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Abstract

Background: Mesenchymal stromal cells (MSCs) become an attractive research topic because of their crucial roles
in tissue repair and regenerative medicine. Foreskin is considered as a valuable tissue source containing

immunotherapeutic MSCs (FSK-MSCs).

Results: In this work, we used aldehyde dehydrogenase activity (ALDH) assay (ALDEFLUOR™) to isolate and
therefore characterize subsets of FSK-MSCs. According to their ALDH activity, we were able to distinguish and sort
by fluorescence activated cell sorting (FACS) two subsets of FSK-MSCs (referred as ALDH™ and ALDH").
Consequently, these subsets were characterized by profiling the gene expression related to the main properties of
MSCs (proliferation, response to hypoxia, angiogenesis, phenotype, stemness, multilineage, hematopoiesis and
immunomodulation). We thus demonstrated by Real Time PCR several relevant differences in gene expression

based on their ALDH activity.

Conclusion: Taken together, this preliminary study suggests that distinct subsets of FSK-MSCs with differential gene
expression profiles depending of ALDH activity could be identified. These populations could differ in terms of
biological functionalities involving the selection by ALDH activity as useful tool for potent therapeutic applications.
However, functional studies should be conducted to confirm their therapeutic relevance.
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Background

Mesenchymal stromal cells are attractive for regen-
erative medicine and immunotherapy due to their
multilineage and immunomodulatory potential [1-3].
However, the application of MSCs in cell therapy is
often limited by low cell numbers and low prolifera-
tion rates. Therefore, finding a suitable cell source
has been a major challenge in recent years [4].
Although MCSs are primarily isolated from bone
marrow (BM) [5], several tissues, such as adipose tis-
sue (AT) [6], cord blood (CB) [7], dental pulp [8]
and placenta [9], have been proposed as alternative
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sources. Skin has also been reported to be a source of
MSCs [10], and foreskin (FSK) seems to be particularly
enriched in MSCs [11]. Therefore, we previously demon-
strated that FSK-MSCs are a more suitable cellular prod-
uct for cell therapy [12]. Though previously regarded as
waste, these cells have shown great potential for stem
cell-based anti-tumor therapy [13, 14]. In this regard,
it is important to establish distinct subsets of MSCs
with specific therapeutic features to be used for cell-
targeted therapy. Although many studies have addressed
the isolation and characterization of sub-populations of
MSCs [6, 15, 16], little is known about FSK-MSCs. Alde-
hyde dehydrogenase (ALDH) activity is increasingly
being used as a means to isolate stem or progenitor
cells [17, 18]. ALDH enzymes are involved in several
cellular properties such as self-protection, prolifera-
tion and differentiation [17, 19-23].
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In the present study, we combined the ALDEFLUOR™
assay [24] and fluorescence activated cell sorting (FACS)
[25] to identify and isolate MSCs based on their ALDH
activity. Consequently, two populations of FSK-MSCs
(referred to as ALDH* and ALDH") were obtained and
characterized based on their gene expression profiles in
relation to the major properties of MSCs. Thus, we highlight
differential gene expression profiles with respect to
stemness, proliferation, phenotype, immunomodulation,
hypoxia response ability, hematopoietic support and
multilineage capacity according to ALDH activity in
FSK-MSC subsets.

In summary, 2 distinct subsets of FSK-MSCs that har-
bor specific gene profiles can be identified based on their
ALDH activity. Conducting functional studies may
therefore confirm therapeutic relevance.

Results

ISCT compliance of FSK-MSCs

The cells from FSK cultures showed the typical fibroblast-
like shape with a high capacity to adhere to plastic.
Immunophenotyping of the cells by flow cytometry dem-
onstrated positivity (>95%) for CD73, CD90 and CD105
but lack (<5%) of CD14, CD19, CD34, CD45 and HLA-
DR expression (Fig. 1). Moreover, these cells exhibited a
multilineage potential in-vitro. After 21 days of osteogenic
induction, calcium deposits were observed by Alizarin red
staining. After 10 days of adipogenic induction, lipid vacu-
oles were revealed by Oil Red O staining. After 21 days of
chondrogenic induction, proteoglycans were shown by
Alcian blue staining (Fig. 2). Accordingly, FSK-MSCs used
in this study present the basic characteristics of MSCs.
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Sorting and isolation of FSK-MSCs based on ALDH activity
Two populations with high and low ALDH enzymatic
activity were isolated (ALDH" and ALDH). ALDH
activity was significantly different in these 2 populations:
0.45 £ 0.05 UA (Arbitrary unity) for the ALDH™ and 21.
78 £+1.01 UA for the ALDH" population, p=0.0020
(Additional file 1: Figure S1).

Gene expression analysis of ALDH-sorted FSK-MSC subsets
Stemness (Nanog; octamer-binding transcription factor
4(Oct4); Rex1) (Fig. 3)

Sorting for ALDH activity allowed us to distinguish ALDH*
and ALDH™ subsets based on the expression of genes
related to stemness. We did not observe Nanog expression
in either subset. We observed the up-regulation of Oct4
(235.5+17.4) in ALDH" cells compared with ALDH™ (173.
2+5) cells (p=0.0362). Rexl expression was similar
between both subsets, with a slight but not significant
decrease in the ALDH™ population (3259 +147.5 in
ALDH" vs 2759 + 56.9 for ALDH").

Proliferation/cell cycle (CyclinA (CCNA), CCNB, CCNE; CDK1,
CDK2, Fos proto-oncogene (FosB); p21; p53; p16;
retinoblastoma protein (pRB); cell division cycle 25A
(CDC25A); signal transducer and activator of transcription
(STAT1)) (Fig. 4)

ALDH" and ALDH™ subsets demonstrated distinct
gene profiles associated with proliferation/cell cycle.
The ALDH" subset displayed significantly higher
expression of these genes. The most highly expressed
genes in ALDH"' cells vs ALDH™ cells were p21
(71,794 £ 811.2 vs 50,446 + 466.7; p =0.0033), CDK1
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Fig. 1 Representative flow cytometry analysis of FSK-MSC immunophenotype. We used a panel of fluorochrome labelled monoclonal antibodies
(mAbs). Empty histograms show the background staining with isotype control mAbs, and solid histograms represent specific staining of the
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Fig. 2 Representative images illustrating the MSC multilineage potential. Each lineage differentiation was assessed by using both specific
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(22,788 + 605.1 vs 19,097 +415.7; p=0.0219) and CCNA
(29,338 £ 415.1 vs 12,854 + 645.1; p = 0.0041). We observed
significantly higher expression of CDK2, pRB and CDC25A
in ALDH" cells (6683 +141.5, 7643 +202.1, 1140 +24.9)
cells than in ALDH™ cells (4722 + 50.6, 5388 + 113, 505.2 +
47.1) (p=0.0055, p=0.0033, p=0.0014). We also noticed
weakly increased of FosB gene expression in ALDH" cells
(2592 +30.4) compared with ALDH™ cells (2283 + 96.3).
The ALDH" population expressed significantly higher
levels of CCNB and CCNE than the ALDH™ population
(1532 +80.5 vs 1169 +439, 773.5+92.7 vs 351.8+14.5
with p=0.0112 and p=0.0364, respectively). Moreover,
STATI was more highly expressed in the ALDH"
population (1286 + 41.9 vs 858.2 + 58.1, p = 0.0337).

Phenotype (melanoma cell adhesion molecule CD146
(MCAM); CD200; vascular cell adhesion molecule 1 CD106
(VCAM-1); intercellular adhesion molecule 1 CD54 (ICAM-1);
CD58 (LFA-3)) (Fig. 5)

ALDH" and ALDH™ subsets showed several gene
expression differences with respect to the MSC phenotype.
First, CD146 and CD200 were not found in either
subset. CD54, CD58 and CD106 were most highly
expressed in ALDH" cells (5218 +12.1, 9135+ 52.7,
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Fig. 3 Stemness-related gene expression profile of FSK-MSC subsets
according to ALDH activity. After flow cytometry sorting of ALDH"
and ALDH™ FSK-MSC subsets, we investigated by gPCR the expres-
sion profiles of pluripotency-associated genes Oct4, Nanog and
Rex1. Data are presented as mean = SEM of mRNA gene expression
relative to GAPDH expression. (ns = non significant)

550.4 + 16.8 respectively) compared with ALDH™ cells
(4403 £12.9, 7211 +30.2, 148.3 £ 10.6, respectively) with
significant p-values (p =0.0008, p=0.0013, p=0.0003,
respectively).

Hypoxia response (hypoxia-inducible factor (HIF)-1a; HIF-2a;
solute carrier family 2 member 1 (GLUT1)) (Fig. 6)
Consistent with their ALDH activity, the expression of
genes involved in the hypoxia response was significantly
different between the ALDH" and ALDH™ subsets. HIFIa,
HIF2a¢ and GLUTI expression levels were higher in
ALDH" cells (675.5 + 36.6 vs 529.7 + 8.1, 17,258 + 431.9 vs
7354 + 341.3, 53,748 + 3251 vs 37,335 + 3397, respectively),
and all had significant p-values except for HIFla (p =0.
0525, p = 0.0027, p = 0.0057, respectively).

Angiogenesis (angiopoietin (ANG)1, ANG2, Fms-related
tyrosine kinase 1 (FLT1); vascular endothelial growth factor
(VEGF)) (Fig. 7)

ALDH" and ALDH"™ cells had distinct gene expression
profiles associated with angiogenesis. ANG2 was not
expressed by either subset. Compared with ALDH™
cells, ALDH" cells showed significantly higher levels of
ANGI (887.3+9.2 vs 498.5+12.9), FLT1 (57.87 £17.8
vs 2867 + 14.5) and VEGF (18,854 + 508.6 vs 15,098 +
429.2). Thus, ALDH" cells appear to exhibit highly
angiogenic properties.

Hematopoietic support (matrix metalloproteinase 2 (MMP2);
stromal derived factor 1 (SDF1); kit ligand (SCF);
Interleukin-6 (IL-6); IL-8) (Fig. 8)

ALDH" and ALDH™ cells subsets showed significant
differences in genes linked to the hematopoietic
supporting capacity of FSK-MSCs. MMP2, SCE SDFI,
IL-6 and IL-8 were strongly expressed in the ALDH"
subset (762,594 + 68,274, 62,691 + 4273, 155,209 + 6358,
142,246 + 1405 and 41,120+ 806.3) compared with
ALDH™ cells (404,009 + 6630, 30,176 + 800.4, 130,426 +
2144, 78,498 + 2771 and 33,115+ 1102) (p =0.0393, p =0.
0124, p = 0.0324, p = 0.0026 and p = 0.0018, respectively).
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Fig. 4 Cell-cycle-related gene expression profile of FSK-MSC subsets according to ALDH activity. After flow cytometry sorting of ALDH+ and
ALDH- FSK-MSC subsets, we investigated by gPCR the expression profiles of cell-cycle-associated genes FosB, CDK2, pRB, CCNE, CDC25A, CCNA,
CCNB, STAT1, P21 and CDK1. Data are presented as mean + SEM of mRNA gene expression relative to GAPDH expression
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Immunomodulation capacity (Galectin1 (GAL1); hepatocyte
growth factor (HGF); leukemia inhibitory factor (LIF);
cyclooxygenase (COX)1 and COX2) (Fig. 9)

ALDH" and ALDH™ subsets had different immunoregulatory
gene expression patterns. These genes were more
highly expressed in ALDH"' cells than in ALDH™
subsets: 1.1x10°+23,780 vs 526,797 +39,702 for
GAL1 (p=0.0077), 35,740 £ 2110 vs 17,626 + 1027 for
COX1 (p =0.0056), 20,484 + 366.2 vs 16,219 + 551.6 for
COX2 (p=0.0282), 2655 + 84 vs 850.7 + 69.2 for HGF
(p=0.0067) and 2615 +161.8 vs 1236 + 129.8 for LIF
(p =0.0133).

Multilineage competence (Fig. 10)
A. Chondrogenesis potential (Sry box 9 (Sox9);

Collagen type II alpha 1 chain (Col2al); Aggrecan
(ACAN); Cartilage Oligomeric matrix protein

(COMP)).
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Fig. 5 Phenotype-related gene expression profile of FSK-MSC
subsets according to ALDH activity. After flow cytometry sorting of
ALDH+ and ALDH- FSK-MSC subsets, we investigated by gPCR the
expression profiles of phenotype-associated genes CD54, CD58 and
CD106. Data are presented as mean + SEM of mRNA gene expression
relative to GAPDH expression

ALDH" and ALDH™ cells demonstrated distinct gene
expression profiles with respect to chondrogenic potential.
We observed no significant difference between these
subsets regarding COL2al expression. Meanwhile, ACAN
(589,668 + 21,737 vs 268,260 + 16,493, p=0.0059), Sox9
(2206 + 23.8 vs 1715 + 30.5, p = 0.0114 and COMP (3702 +
1564 vs 4875+303, p=0.0021) expression were
significantly higher in ALDH" cells than in ALDH"™ cells.

B. Osteogenesis potential (Runt related transcription
factor 2 (Runx2); Osterix (OSX); Integrin binding
sialoprotein (BSP); TNF receptor superfamily member
11 (OPG); Secreted phosphoprotein type 1 (OPN)).

The osteogenic gene profiles of ALDH" and ALDH™ cell
subsets were substantially different. BSP and OSX were
not expressed in either subset. Runx2 (53,180 + 3959
vs 16,386 £ 619.6, p =0.0089), OPG (609,334 + 25,983
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Fig. 6 Hypoxia-related gene expression profile of FSK-MSC subsets
according to ALDH activity. After flow cytometry sorting of ALDH+
and ALDH- FSK-MSC subsets, we investigated by gPCR the expression
profiles of hypoxia-associated genes HIF1a, HIF2a and GLUTI. Data are
presented as mean + SEM of mRNA gene expression relative to GAPDH

expression. (ns = non significant)
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Fig. 7 Angiogenesis-related gene expression profile of FSK-MSC
subsets according to ALDH activity. After flow cytometry sorting of
ALDH+ and ALDH- FSK-MSC subsets, we investigated by gPCR the
expression profiles of angiogenesis-associated genes FLT1, ANGT and
VEGF. Data are presented as mean + SEM of mRNA gene expression
relative to GAPDH expression

vs 526,399 + 20,205, p=0.0064) and OPN (1698 + 14
vs 1093 + 44.8, p = 0.0026) were more highly expressed
in ALDH" cells than in ALDH" cells.

C. Adipogenesis potential (CCAAT/enhancer binding
protein alpha (C/EBP-a), C/EBP-§; Peroxisome
proliferator activated receptor gamma (PPAR-y);
Kruppel like factor (KLF2); KLF5; Adiponectin
(ADIPOQ)).

The majority of the genes linked to adipogenesis were
differentially expressed by the ALDH® and ALDH™
subsets. ADIPOQ was not expressed at all. Adipogenesis
genes were most highly expressed in ALDH" cells:
12323 + 684.3 vs 3332 + 306 for PPARy, 12,411 + 564.1
vs 3666 +43.9 for KLF2, 445.9 +20.2 vs 229.8 +12.9 for
KLEF5, 136.1£6.1 vs 86.9 + 4.5 for CEBPa and 106.6 + 3.2
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Fig. 8 Pro-hematopoietic-related gene expression profile of FSK-MSC
subsets according to ALDH activity. After flow cytometry sorting of
ALDH+ and ALDH- FSK-MSC subsets, we investigated by gPCR the
expression profiles of pro-hematopoietic-associated genes SDFI,
MMP2, SCF, IL6 and IL8. Data are presented as mean + SEM of mRNA
gene expression relative to GAPDH expression
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Fig. 9 Immunomodulatory-related gene expression profile of FSK-MSC
subsets according to ALDH activity. After flow cytometry sorting of
ALDH+ and ALDH- FSK-MSC subsets, we investigated by gPCR the
expression profiles of pro-hematopoietic-associated genes COX1, COX2,
HGF, LIF and GALI. Data are presented as mean + SEM of mRNA gene
expression relative to GAPDH expression

vs 90.9 £ 4 for CEBPS (p =0.0019, p =0.0043, p = 0.0221,
p =0.0194 and p = 0.0260).

Discussion

MSCs can be isolated from both adult and fetal tissues
[26-29] and may share basic characteristics [30]. How-
ever, these MSCs may have some differences probably
related to their distinct gene and protein profiles [31,
32]. As a potential alternative source of MSCs, FSK tis-
sue has recently emerged as a promising candidate for
different cell-based therapies [12, 13, 33]. Consequently,
we have demonstrated that FSK contains a high number
of immunotherapeutic MSCs [12]. However, different
sub-populations of MSCs with specific features might be
observed [6]. Of Importance, understanding the product
profile of the intended therapy is crucial to achieving the
desired therapeutic effect [34, 35]. Different enrichment
methods to obtain MSCs are reported in the literature
with contrasting results [36]. Thus, no single surface
marker is currently available to identify and isolate
MSCs from various tissue environments that could be
therapeutically relevant [37]. Therefore, finding a suit-
able method to identify subsets of MSCs with distinct
features is of high priority to ensure efficient therapy.

In this regard, ALDH activity has been shown to be im-
portant for the biology of stem and progenitor cells [17]. In
MSCs, ALDH activity is critical for tissue repair and regen-
eration [38—40]. In addition, ALDH activity and expression
appear to be promising markers and potential therapeutic
targets for treating many malignancies [41]. A recent study
reported that low expression of ALDH in decidual MSC
(DMSC) isolated from preeclamptic (PE) patients is associ-
ated with reduced resistance to cell toxicity. In line, stem
and progenitor cells expressing high level of ALDH were
shown to be clinically safe and effective cell therapy for
peripheral ischemia [42]. These cyto-protective enzymes



Najar et al. BMC Cell Biology (2018) 19:4

Chondrogenesis potential

*k

600000-
O ALDH-

E3B ALDH+

300000

5000

*<0.05
**<0.01
*** <0.0001

25004

mRNA relative expression / GAPDH Q)

800000

600000

N A O
o © O
o © O
o © O
i i o

20001
10004

Adipogenesis potential

*% *k

mRNA relative expression / GAPDH © MRNA relative expression/ GAPDH g

Fig. 10 Multilineage-related gene expression profile of FSK-MSC subsets
according to ALDH activity. After flow cytometry sorting of ALDH+ and
ALDH- FSK-MSC subsets, we investigated by gPCR the expression profiles
of multilineage-associated genes such as COL2a1, SOX9, CAN, COMP for
chondrogenesis (a), Runx2, OPN, OPG for osteogenesis (b) and PPARy,
KLF2, KLF5, CEBPq, CEBPS for adipogenesis (c). Data are presented as
mean + SEM of mRNA gene expression relative to GAPDH expression.

(ns = non significant)

may thus potentiate cell therapy by serving as markers of
highly therapeutic MSCs that harbor specific competencies.

Using FACS, we were able to sort two subsets of FSK-
MSCs (e.g., ALDH" and ALDH") based on their ALDH
activity. Several tissue-dependent progenitors with high
ALDH activity have been reported to be therapeutically
relevant because they harbor specific biological functions
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such as tissue repair and hematopoietic reconstitution
[19]. The global gene expression profiles of a variety of
non-hematopoietic progenitors are likely to have an im-
portant impact on their properties as well as on their
cellular therapeutic applications [43]. Accordingly, de-
pending on their ALDH activity, these FSK-MSC subsets
demonstrated distinct transcriptional profiles for genes
associated with major MSC properties (e.g., proliferation,
response to hypoxia, angiogenesis, phenotype, stemness,
multilineage, hematopoiesis, and immunomodulation)
[8, 44-47]. As discussed below, these gene expression
differences between FSK-MSCs subsets may indicate
specific biological features with considerable therapeutic
relevance.

In terms of stemness [48], Nanog was not expressed in
either FSK-MSC subset, while Rex1 and Oct4 were more
highly expressed in ALDH" cells than in ALDH™ cells.
These genes appear to be crucial for the efficient
maintenance of cell pluripotent identity [49]. Our
observations were consistent with the work of Dey and
colleagues, which suggested that fetal heart-derived cells
with high ALDH activity exhibit enhanced gene expres-
sion for self-renewal, proliferation, and survival [50].

Regarding the cell cycle, we observed substantial
differences in FosB, CDK1, CDK2, pRB, CCNA, CCNB,
CCNE, CDC25A and p21 expression. All of these targets
were highly upregulated in ALDH" cells. The cell cycle
is likely to be influenced by ALDH activity and is likely
critical for cell specificity and the properties of different
cellular populations [45, 51, 52]. Mechanistically, ALDH
has been implicated in controlling cell proliferation
during the catabolism of endogenous substrates that
have the capacity to either stimulate or inhibit the
expression of genes involved in the cell cycle [53].

An important issue for optimal cell-based therapy is
the phenotype of the cellular product being used [54].
Progenitors cells generally express similar markers re-
gardless of their tissue of origin, with difference being
largely restricted to CD54, 58, 106, 146 and CD200 [18,
55-57]. Here, we notably observed increased CD54, 58
and 106 expressions in ALDH" FSK-MSCs. The expres-
sion of the primary adhesion molecules CD54 and CD58
has been reported to vary according to the MSC source
[18, 19]. Cells with CD54 expression were shown to have
high immunosuppressive capacity [58]. Interestingly,
CD106 expression was even restricted to specific tissues
[59] and was suggested to have distinct immunomodula-
tory abilities [60] and pro-angiogenic potential [61]. The
absence of CD146 and CD200 expression in FSK-MSCs
subsets is likely dependent on the tissue of origin and the
MSC environment [56, 62, 63]. The enrichment of CD200
may also have a significant impact on immunomodulation
[55], regenerative potential [64] and osteogenesis in a sub-
set of progenitor cells [63]. As a mesenchymal marker,
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CD146 was shown to define subsets of cells of different
origin with remarkable stemness, multilineage potential
and immunomodulatory capacities [65].

During tissue repair, the hypoxia-induced activation of
HIFs regulates different cellular functions such as angio-
genesis and inflammation [66, 67]. In ALDH" cells, a
significant increase in HIF2a, GLUT1 and, to a lesser
extent, HIF1a expression was observed. Gene responses
to hypoxia are cell-type specific, and HIFs have been
implicated in stemness [68, 69]. In parallel, high ALDH
activity enhanced stem-cell features in breast cancer
cells by activating HIF2a expression [70], suggesting a
crucial role for ALDH in targeted therapies. With regard
to hypoxia, ALDH expression in MSCs is required for
cellular resistance to oxidative stress [38]. ALDH activity
clearly influences HIF gene expression patterns to allow
for appropriate MSC responses to hypoxia. The expres-
sion of HIFla and GLUT1 genes was higher in ALDH"
cells confirming their importance for cell-response to
hypoxia. Thus, the therapeutic efficiency of ALDH" cells
was observed in patients with chronic myocardial
ischemia and critical limb ischemia [71, 72].

Based on their ALDH activity, MSCs promote angio-
genesis as a part of their tissue repair and regeneration
capability [66]. MSCs with high ALDH activity are likely
to be more responsive to hypoxia by upregulating FLT1,
CXCR4, and ANG2 [56]. Indeed, we observed increased
expression of angiogenic genes (ANG1, FLT1 and VEGF)
in ALDH" cells. However, ANG2 was not expressed in
FSK-MSCs. Vishnubalaji and colleagues demonstrated
that FSK-MSCs exhibit high tube-forming capability
(similar to endothelial cells from the human umbilical
vein) [56]. MSCs from non-FSK tissues that harbor high
ALDH activity were shown to have the ability to home
to damaged tissues and promote angiogenesis, thus protect-
ing mice against acute ischemic injury [19]. By showing sig-
nificantly higher levels of ANG1, FLT1 and VEGE, ALDH"
cells may exhibit potent angiogenic properties that have
proved to be therapeutically relevant. Indeed, human BM
ALDH" cells were able to improve perfusion in ischemic
limbs after transplantation (showed augmented recovery of
perfusion and increased blood vessel density) [73].

MSCs also play an important role in the homeostasis
of the hematopoietic system by generating most of the
stromal cells that are present in the hematopoietic stem
cell (HSC) niche and by providing different factors that
regulate hematopoiesis, such as IL6, IL8, MMP2 and
SCF [74]. We found that ALDH* FSK-MSC subsets may
exhibit potent hematopoiesis-supporting abilities following
IL6, IL8, SCE, SDF1 and MMP2 up-regulation and these
results corroborate the fact that ALDH activity may be used
as a surrogate marker for hematopoietic stem cell trans-
plant activity [75]. As suggested previously, IL-8, rather
than IL-6, may mechanistically support the engraftment of

Page 7 of 11

repopulating cells by enhancing MMP-2 expression
and therefore increasing migration and infiltration
within BM [76].

FSK-MSCs are likely to be considered immunothera-
peutic cells [12], and their immunomodulatory proper-
ties may actively account for their tissue repair activity
[77]. MSCs can modulate the immunological functions
of several immune cell populations both in vitro and in
vivo [78, 79]. However, distinct types of MSCs have been
shown to display specific immunomodulatory character-
istics [9, 80]. Here, ALDH" FSK-MSCs subsets showed
elevated COX1/2, GAL1, LIF and HGF expression, sug-
gesting better immunomodulatory features that might be
more attractive for immunotherapeutic interventions.
Indeed, all of these factors were previously described to
actively compete in establishing a tolerogenic state sus-
tained by MSCs [81]. Accordingly, ALDH was shown to
be critical for the induction of Tregs, thus promoting
immunological tolerance [82].

FSK-MSCs are capable of differentiating into several
lineages and are thus relevant for regenerative cell ther-
apy [14, 57]. We have therefore examined the expression
of the major genes associated with the tri-lineage poten-
tial of MSCs [83, 84]. For osteogenesis, we did not ob-
serve OSX or BSP expression in either subset, whereas
OPG, OPN and Runx2 were more highly expressed in
ALDH" cells, suggesting that this population has a
higher capacity to differentiate into osteoclasts than
ALDH"™ cells. Moreover, FSK cells have been shown to
display osteogenesis capacity and participate to bone
repair [85, 86]. De Kock and colleagues demonstrated
that FSK cells are the most appropriate stem cells for
bone-based applications compared with other types of
MSCs [43]. Increased ALDH levels are associated with
enhanced stress resistance and muscle regeneration
capacity in muscle-derived cell progenitors [84]. ALDH"
MSCs from umbilical cord blood had a greater ability to
differentiate and their transplantation into fractured
mouse femurs enabled early repair of tissues and rapid
bone substitution [87]. Compared to cells with low
activity (ALDH"), the ALDH" sub-population of murine
[88] and canine [89] cells exhibited a higher capacity for
osteogenic and adipogenic differentiation.

As for adipogenesis, Li and colleagues showed that
FSK-MSCs can be differentiated into adipocytes and
osteocytes [13]. This ability appeared to be more prom-
inent in ALDH" FSK-MSCs, which expressed signifi-
cantly higher levels of adipogenic markers such as
CEBPa, CEBPS, PPARY, KLF2, and KLF5 [90-92].

Finally, we evaluated the ability of FSK-MSCs to differen-
tiate into chondroblasts [93, 94]. ALDH" cells expressed
higher levels of chondrogenic genes (Sox9, ACAM,
COMP). However, ALDH activity may not be relevant for
chondrogenesis capacity in MSCs [95]. These observations
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suggest that ALDH" FSK-MSC subsets may differ in their
differentiation capacity depending on the tissue context
and may thus play a significant role in regenerative medi-
cine. As discussed by Dollé et al. [96], although ALDH
isoforms may be used as cell markers, they play different
roles in stem/progenitor cell populations.

Conclusion

In the present work, the use of ALDH activity to identify
FSK-MSC subsets with specific gene profiles is feasible
and may become therapeutically relevant once functional
studies have been conducted.

Methods

Isolation, culture and characterization of FSK-MSCs

This study was approved by the Bordet Institute Ethics
Committee (Belgium) and conducted in accordance with
the Declaration of Helsinki (1964). Three FSK samples
were obtained following a circumcision procedure and
all donors and/or their parents gave written informed
consent. All the procedures for the isolation, culture and
characterization of FSK-MSCs were conducted according
to our previously study [12]. Briefly, after the surgical pro-
cedure, FSK samples were collected into a sterile speci-
men container containing sterile phosphate-buffered
saline (PBS; Lonza) supplemented with penicillin/strepto-
mycin (Lonza). After a wash with sterile PBS, the FSK was
sectioned longitudinally to spread the tissue and the epi-
dermis was manually removed from the skin. The dermis
was cut into small pieces and tissue dissociation was
applied with enzymatic digestion by incubation for 1 h at
37 °C with 0.2 mg/mL of Liberase Research Grade solu-
tion (Roche Diagnostics). After digestion step, 10% fetal
bovine serum (FBS; Sigma-Aldrich) was added to
neutralize the enzymes, and the cell suspension was
washed by centrifugation (800 g for 5 min at room
temperature) in Dulbecco’s Modified Eagle’s Medium with
low glucose (DMEM-LG; Lonza). The resulting cell pellet
was then seeded in culture flasks with DMEM-LG (Lonza)
supplemented with 10% FBS (Sigma-Aldrich), 2 mmol/
L L-glutamine and 50 U/mL penicillin/streptomycin (both
from Lonza). Cell cultures were maintained at 37 °C in a
5% CO2 humidified atmosphere. When sub-confluence
(80-90%) was achieved, adherent cells were harvested by
TrypLE Select (Gibco, LifeTechnologies) and expanded
until the second passage (P2). The characterization of
FSK-MSCs was achieved according to the ISCT criteria.
Both immunophenotype and multilineage potential were
thus confirmed. Briefly, the immunophenotype was deter-
mined by flow cytometry analysis using a panel of fluoro-
chrome labelled monoclonal antibodies against membrane
markers. The multilineage potential was demonstrated by
culturing FSK-MSCs in appropriate induction medium
and by using specific coloration to show their adipogenic,
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osteogenic and chondrogenic differentiation capacities
(more details presented in Additional file 1).

Fluorescence activated cell sorting analysis (FACS)

Cell sorting was conducted using a FACS-Aria (BD Biosci-
ences, San Jose, CA) as it has been previously described
[97]. The instrument quality control was checked on a
daily basis throughout by using Cytometer setting and
tracking beads (CS&T) and software (FACSDiva). A pri-
mary gate was placed on the scatter population and a sec-
ond one for PI (Propidium iodide) (Fluka, 70,335) negative
cells allowing thus to analyze only live cells excluding re-
sidual erythrocytes and debris. We also have incorporated
a doublet discriminating gate based upon height versus
area of the side scatter signals. These settings were then
used throughout the assay. Analysis was done using the
Flo-Jo program (Tree Star, Ashland, https://www.flowjo.
com/).

Detection, study and sorting of FSK-MSCs based on their
ALDH activity
Fluorescent ALDH substrate (BODIPY® - aminoacetalde-
hyde (BAAA/ALDEFLUOR™ kit) (StemCell Technologies)
is used to identify and isolate a population with high ALDH
versus low ALDH enzymatic activity (hereafter referred to
as ALDH" and ALDH") according to our previous report
(see [96, 97] for further information). As a non-polar fluor-
escent molecule, BAAA is taken up by viable cells through
passive diffusion. The BAAA is composed of 2 parts: the
Bodipy molecule which contains the green fluorescence
and the amino-acetaldehyde which is the substrate for
ALDHI1A1. BAAA could be metabolized by this isoform
[98] to a carboxylate fluorescent ion BAA™ which is
retained intracellularly, allowing thus to sort by FACS cells
demonstrating high levels of ALDH activity (the assay
buffer used for analysis contains an efflux inhibitor; for
further information, see (http://www.aldh.org/)).
Dissociated single cells (with trypsin) were suspended
in ALDEFLUOR™ assay buffer containing the BAAA
(1 uM per 3x10° cells) and incubated at +37 °C
without agitation during 50 min. ALDEFLUOR™ staining
was performed three times for each sample. The sorting
gate of the ALDH" cells was established using DEAB-
treated cells as a reference. For all subsequent proce-
dures, samples were constantly maintained at +4 °C to
prevent efflux. ALDEFLUOR™ fluorescence was excited
at 488 nm, and fluorescence emission was detected using
a standard fluorescein-isothiocyanate 530/30 nm band-
pass filter. All samples were thus sorted into 2 different
collector tubes, namely “ALDH*” and “ALDH ™.

Gene expression profiling by real time PCR (qPCR)
Immediately after the sorting, the cells were spin down
by centrifugation. The cell lysate buffer (10 mL of BL-
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buffer from Promega (ref Z103c) was mixed with 10 pL
of thioglycerol (ref A208B)) to perform the extraction of
the total mRNA. Since the number of cells obtained
after the cell sorting were roughly small for some popu-
lations, we used the RNeasy micro kit (ref 74,004) from
Qiagen to ensure optimal RNA purification. We per-
formed the reverse transcription reaction with 1 mg RNA
using qScript ¢cDNA SuperMix (Quanta Biosciences).
Transcripts were quantified by qRT-PCR using 10 ng of
c¢DNA, SYBR Green PCR Master Mix (Applied Biosys-
tems, Lennik, Belgium) and 0.32 mM forward and reverse
primers. The primers were designed with Primer Express
2.0 software (Applied Biosystems) or ProbeFinder online
software (Roche) and are available in Additional file 1:
Table S1. For qPCR analysis, each condition has been run
in triplicate. To control variations in input RNA amounts,
the GAPDH gene was used as a housekeeping gene to
quantify and normalize the results. The reactions were
carried out using the ABI Prism 7900 HT system (Applied
Biosystems). In all cases, dissociation curves were gener-
ated and the specificity of the PCR reactions was con-
firmed. The comparative AACt method was used for the
data analysis. To evaluate the fold change, data were
normalized with the GAPDH genes to obtain the ACt and
were after calibrated with the geometric mean of the
GAPDH ACt to generate the AACt. Fold changes were
then calculated as fold change = 2744,

Statistical analysis

Data are presented as mean + standard error of the mean
(SEM). Comparison between sorted fractions was evalu-
ated with the matched paired t test. p values < 0.05 were
considered as statistically significant. All analyses were
performed with GraphPad Prism version 5.00 for win-
dows (GraphPad Software, www.graphpad.com).

Additional file

[ Additional file 1: Supplemental data. (DOC 8200 kb) ]
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