied galectin-3 inhibitors with R=F, OH, OMe,
OEt, NH,, NHMe, NMe,, or pyrrolidine. STol is S-para-toluene. b
The seven transformations studied by FEP

To improve the convergence of the free-energy differ-
ence, the transformation L, — L, was divided into several
small steps, involving intermediate states, defined by the
potential energy V(A) = (1 —A) Vy+ AV, where V,and V|
are the potential energies of the L, and L, states, respec-
tively. Thirteen A values were used (0, 0.05, 0.1, 0.2, 0.3,
0.4,0.5,0.6,0.7,0.8,0.9, 0.95 and 1). In all calculations,
we used a single-topology scheme and the pmemd module
of the Amber software with two sets of coordinates for the
atoms that differ between L, and L, [37].

In the FEP calculations, we included in the perturbed
group either only atoms directly involved in the perturba-
tion (SP, small perturbed group), i.e. those in the para sub-
stituent, or all atoms of the terminal substituted tetrafluo-
rophenyl group (LP, large perturbed group). In the present
implementation of FEP [37], the perturbed group not only
defines what atoms have a varying force field (including
the soft-core Lennard—Jones and Coulomb potential), but
also the atoms that are allowed to have different coordi-
nates in the simulations.

The FEP simulations were performed in the follow-
ing way: The system at each A value was minimized for
500 cycles, with all atoms except water molecules and
hydrogen atoms restrained to their start position with a
force constant of 418 kJ/mol/A%. This was followed by a
20 ps constant-pressure simulation, using the same con-
straints, and a 1 ns constant-pressure simulation without
any restraints. Finally, a 5 ns constant-pressure production
run was performed, during which coordinates and energies
were sampled every 10 ps. In total, six sets of calculations
were performed, which will be denoted by the charges
employed for the ligands (RH, BA or BH) and the size of
the perturbed group (SP or LP), e.g. BA/LP.
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Error estimates, quality and overlap measures

All reported uncertainties are standard errors of the mean
(standard deviations divided by the square root of the
number of samples). The uncertainty of the MBAR free
energies calculated at each 4 value was estimated by boot-
strapping using the PYMBAR software [57] and the total
uncertainty was obtained by error propagation.

The performance of the free-energy estimates was quan-
tified by the mean absolute deviation (MAD), the mean
signed deviation (MSD), the root-mean-square deviation
(RMSD), the maximum error (Max), the correlation coef-
ficient (R%) and Kendall’s rank correlation coefficient ()
compared to experimental data [38]. The latter was calcu-
lated only for the transformations that were explicitly stud-
ied, not for all combinations that can be formed from these
transformations. Moreover, it was also evaluated consid-
ering only differences (both experimental and calculated)
that are statistically significant at the 90% level (t o) [37].
Note that R* depends on the direction of the perturbation
(i.e. whether L; — L, or L, — L, is considered, which
is arbitrary). This was solved by considering both direc-
tions (both forward and backward) for all perturbations
when these two measures were calculated. The standard
deviation of the quality measures was obtained by a simple
simulation approach [17]. For each transformation, 1000
Gaussian-distributed random numbers were generated with
the mean and standard deviation equal to the MBAR and
experimental results for that transformation. Then, the
quality measures were calculated for each of these 1000
sets of simulated results and the standard error over the
1000 sets is reported as the uncertainty.

For all 4 values of all perturbations, we have monitored
five overlap measures, to ensure that the overlap of the stud-
ied distributions is satisfactory, viz. the Bhattacharyya coef-
ficient Q [61], the Wu and Kofke overlap measures of the
energy probability distributions (K,p) [62] and their bias
metrics (IT) [62], the weight of the maximum term in the
exponential average (w,,,,) [63] and the difference of the for-
ward and backward exponential average estimate (AAGg,)
[10]. In all calculations, IT > 0.4 and the other overlap meas-
ures were also in the safe range [10, 64], except in a single
case for the OMe — OH perturbation with BH/LP (w,,,, =
0.7). Therefore, we conclude that the overlap is satisfactory
for the simulations.

Result and discussion

We have studied the binding affinity of the eight substituted
tetrafluorophenyl-triazole-thiogalactoside inhibitors of
galectin-3, shown in Fig. 1a. Relative binding free energies
were calculated for seven pairs of ligands, as is illustrated
in Fig. 1b. The affinities were calculated by FEP with the
MBAR approach. They are compared to experimental affini-
ties obtained by competitive fluorescence polarization meas-
urements (Table 1) [38, 65, 66].

Six different sets of FEP calculations were performed to
see how the results changed with variations in the compu-
tational method. First, three different sets of charges were
employed for the ligands: They were obtained either with the
RESP method, based on Hartree—Fock/6-31G* calculations,
or with the cheaper AM1-BCC approach. In the former case,
geometries were first optimised at the Hartree—Fock/6-31G

Table 1 Calculated relative binding free energies (kJ/mol), obtained with three different sets of charges for the ligands (RH, BA and BH) and

two perturbed groups (SP or LP)

RH/SP RH/LP BA/SP BA/LP BH/SP BH/LP Consensus Exp.
OMe — OH 02+04 1.0+0.7 -08+0.4 1.6+0.6 -0.6+04 0.9+0.6 0.4+04 0.6+0.3
NHMe — OMe -0.8+0.3 -33+06 -6.0+£0.4 -48+0.6 -6.7£04 -6.4+0.6 -4.7+0.9 0.0+0.3
NMe, — NHMe -5.8+0.5 —-4.4+0.7 -1.6+0.5 -1.1+£06 -32+05 -22+0.7 -3.0+£0.7 -2.0+0.2
NMe, — NH, -1.7+0.5 -29+0.7 -39+0.5 -3.6+£0.7 -29+0.5 -5.1+0.7 -33+05 -3.2+02
OEt — OMe -28+0.4 2.7+0.7 -42+04 —-1.4+06 -33+£04 -27+0.6 -19+1.0 -4.0+04
Pyr —» F —10.4+0.6 -75+038 —-10.4+0.6 -9.1+0.7 -9.0+£0.6 -83+0.7 -9.1+05 —-11.2
OH —F -0.4+0.2 -21+0.6 1.7+£0.2 —-1.0+0.5 1.0+0.2 -0.4+0.6 -0.2+0.6 -4.8+0.2
MAD 1.8+0.2 2.8+0.3 23+0.2 22+03 2.6+0.2 2.5+0.3 2.1+0.3
RMSD 23+02 34+03 34402 27+03 3.5+02 33+03 2.7+0.3
MSD 0.4+0.2 1.1+£0.3 -0.1+£0.3 0.7+0.3 0.0+0.3 0.0+0.3 0.4+0.3
Max 43+03 6.6+0.8 6.4+0.3 4.8+0.6 6.7+0.4 6.4+0.7 4.7+0.7
R? 0.79+0.03  0.54+0.07 0.61+0.04  0.71+0.06 0.55+0.04 0.60+0.06 0.71+0.06
T, 1.00+0.16  0.67+0.10 0.33+0.08 1.00+0.13 0.33+0.10 1.00+0.18 1.00+0.22
Ti90 1.00+0.04  0.60+0.02 0.33+0.08 1.00+0.13 0.60+0.04 1.00+0.00 1.00+0.08

Experimental relative affinities are given in the last column [38]
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level of theory (RH charge set). In the latter case, we either
used the same geometries (BH) or geometries optimised
with the semiempirical AM1 method (BA). Moreover, in
the FEP calculations, we included in the perturbed group
either only atoms directly involved in the perturbation (SP),
i.e. those in the para substituent or all atoms of the terminal
substituted tetrafluorophenyl group (LP).

The results (AAGy;,q) of all calculations are shown in
Table 1. This table also contains seven quality estimates, viz.
the mean absolute deviation (MAD), the root-mean-square
deviation (RMSD), the mean singed deviation (MSD), the
maximum error (Max), the correlation coefficient (R?),
Kendall’s rank correlation coefficient including only the
relative energies considered (t,), as well as the same cor-
relation coefficient calculated only for those experimental
and calculated energies that are statistically significant at
the 90% level (t,9().

The differences between the AAG,;,4 results obtained
with the small and large perturbed groups (SP and LP)
are up to 5 kJ/mol for RH and 2-3 kJ/mol for BA and BH,
with MADs of 1-2 kJ/mol. The largest difference is for the
OEt — OMe perturbation for both the RH and BA charges.
However, owing to the good precision of the simulations
(0.2-0.8 kJ/mol), the differences are statistically significant
for four (RH) or three of the calculations. Consequently,
two (BH) to five (RH) of the quality estimates are also sig-
nificantly different between the calculations with different
perturbed groups. For the RH and BH charges, the SP cal-
culations give the better results, whereas for the BA charges,
the opposite is true. Therefore, it is hard to draw any firm
conclusions from this variation. Apparently, there are at least
two opposing effects for variations in the perturbed group.
A larger perturbed group allows for a larger movement of
atoms in the ligand, which may lead to improved results if
the two groups actually have a different geometry. However,
this larger variation in the coordinates also introduces more
freedom in the system that may give rise to more random
noise. The latter is reflected by a 0.2-0.3 kJ/mol higher
uncertainty in all LP results, compared to the SP results.
The difference is somewhat larger for RH than for the other
two charge sets.

The BA and BH charge sets give very similar results, with
differences in the individual AAGy;,4 values of less than
1.6 kJ/mol (0.9-1.1 kJ/mol MAD differences). In fact, only
one of the 14 values has a statistically significant difference
at the 95% level. Likewise, only one of the quality estimates
gives a significant difference. On the other hand, the RH
charges are more different, giving rise to differences in the
AAGy;,q results of up to 6 kJ/mol with MADs of 2 kJ/mol.
Two to five of the individual results are significantly differ-
ent for the four series. This leads to significant differences in
nearly all of the quality estimates with the small perturbed
group (SP), the RH charges always giving the better results.

However, with the large perturbed group (LP), the larger
uncertainty in the individual results make the differences
in the quality measures statistically significant only in three
cases, involving T, and 9. In this case, RH/LP always give
the worse results.

Thus, again, it seems hard to draw any firm conclusions
about the performance of the three charge sets—in fact RH/
SP gives the best results among all calculations, whereas
RH/LP gives the worse results, perhaps together with BH/
SP. It seems that the RESP charges give strongly varying
results, simply because they are larger in magnitude than
the BCC charges. This prohibits any firm recommendation
of any of the charge or perturbed-group methods. Instead,
the observed variations in the results and performance of the
six approaches have to be seen as a measurement of the sen-
sitivity of the results to various quite reasonable variations
in the theoretical method. Quite satisfying, the variation in
the quality estimates is not extensive, e.g. 2—3 kJ/mol in the
MAD and 0.5-0.8 in R%. Thus, a study like this can provide
an estimate of the stability of the results, in addition to the
precision, overlap measures and sampling estimates and
therefore provide another approach to generate independent
simulations [20] to better estimate the true uncertainty of
the calculations.

The calculated AAG,;,q values are compared to the
experimental results in Fig. 2. It can be seen that for five of
the transformations, the range of the six approaches overlap
with the ideal correlation, and for the remaining two, at least
one of the results come within 1 kJ/mol of the experimental
results. A natural choice is to test the consensus (i.e. aver-
age) results of the six methods with long simulations. These
results are also included in Table 1 (with standard errors
calculated from the variation of the results over the six meth-
ods). It can be seen that it comes close to the best results for
all quality measures, e.g. MAD=2.1+0.3, R*=0.71 +0.06
and T,=T,4,=1.0+0.2.

RH/SP

]
2 * RHILP *
BAISP /
A BALP > 3
0 » BH/SP . o
3 BHILP A il
52 hd ?
3
5 T B > .2
4 I c =
3 ¢ * o
'K 2 A
- 2 . =
R 13
< * 8 L I o
- =
o -8 s = o)
[ 3 A A
g [}
-10 ] z %
z
-12
-12 -10 -8 6 -4 2 0 2

Experimental AAG (kJ/mol)

Fig.2 Results of the FEP calculations, compared to the experimental
data. The black line represents the perfect correlation
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Taking all results together, it can be seen that
MAD =1.8-3.1 kJ/mol. This is a quite typical result of FEP
for a well-behaving protein; previous large-scale studies have
given MADs of 3—7 kJ/mol [9-12]. The RMSDs are slightly
larger, 2.3-3.5 kJ/mol and the maximum error is 4—7 kJ/mol.
Although these errors are small in energy terms, the MAD
and maximum errors correspond to a factor of 2.1-3.5 and
6-15 in the binding constant, which are quite large from
an experimental point of view. R? is 0.54-0.79, i.e. of an
intermediate quality. However, R? is most affected by the Pyr
— F transformation, which gives the largest experimental
difference and it is underestimated in all calculations; with-
out this perturbation, R? is lower, 0.12-0.38. The reason for
this is that all the other six relative affinities are less than
5 kJ/mol (in absolute terms), making it a formidable task to
obtain an accurate correlation. On the other hand, Kendall’s
7, is perfect for half of the methods (RH/SP, BA/LP and BH/
LP), showing that these calculations give the correct sign
for all AAGy;,4 estimates. The other three methods give one
or two incorrect signs, but for BH/SP one of those is not
statistically significant. This is arguably the most important
quality measure, because during lead optimisation, the prime
question is whether a new drug candidate will be better than
the previous ones. Therefore, it seems that FEP may be a
valuable approach to predict at least the sign of putative drug
candidates of galectin-3.

Conclusions

We have studied the binding of the eight substituted tetra-
fluorophenyl-triazole-thiogalactoside inhibitors in Fig. la
to galectin-3 with FEP calculations. The results show that
we can reproduce experimental relative binding affinities
with a MAD of 2-3 kJ/mol, which is similar or better than
FEP results obtained for other proteins [9—12]. This is quite
satisfying, especially as we have had problems to reproduce
experimental affinities with FEP before for this protein (7 kJ/
mol error for a single perturbation obtained with similar
methods) [45]. The correlation coefficient is also acceptable,
0.5-0.8, especially considering that six of the seven relative
energies are below 5 kJ/mol. Moreover, most approaches
give a perfect Kendall’s .

We have also studied how the calculated binding affini-
ties change with small variations in the computational
method, employing either RESP or AM1-BCC charges for
the ligands, optimising it with two different QM methods
before the charge calculation and employing different sizes
of the perturbed group in the FEP calculations (only the
differing atoms or the whole substituted tetrafluorophe-
nyl group). We show that the variations give only rather
small differences in the calculated relative affinities and
that none of the approaches is consistently and significantly
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better than the others. Instead, we suggest that such small,
but reasonable variations in the theoretical method could
be employed to assess the stability of the results obtained.

Recently, it has been argued that the results of a single
FEP calculation of binding energies is quite uncertain and
that the precision estimated by standard methods underesti-
mates the true uncertainty [22]. Instead, the true uncertainty
should be estimated by performing a number of independent
simulations, using different starting conditions. This has also
repeatedly been suggested for other types of calculations
based on MD simulations [15-21].

Alternatively, thermodynamic cycle-closure hysteresis
has been suggested as a cheaper estimate of the uncertainty
of the calculations [67, 68]. However, it is a rather blunt
estimate, because it can give a good result by chance or by
cancellation of errors. To be useful, all ligands should be
involved in at least one cycle, requiring almost the same
number of extra calculations as a set of independent simula-
tions. Moreover, they normally require larger perturbations,
because the original scheme (without cycles) is typically
designed to make the perturbations as small as possible.
Moreover, the cycle-closure hysteresis is independent of
errors in the force field and therefore ignores method errors
considered by the present approach.

Traditionally, independent simulations have been gener-
ated by using different random seeds for the starting veloci-
ties. We have employed other arbitrary choices in the setup,
in particular the position of solvation water molecules, but
also the selection of alternative conformations or the proto-
nation of the residues in the protein [20, 23-25]. It is a natu-
ral extension to include also variations in the computational
method. In analogy with the naming of the other approaches
to obtain independent simulations [20], we suggest that this
should be called methods-induced independent trajectories
(MIIT). However, as for the selection of conformations
and protonations, it needs to be checked that the different
approaches do not give rise to results that are significantly
different. Still, it is important in computational studies to
ensure that the results are not sensitive to reasonable varia-
tions in the computational setup.
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