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Abstract
Endophytic fungi have been described as producers of important bioactive compounds; however, they remain under-exploited as exopoly-
saccharides (EPS) sources. Therefore, this work reports on EPS production by submerged cultures of eight endophytes isolated from Piper
hispidum Sw., belonging to genera Diaporthe, Marasmius, Phlebia, Phoma, Phyllosticta and Schizophyllum. After fermentation for 96 h, four
endophytes secreted EPS: Diaporthe sp. JF767000, Diaporthe sp. JF766998, Diaporthe sp. JF767007 and Phoma herbarum JF766995. The EPS
from Diaporthe sp. JF766998 differed statistically from the others, with a higher percentage of carbohydrate (91%) and lower amount of protein
(8%). Subsequently, this fungus was grown under submerged culture for 72, 96 and 168 h (these EPS were designated EPSD1-72, EPSD1-96 and
EPSD1-168) and the differences in production, monosaccharide composition and apparent molecular were compared. The EPS yields in mg/
100 mL of culture medium were: 3.0 ± 0.4 (EPSD1-72), 15.4 ± 2.2 (EPSD1-96) and 14.8 ± 1.8 (EPSD1-168). The EPSD1-72 had high protein content
(28.5%) and only 71% of carbohydrate; while EPSD1-96 and EPSD1-168 were composed mainly of carbohydrate (z95 and 100%, respectively),
with low protein content (z5%) detected at 96 h. Galactose was the main monosaccharide component (30%) of EPSD1-168. Differently, EPSD1-96
was rich in glucose (51%), with molecular weight of 46.6 kDa. It is an important feature for future investigations, because glucan-rich EPS are
reported as effective antitumor agents.
© 2016 The Authors. Published by Elsevier B.V. on behalf of Société Française de Biochimie et Biologie Moléculaire (SFBBM). This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Endophytic fungi colonize, for all or part of their life cycle,
the internal plant tissues without causing apparent harm to
their host [1] and their ecological functions attract increasing
* Corresponding author. Faculdade de Ciências e Tecnologia, Departamento

de Química e Bioquímica, Univ Est Paulista, CEP 19060-900, Presidente

Prudente, S~ao Paulo, Brazil. Tel.: þ55 183229 5743.

E-mail address: corradi@fct.unesp.br (M.L. Corradi da Silva).

http://dx.doi.org/10.1016/j.biopen.2016.02.003

2214-0085/© 2016 The Authors. Published by Elsevier B.V. on behalf of Société Fra
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attention [2]. The endophyte and host plant establish a
harmonious symbiotic system interaction in which the mi-
croorganisms obtain energy, nutrients and shelter, while they
protect the hosts against pathogens, herbivores and insects and
induce plant growth or defense mechanisms [3e5].
Throughout the world researchers have been shown that en-
dophytes are potential producers of novel and biologically
active substances [6], as aliphatic compounds, alkaloids, fla-
vonoids, peptides and steroids [7].
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However, endophytes remain under-exploited as producers
of exopolysaccharides (EPS) with biotechnological properties
[8]. These macromolecules are sugar polymers containing
more than 20 monosaccharide units joined by glycosidic
linkages [9]. Microbial EPS have been studied for decades due
to their interesting physicochemical and rheological properties
with novel functionality not found in polymers produced by
algae or plants [10]. They are synthesized intracellularly
throughout growth or during the late logarithmic or stationary
phase and then secreted into the culture medium in the form of
slime [10e12]. The great diversity of their structures and
functional roles is closely associated with differences in the
sequences of monomeric units, glycosidic linkages and
different types of branching [13].

In laboratory, the fungal EPS production has many advan-
tages compared to polysaccharides extracted from fruiting
bodies: easy isolation and purification avoiding the use of
harsh extraction steps, minor production cost and huge pro-
duction in short time [13,14]. One homogeneous system that
provides a source of EPS is the submerged culture [15], in
which filamentous fungi exhibit different morphological
growth forms ranging from dispersed mycelial filaments to
pellets (densely interwoven mycelial masses) [16].

In previous studies, we reported the isolation, molecular
identification, antimicrobial and proteolytic activities of
endophytic fungi isolated from leaves of the medicinal plant
Piper hispidum Sw., popularly called as “platanillo-de-cuba”
(Cuba), “cordoncillo” (Mexico) and “falso-jaborandi” (Brazil)
[17e20]. In this study, eight P. hispidum endophytes were
investigated to find the most potent EPS source and to evaluate
its EPS production in submerged culture at different cultiva-
tion times. Fungal endophytes belonging to the genera Dia-
porthe, Marasmius, Phlebia, Phoma, Phyllosticta and
Schizophyllum were selected. There are no reports in the
literature about EPS produced by endophytes from the above-
mentioned genera.

2. Materials and methods
2.1. Reagents and culture media
Potato dextrose agar (PDA) medium was purchased from
HiMedia Laboratories (Mumbai, MH, India). Analytical
Table 1

Endophytic fungi used for the screening of EPS production.

Phylum Order

Ascomycota Botryosphaeriales

Ascomycota Diaporthales

Ascomycota Diaporthales

Ascomycota Diaporthales

Ascomycota Pleosporales

Basidiomycota Agaricales

Basidiomycota Agaricales

Basidiomycota Polyporales

Endophytes were isolated and molecularly identified by Orlandelli et al. [17].
standards and trifluoroacetic acid (TFA), were purchased from
SigmaeAldrich Company (St. Louis, MO, USA).
Other chemicals were of analytical grade. Vogel's minimal salts
medium (VMSM) was prepared according to Vogel [21].
2.2. Endophytic fungi
The endophytic ascomycetes and basidiomycetes used
(Table 1) belong to the fungal culture collection of the
Laboratory of Microbial Biotechnology, State University of
Maring�a, Brazil. They were isolated from healthy leaves
of the medicinal plant P. hispidum located in the Dr. Luis
Teixeira Mendes Forest Garden, a remnant of semideciduous
forest in the municipality of Maring�a, Paran�a State, southern
Brazil (23º2605.1000S, 51º57059.4600W). Molecular identifica-
tion was based on sequencing of the ITS1-5.8S-ITS2
region of rDNA [17] and the sequences were submitted
to the GenBank database. Fungi were maintained on PDA
at 4 �C and subcultured at three-month intervals.
The Castellani method [22] was used for permanent
maintenance.
2.3. Culture conditions and preparation of EPS
The submerged culture conditions for EPS production was
performed as previously described by Steluti et al. [23] (Fig. 1),
with some modifications: pre-inoculum was prepared from
seven-day-old cultures of endophytes grown on agar plates
containing VMSM, agar (20 g/L) and glucose (10 g/L) at
28 ± 2 �C. Then the pre-inoculum was homogenized (sterilized
chilled Blender) for 0.5 min at maximum speed and centrifuged
(1250 � g for 10 min) to cell separation. After, the cell ho-
mogenate was recovered, diluted with sterilized 0.9% saline
solution to an absorbance of 0.4e0.5 at 400 nm. For the
inoculum, 4-mL aliquots of the cell homogenate were trans-
ferred to 500-mL Erlenmeyer flasks containing 100 mL of
VMSM and only glucose (50 g/L) as carbon source. Three
replicate flasks per experiment were incubated at 28 ± 2 �C on
an orbital shaker at 180 rpm for 96 h.

Cell-free extracellular fluid was obtained after removal of
the fungal mycelia by vacuum filtration. The material was
then extensively dialyzed (MW cut-off 12,000 Da) against
distilled water for 24 h. The dialysate was concentrated
Species GenBank accession no.

Phyllosticta capitalensis JF766988

Diaporthe sp. JF767000

Diaporthe sp. JF766998

Diaporthe sp. JF767007

Phoma herbarum JF766995

Marasmius cladophyllus JF767003

Schizophyllum commune JF766994

Phlebia sp. JF766997



inoculum
VMSM + glucose (50 g/L) 

(72, 96 and 168 h, 180 rpm, 28±2 ºC)  

precipitation in ethanol (3:1 v/v)

centrifugation (5000 × g/ 15 min, 4 ºC)

growth on Petri dishes
VMSM + glucose (10 g/L) + agar (20 g/L) 

(7 days, 28±2 ºC)

biomass

dialysis (24 h)   
concentration (<39 ºC)

pre-inoculum
VMSM + glucose (5 g/L) 
(48 h, 180 rpm, 28±2 ºC)

inoculum
VMSM + glucose (50 g/L) 
(96 h, 180 rpm, 28±2 ºC)  

cell homogenate

cell-free fluid

vacuum filtration

sterilized chilled Blender (max. speed, 0.5 min)
centrifugation (1250 × g/10 min)

0.9% saline solution

crude EPS
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reducing sugars,

protein

monosaccharide 
composition
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molecular weight 
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Fig. 1. Diagrammatic scheme outlining the protocol for studies on EPS from P. hispidum endophytes. VMSM ¼ Vogel's minimum salts medium. Solid arrows:

steps followed for the screening of EPS sources. Dashed arrows: steps followed for the optimization of EPS production by Diaporthe sp. JF766998.
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under reduced pressure (<39 �C) in a rotary evaporator and
treated with 3 volumes of absolute ethanol. The precipitates
were recovered by centrifugation (5000 � g for 15 min at
4 �C) and dissolved in deionized water. Aliquots of each
material were used for the determination of sugars and
protein content. The rest of EPS was lyophilized and stored
at �20 �C.
2.4. EPS production by Diaporthe sp. JF766998 under
different cultivation time
Diaporthe sp. JF766998 was grown under submerged
culture for 72, 96 and 168 h (Fig. 1) and the influence
of cultivation time on the production (total sugars,
reducing sugars, protein and EPS yield), monosaccharide
composition and apparent molecular weight of EPS was
evaluated.
2.5. Analytical techniques
Total sugars were determined by the phenol-sulfuric acid
method [24] and reducing sugars were measured by the dini-
trosalicylic acid (DNS) method [25]. D-glucose was used as the
standard in both assay procedures. Protein was determined
using the Bradford method [26] with bovine serum albumin as
standard.
2.6. Determination of EPS homogeneity and apparent
molecular weight
Aliquots of each EPS were dissolved in deionized water
(1 mg/mL) and filtered through a Millipore nitrocellulose
membrane with 0.22-mm pore size. Homogeneity was deter-
mined by high performance steric exclusion chromatography
(HPSEC) coupled to a refractive index (RI) detector, model
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RID 10A, and UVevis detector (Shimadzu Company, Kyoto,
KYT, Japan). The chromatography system consisted of an
HPLC pump, model 10AD, a manual injection valve (Shi-
madzu) fitted with a 200-mL loop and an Ultrahydrogel col-
umn (7.8 � 300 mm) system (Waters) with exclusion limit of
7 � 106, 4 � 105, 8 � 104 and 5 � 103 Da arranged in series.
The mobile phase was 0.1 M NaNO3 with sodium azide
(0.03%), and the flow rate was 0.6 mL/min. Data analysis was
performed using LC solution software (Shimadzu Company,
Kyoto, KYT, Japan). A standard curve of dextran with MW of
1400, 1100, 670, 500, 410, 266, 150, 77.8, 72.2, 50, 40.2, and
9.4 kDa was made to determine the apparent molecular weight
(MWapp) of EPS.
2.7. Determination of monosaccharide composition
Lyophilized samples (0.05 mg of total sugar) were hydro-
lyzed with 0.3 mL of 2 M TFA in a sealed tube at 121 �C for
2 h. After hydrolysis, the solution was dried under vacuum,
and the residue dissolved in 0.5 mL of water and dried again.
The dissolutioneevaporation cycle was repeated until com-
plete evaporation of TFA. Finally, the residue was dissolved in
0.5 mL of deionized water and a 0.025-mL diluted aliquot was
analyzed by high performance anion-exchange chromatog-
raphy with pulsed amperometric detection (HPAEC/PAD) on a
Dionex DX 500 Chromatograph (Dionex Company, Sunny-
vale, CA, USA). Neutral monosaccharides were separated
isocratically (0.014 M NaOH) using a CarboPac PA1 column
(4 � 250 mm) equipped with a PA1 guard column using a flow
rate of 1.0 mL/min. Elution was performed using water (eluent
1) and 14% 0.2 M NaOH (eluent 2). After 20 min, the column
was regenerated with 100% eluent 2 for 15 min, followed by a
return to 0.014 M NaOH. Monosaccharide quantification was
carried out from peak area measurements using response
factors obtained with monosaccharide standards.
2.8. Statistical analysis
The production of EPS by all endophytic fungi and the
production of EPS by Diaporthe sp. JF766998 under
different cultivation time were analyzed by ANOVA (anal-
ysis of variance) and means of triplicates were compared
with a t-test (p < 0.05) using the statistical program SISVAR
5.3.
Table 2

Production and apparent molecular weight of EPS secreted by endophytic ascomy

Endophytes EPS code pHf EPS yield (mg)

Diaporthe sp. JF767000 EPSD 5.5 7.9 ± 0.0b

Diaporthe sp. JF766998 EPSD1 4.5 17.6 ± 2.1a

Diaporthe sp. JF767007 EPSD2 4.5 10.9 ± 2.2b

Phoma herbarum JF766995 EPSP 5.0 2.7 ± 0.2c

* Means of triplicates (means ± standard deviation) of EPS secreted in flasks co

means are significantly different according to a t-test (p < 0.05). pHf ¼ final p

RT ¼ retention time, MWapp ¼ apparent molecular weight.
3. Results and discussion
3.1. Screening of EPS production by endophytic fungi
Microbial biosynthesis is affected by culture medium
composition and cultivation conditions [13,15]. The endo-
phytes Marasmius cladophyllus JF767003, Phlebia sp.
JF766997, Phyllosticta capitalensis JF766988 and Schizo-
phyllum commune JF766994 did not grow after 96 h (planned
48 h and additional 48 h) of pre-inoculum cultivation, sug-
gesting that the protocol employed herein was not favorable
for carbohydrate production. Non-endophytic strains of
the same genera/species are able to secrete EPS when
grown under different conditions of submerged culture
[27e31].

Four endophytic ascomycetes were able to secrete EPS
under the culture conditions tested: Diaporthe sp. JF767000
(EPSD), Diaporthe sp. JF766998 (EPSD1), Diaporthe sp.
JF767007 (EPSD2) and Phoma herbarum JF766995 (EPSP).
The yield of EPSD1 was significantly (p < 0.05) higher than
that of EPSD, EPSD2 and EPSP (Table 2). Also, a higher
amount of carbohydrate and lower amount of protein (92%
and 8%, respectively) were found in EPSD1 when compared
with the other three EPS (�83% total sugars and �14%
protein).

Among the EPS secreted by three endophytes from the
order Diaporthales (EPSD, EPSD1 and EPSD2), the fungus
Diaporthe sp. JF766998 appeared to be the most promising
due to the higher yield and carbohydrate content of EPSD1.
Also, it contained about half the protein quantified in EPSD
and EPSD2 (Table 2). Maziero et al. [28] found marked dif-
ferences in the yields of EPS produced by two or more strains
from the same genus (Ganoderma, Lentinus, Pleurotus or
Psilocybe). Diamantopoulou et al. [32] suggested that the
fungal synthesis of polysaccharides could be a strain-
dependent process, a fact that explain the differences in EPS
secreted by closely related species cultivated under the same
conditions.

Selbmann et al. [33] showed that sorbitol, maltose, sucrose
and starch were more efficient (12.3e12.5 g/L of EPS) than
glucose (11.6 g/L EPS) as carbon source for the Antarctic
fungus P. herbarum CCFEE. It suggests that yields of EPSP,
from the endophyte P. herbarum JF766995 (Table 2), could be
increased using other substrates. Glucose is biologically the
cetes after submerged fermentation for 96 h.

* Quantification (%) HPSEC/RID

TS RS P RT (min) MWapp (kDa)

82.6 0.6 16.8 40.9 4.8 � 103

53.2 46.6

91.0 1.0 8.0 52.8 40.0

83.0 3.0 14.0 53.4 38.0

80.0 0.0 20.0 52.5 47.0

ntaining 100 mL of culture medium. Different (online) letters indicate that the

H (initial pH 5.8). TS ¼ total sugars, RS ¼ reducing sugar, P ¼ protein,



Fig. 2. Morphological aspects of EPSD1 production by Diaporthe sp. JF766998 grown under submerged culture for 72, 96 and 168 h. PDA ¼ potato dextrose agar

medium. VMSM ¼ Vogel's minimal salts medium.

Table 3

Production and monosaccharide composition of EPSD1 from Diaporthe sp. JF766998 after submerged fermentation for 72, 96 and 168 h.

EPS code pHf EPS yield (mg)* Quantification (%) Monosaccharide composition (%)

TS RS P Glc Gal Man Fuc GlcN

EPSD1-72 5.5 3.0 ± 0.4b 71.0 0.5 28.5 84 11 <1 5 <1
EPSD1-96 4.5 15.4 ± 2.2a 94.7 0.5 4.8 51 31 16 2 <1
EPSD1-168 4.5 14.8 ± 1.8a 99.8 0.2 0.0 30 42 22 4 2

* Means of triplicates (means ± standard deviation) of EPS secreted in 100 mL of culture medium. Different (online) lettersindicate that the means are

significantly different according to a t-test (p < 0.05). pHf ¼ final pH (initial pH 5.8). TS ¼ total sugars, P ¼ protein, RS ¼ reducing sugars, Glc ¼ glucose,

Gal ¼ galactose, Man ¼ mannose, Fuc ¼ fucose, GlcN ¼ glucosamine.
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Fig. 3. Elution profile of EPSD1 analyzed by HPSEC/RID coupled to a

UVevis detector. Diaporthe sp. JF766998 was grown under submerged cul-

ture for 72, 96 and 168 h, and EPS were designated EPSD1-72, EPSD1-96 and

EPSD1-168, respectively. Aliquot of EPS injected: 200 mL (1 mg/mL). Gel

permeation columns with exclusion limit of 7 � 106, 4 � 105, 8 � 104 and

5 � 103 Da arranged in series. Flow rate ¼ 0.6 mL/min. Eluent: 0.1 M NaNO3

with sodium azide (0.03%). UVevis 280 nm ( ), RID ( ).
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most effective source of energy [22] and, not coincidentally,
growth on glucose-based submerged cultures is largely
employed for the screening of microbial sources of poly-
saccharides [22,32,34,35]. Therefore, this substrate, at a con-
centration of 50 g/L, was chosen as sole carbon source for EPS
production by P. hispidum endophytes.

According to some authors [12,36,37], EPS produced
under submerged conditions can be conjugated to other
components such as proteins, lipids and nucleic acids, that
commonly co-precipitate in ethanol. Earlier studies reported
that other fungal genera secreted EPS containing a high
amount (z14e26%) of protein [27,38,39], corroborating the
results obtained herein for EPSD, EPSD2 and EPSP (14e20%
protein).

The homogeneity and MWapp of EPSD, EPSD1, EPSD2 and
EPSP were determined by HPSEC/RID (Table 2). EPSD1
exhibited a single and symmetric peak (not shown) similar to
that reported for the EPS (designated FO1) secreted by the
endophytic fungus Fusarium oxysporum Y24-2 [40]. Ac-
cording to Chen et al. [41], the symmetry observed is probably
due to the high solubility of this EPS. On the other hand, the
single and polydisperse peaks observed for EPSD2 and EPSP
are consistent with the peak of FreI (EPS secreted by Phel-
linus linteus) detected by the SEC/MALLS system [42]. The
EPSD elution profile by HPSEC/RID analysis showed two
peaks with MWapp of 4.8 � 103 and 46.6 kDa (Table 2),
suggesting the presence of at least two EPS. Data corrobo-
rating the EPSD elution profile are scarce for fungi but was
reported for bacteria [43e45].
3.2. EPSD1 production by Diaporthe sp. JF766998 for
different cultivation times
The screening of endophytic sources of EPS (Table 2)
highlighted the production obtained for Diaporthe sp.
JF766998. Therefore, this fungus was grown under sub-
merged culture for 72, 96 and 168 h. The influence of
cultivation time on the production, monosaccharide compo-
sition and MWapp of EPSD1 was examined. The EPS obtained
were designated EPSD1-72, EPSD1-96 and EPSD1-168. As seen
in Fig. 2, increase in cultivation time resulted in higher
amount of fungal biomass, but the same was not observed for
EPS production. As confirmed in Table 3, the yield of EPSD1-
96 (15.4 ± 2.2 mg/100 mL of liquid medium) was slightly
higher than the obtained for EPSD1-168 (14.8 ± 1.8 mg/
100 mL), although this difference was not statistically sig-
nificant. For all cultivation time tested, the reducing sugars
value (measured as reducing sugars) was near to zero, indi-
cating that the carbon source was almost totally consumed
during the fungal fermentation. The presence of protein
components could be probably related to constitutive en-
zymes secreted into the culture medium.

The monosaccharide composition of EPSD1-96 and EPSD1-
168 was similar (Table 3); however, glucose was the main
component in EPSD1-96 (51%) while galactose was the pre-
dominant sugar in EPSD1-168 (42%). In addition, both EPS
exhibited similar profile on the HPSEC/RID analysis: single
and symmetric peaks (at 52.8 min) with MWapp of 40.0 kDa
(Fig. 3). Considering that a short production time is more
economically viable, submerged fermentation for 96 h would
be advantageous for Diaporthe sp. JF766998. The mono-
saccharide composition of EPSD1-96 was glucose, galactose,
mannose and fucose in a molar ratio of 25:15:8:1. In contrast,
the phytopathogen Phomopsis (¼ Diaporthe) foeniculi
secreted two EPS: a galactan and a mannan [46]. The pre-
dominance of glucose in the EPS produced by the endophyte
Diaporthe sp. JF766998 can be considered interesting for the
investigation of biological activities, because several homo-
and heteropolysaccharides with high glucose content were
found to be more effective antitumor agents, as reviewed by
Ferreira et al. [47].

EPSD1-72 yield was significantly (p < 0.05) lower than that
obtained for EPSD1-96 and EPSD1-168 (Table 3). Although the
monosaccharide composition of EPSD1-72 was mainly glucose,
this preparation contained less carbohydrate (72%) and more
protein (28%) than did the EPS obtained after 96 and 168 h of
cultivation. On HPSEC/RID analysis (Fig. 3), EPSD1-72 showed
an elution profile with two peaks called EPSD1-72A (38.8 min)
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and EPSD1-72B (52.8 min), with MWapp of 5 � 103 and
46.6 kDa, respectively. Probably, the UVevis detection ob-
tained for EPSD1-72A is an indication that a protein or glyco-
protein was secreted when the fungus (Diaporthe sp. JF766998)
remained in shaker flasks for 72 h. Krcmar et al. [27] reported
that glucose was the main component of the EPS secreted by
Phlebia radiata Fr.79 ATCC 64658, which was composed of
z20% protein, indicating that a mixture of glucan and glyco-
protein was secreted. For Botryosphaeria (¼ Lasiodiplodia) sp.
MAMB-05, the chromatogram profile on Sepharose CL 4B
indicated an EPS-glycoprotein association when the fungal
inoculum was incubated for 72 h [38], like that suggested
herein for EPSD1-72.

4. Conclusions

Endophytes are important sources of bioactive compounds,
but should be further explored as EPS producers. This present
study suggests that four P. hispidum endophytes, particularly
Diaporthe sp. JF766998, are capable of producing these
polymers. Among the three cultivation times tested (72, 96 and
168 h) for this fungus, 96 and 168 h resulted in EPS yield of
15.4 ± 2.2 and 14.8 ± 1.8 mg/100 mL culture medium,
respectively, with apparent molecular weight of 46.6 kDa. It
suggested that a short incubation time (96 h) could be more
economically viable. The EPS secreted by Diaporthe sp.
JF766998 cultivated for 96 h contained mainly carbohydrate
(z95%) and a low percentage of protein (z5%), with glucose
as the main monosaccharide component. This high glucose
content is interesting for future investigations of the biological
properties of this EPS.
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