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Frictional lubricity enhanced by quantum mechanics
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The quantum motion of nuclei, generally ignored in the physics
of sliding friction, can affect in an important manner the frictional
dissipation of a light particle forced to slide in an optical lattice.
The density matrix-calculated evolution of the quantum version
of the basic Prandtl–Tomlinson model, describing the dragging
by an external force of a point particle in a periodic potential,
shows that purely classical friction predictions can be very wrong.
The strongest quantum effect occurs not for weak but for strong
periodic potentials, where barriers are high but energy levels in
each well are discrete, and resonant Rabi or Landau–Zener tun-
neling to states in the nearest well can preempt classical stick–slip
with nonnegligible efficiency, depending on the forcing speed.
The resulting permeation of otherwise unsurmountable barriers
is predicted to cause quantum lubricity, a phenomenon which we
expect should be observable in the recently implemented sliding
cold ion experiments.
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Friction is, among all basic physical phenomena, the one in
most need of fundamental work. In particular, the main cur-

rent understanding of friction, largely based on mesoscale and
nanoscale developments, is essentially classical (1). Quantum
effects in sliding friction, despite some early and laudable work
(2–4) including experimental suggestions (5), have not been dis-
cussed very thoroughly so far. In most cases, in fact, the forced
motion of atoms, molecules, and solids is considered, and sim-
ulated, just classically. The quantum effects that may arise at
low temperatures, connected with either quantum freezing of the
phonons or a slight quantum smearing of classical energy barri-
ers, are not generally deemed to be dramatic and have received
very little attention. At the theoretical level, in particular, quan-
tum frictional phenomena were not pursued after and beyond
those described by the seminal path-integral Monte Carlo study
in the commensurate Frenkel–Kontorova model (2, 3). Possible
reasons for this neglect are the scarcity of well-defined experi-
mental frictional realizations where quantum effects might dom-
inate and, symmetrically, on the theory side, the lack of eas-
ily implementable quantum dynamical simulation approaches.
Cold ions in optical lattices (6) offer brand new opportunities to
explore the physics of sliding friction, including quantum aspects.
Already at the classical level, and following theoretical sugges-
tions (7), recent experimental work on cold ion chains demon-
strated important phenomena such as thermolubricity (8), the
Aubry transition (9–11), and multiple frictional slips (12). The
tunability of the perfectly periodic optical potential that controls
the motion of atoms or ions should make it possible to access
regimes where quantum frictional effects can emerge.

Here we show, hopefully anticipating experiment, that a first,
massive quantum effect will appear already in the simplest slid-
ing problem, that of a single particle forced by a spring to move
in a periodic potential: a quantum version of the renowned
Prandtl–Tomlison model, and a prototypical system that should
also be realizable experimentally by a cold ion dragged by a
time-dependent confining potential. As we will show, the main
quantum effect amounts to a force-induced Landau–Zener (LZ)
tunneling, of course well-known and studied in many different
contexts (13–16) outside of sliding friction. The effect of LZ tun-
neling on friction is striking because it shows up preferentially for

strong optical potentials and high barriers, where classical fric-
tion is large, while resonant tunneling between levels in nearby
potential wells can cause it to drop—a phenomenon that we may
refer to as quantum lubricity.

Model and Methods
Our model, sketched in Fig. 1, consists of a single quantum particle of mass M
in the one-dimensional periodic potential created, for instance, by an optical
lattice, of strength U0 and lattice spacing a. The particle is set into motion by
the dragging action of a confining potential—specifically, we will assume an
harmonic potential of spring constant k—which moves with constant velocity
v, representing for instance an optical tweezer or any other dragging mech-
anism, such as a moving Paul trap or an electric field, in the case of an ion:
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(x̂− vt)2
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The forced motion gives the particle an energy that is removed, in the
frictional steady state, through dissipation by a thermostat. As in the pio-
neering approach by Feynman and Vernon (17), dissipation is introduced by
means of a harmonic bath (18)
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where each oscillator x̂i couples, through an interaction coefficient ci , to
the “periodic position” of the particle X̂ = sin

( 2π
a x̂
)
. Seemingly compli-

cated, this choice of coupling is most natural, for it respects the period-
icity of the substrate while still behaving linearly close to the bottom of
the potential—where the particle resides with the highest probability—
effectively coupling successive levels within each minimum. The coefficients
ci determine the coupling strength of the bath, through the spectral func-

tion J(ω) = ~
∑

i
c2
i

2miωi
δ(ω−ωi), which we choose of the standard Caldeira–

Leggett (19) ohmic form J(ω) = 2α~2ωe−ω/ωc , where ωc sets the high-
energy cutoff. Our simulation scheme, described below, will be exact for
weak coupling only, but so long as α� 1, which is well below any possible
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Fig. 1. A sketch of the model: A particle dragged by a confining poten-
tial (pink) moving at velocity v over a periodic potential (blue), provided for
instance by an optical lattice. The two arrows allude to the classical overcom-
ing of the barrier (red) as opposed to a quantum tunneling event (green).

Caldeira–Leggett dissipative localization transition (19), we expect its quali-
tative validity to extend into the moderate coupling regime.

We can understand the basic mechanism leading to quantum frictional
dissipation by considering the instantaneous eigenstates of ĤQ(t), shown in
Fig. 2A for a reduced Hilbert space with four states per well. Denoted by
T = a/v, the time period in which the driving spring moves by one lattice
spacing, at t = 0, when the harmonic potential is centered at x = 0, the low-
est eigenstate is essentially coincident with the lowest Wannier state in the
x = 0 potential well. As the harmonic spring moves forward, at t = t1 = T/2,
the particle negotiates the perfect double-well state between x = 0 and
x = a, where all pairs of left and right levels anticross. The LZ “diabatic” tran-
sition rate (population of the excited state after the anticrossing) between
levels En(t) and En′ (t) is

Pn→n′ = e
−
π∆2

nn′
2~vαnn′ = e−

vn→n′
v [3]

where αnn′ is the relative slope of the two eigenvalues involved, En and En′ ;
∆nn′ their anticrossing gap; and v the speed.

At the anticrossing at t1 = T/2 between ground states at x = 0 and x = a,
due to the large barrier, the states are very localized and the gap, here ∆01,
is exceedingly small. For very small velocity, v� v0→1 =π∆2

01/[2~ ∂x|(E1−
E0)|), the LZ transition rate P0→1 (Eq. 3), which as we shall see is propor-
tional to the frictional dissipation, is negligible. In that low-velocity case, a
quantum particle is transmitted adiabatically without friction. This is there-
fore a regime, which one might designate of quantum superlubricity, where
friction may vanish nonanalytically as in Eq. 3 in the limit of zero speed (see
Inset in Fig. 3)—totally unlike the classical case, where friction vanishes lin-
early with v (viscous friction). Quantum superlubricity should be realized
at sufficiently low temperatures, only thermally destroyed in favor of vis-
cous lubricity as soon as temperature T is large enough to upset the LZ
physics behind the mechanism. This, however, is not expected to occur until
T becomes considerably larger than the tunneling gap ∆01, as a recent study
on the dissipative LZ problem has confirmed (20).

Moving on to larger speeds v� v0→1, the particle, unable to negotiate
the 0A→ 0B tunneling adiabatically, remains diabatically trapped with large
probability P0→1 in the lowest 0A Wannier state even for t> T/2. In that
regime, only at a later time, t = t2, does the rising level become resonant
with the first excited state 1B of the x = a well. As this second gap ∆12

is now much larger than ∆01, the LZ diabatic rate drops and the particle
transfers with large adiabatic probability from the A to the B well for driving
speeds v0→1� v� v1→2. Once the first excited 1B state in the x = a well
is occupied, the bath can exponentially suck out the excess energy, now
thermalizing the particle to the lowest 0B level. That sequence of events
thus dissipates energy, by an amount that is paid for by frictional work done
by the external force. The 0A→ 1B quantum slip between neighboring wells

thus preempts by far the classical slip, which would take place when the

rising classical minimum disappears, at ts = (πU0/kva)
√

1− (ka2/2π2U0)2 +

(a/2πv) cos−1(−ka2/2π2U0)> t2.
To calculate the quantum frictional dissipation rate, we describe the par-

ticle motion by means of a weak coupling Born–Markov quantum master
equation (QME), based on a time-evolving density matrix ρ̂Q(t) (20, 21),
whose equation of motion is

d

dt
ρ̂Q(t) =

1

i~

[
ĤX (t), ρ̂Q(t)

]
−
([

X̂, Ŝ(t)ρ̂Q(t)
]
+ H.c.

)
, [4]

where ĤX (t) = ĤQ(t) + 2~αωcX̂2. The operator Ŝ(t), which is in principle (21)
a bath-convoluted X̂ given by Ŝ(t) = 1

~2

∫ t
0 dτ C(τ ) ÛX (t, t− τ ) X̂ Û†X (t, t− τ ),

will be approximated, on the basis of the instantaneous eigenstates |ψk(t)〉
of the system Hamiltonian ĤX (t), as Ŝ(t) =

∑
k,k′ Sk,k′ (t) |ψk(t)〉 〈ψk′ (t)| with

Sk,k′ (t)≈
1

~2
〈ψk(t)| X̂ |ψk′ (t)〉 Γ(Ek′ (t)− Ek(t)), [5]

where Γ(E+)≡
∫+∞

0 dτ C(τ ) ei
(

E+i0+
)
τ/~ is the rate for a bath-induced

transition at energy E and Ek(t) is the instantaneous eigenvalue asso-
ciated with |ψk(t)〉. Here the correlator C(τ )≡

∫+∞
0 dω J(ω)

[
eiωτ fB(ω) +

e−iωτ
[
fB(ω) + 1

]]
contains the bath temperature T through the
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Fig. 2. Illustrating how level quantization and Landau–Zener (LZ) tunneling
affect forced barrier crossing. (A) The four lowest instantaneous eigenvalues
of a particle that is adiabatically driven by the harmonic trap from a periodic
potential minimum to the nearest one. All avoided crossing gaps associated
with LZ tunneling events encountered during the dynamics at times t1, t2,
and t3 are nonzero, even if invisible for t1 and t2 on this scale. The circle
highlights the resonant tunneling described in text and represented in B.
(B) A pictorial sketch of the tunneling event in which a particle in the ground
level of the left well (0A) resonantly tunnels into the first excited level of the
right well (1B).
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Fig. 3. Frictional dissipation rate for classical (blue) and quantum (red) slid-
ing vs. driving velocity. Note the large reduction of dissipation induced by
the resonant quantum tunneling: quantum lubricity. Parameters are iden-
tical to those of Fig. 4. The linear friction expected in the classical case for
v→ 0 is not visible in this scale. The quantum friction decline at high veloc-
ity is caused by insufficient cooling rate γc. (Inset) Magnified low-velocity
behavior, showing the nonanalytic vanishing of friction due to 0A− 0B tun-
neling (quantum superlubricity).

Bose–Einstein distribution fB(ω). Recent work on the dissipative LZ problem
(20) has shown that this approximation is quite safe, when the coupling to
the bath is weak, in an extended regime of driving velocities v and temper-
ature T . The QME is then solved on the basis of the Wannier orbitals of the
unperturbed particle in the periodic potential.

Results
Fig. 4 shows, for an arbitrary but convenient choice of parame-
ters, the time-dependent population probability of the first three
instantaneous eigenstates, Pk (t) = 〈ψk (t)|ρ̂Q |ψk (t)〉, over one
period of forced particle motion in the v0→1� v� v1→2 regime.
As qualitatively sketched, despite the slow motion, the probabil-
ity of the 0A→ 0B adiabatic transition to the right well ground
state at t1 = T/2 is already very small, and LZ dominates this
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/(2Ma2) is the recoil energy, corresponding

to the double-well potential configuration sketched in Fig. 2B. Lines of
decreasing thickness are used for higher eigenstates. The ohmic coupling
strength is here α= 0.002, with a cutoff ωc = 12 ER/~ and temperature
T = 1 ER/kB.
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Fig. 5. Average position of the particle vs. time, in the quantum (red) and
classical (blue) cases. Parameters are identical to those of Fig. 4. Most of the
“slip” of the quantum particle goes through the excited-state resonant tun-
neling, taking place at t2 beyond the symmetric moment t1 = T/2 between
the two potential wells. The dashed line shows the position of the classical
“spinodal” moment ts, where the x = 0 local potential minimum disappears
and the particle is forced to slip.

first level crossing keeping diabatically the particle in the left A
well. At the second 1→ 2 crossing, where the gap ∆12 is much
larger, P1→2 is suppressed, and the 1st excited level of the right
well (1B) becomes strongly populated. Following that, the bath
exponentially relaxes Pk (t) down to the right well ground state.

The mechanism just described predicts an advancement of the
average position of the particle as well as a corresponding onset
of dissipated power that are very different from those of ordi-
nary Langevin frictional dynamics (18), which, with all parame-
ters except ~ are the same as in the quantum case, would describe
the classical forced sliding of the same particle. Fig. 5 compares
the average particle position versus time in the quantum and clas-
sical cases. The “quantum slips” occur rather suddenly, on an LZ
tunneling time scale (22) ttunnnn′ that we can estimate to be much
smaller than the period T—ttunnnn′ /T =

√
4π~v/(a2αnn′)≈

6 · 10−3 for the relevant t2 transition of Figs. 4 and 5—reflecting
the abruptness of level crossing events and connected barrier
passage. In particular, the main quantum slip occurs, for the
parameters used in Fig. 5, precisely when the instantaneous Wan-
nier ground level of the left well is resonantly aligned with the
first excited Wannier level in the neighboring well.

Because it occurs at a lower spring loading, the resonant bar-
rier permeation strongly reduces the overall mechanical friction
work exerted by the pulling spring. Fig. 3 shows the amount of
energy absorbed by the bath (friction) at the end of each period
as a function of velocity. In the classical case, for time scales
much shorter than the characteristic thermal hopping of the bar-
rier, friction grows logarithmically with speed, due to thermally
activated slip, as is well known for stick–slip at finite temperature
(1, 23–25)

Wcl = b + c ln2/3 (d v), [6]
with constantsb = 28.8ER,c = 8.49ER, andd = 6.81 · 104 ~/ERa
providing the best fit in our case.

The quantum dissipation rate is by comparison, within the
present parameter choice, smaller by a factor ∼ 3. It is well
approximated through the LZ probabilities (Eq. 3) of transition
from the n th to the (n + 1)th eigenstate:

Wq(v)≈P0→1(v) [(1−P1→2(v)) (E1−E0)

+ P1→2(v) (1−P2→3(v))(E2−E1)], [7]
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with ∆01 = 5.19 · 10−2 ER, ∆12 = 3.03 · 10−1 ER, ∆23 = 8.83 ·
10−1 ER, α01 = 1.43 · 102 ER/a , α12 = 1.38 · 102 ER/a , α23 =
1.46 · 102 ER/a , v0→1 = 2.96 · 10−5 ERa/~, v1→2 = 1.05 · 10−3

ERa/~, and v2→3 = 8.40 · 10−3 ERa/~. Dissipation requires in
fact, to start with, that the system does not LZ tunnel, so that
P0→1> 0. The amount of power absorbed by the bath equals the
probability to populate the first and higher excited states times
their energy difference with the ground state. This analytical pre-
diction is found to match the numerical results for low velocities
in Fig. 3 and can be used to show the characteristic behavior in
the v→ 0 limit, where simulations become exceedingly expen-
sive, as highlighted in the Inset. We should note that Eq. 7 is
approximate first of all because it does not include higher excited
states; moreover, it is only valid when velocity is low enough that
the cooling rate γc�T−1 = v/a , and the particle loses all its
kinetic energy before encountering the subsequent slip, which is
not satisfied for the larger velocities. Within this regime, how-
ever, it also shows how dissipation is not dependent on the bath
coupling strength α. Unless temperature is too high, quantum
tunneling through the barrier always preempts classical negotia-
tion of the barrier, causing friction to be necessarily smaller than
classical friction. In this sense, we can speak of quantum lubricity.

This conceptually simple form of quantum lubricity might,
in some variant, be within experimental reach for cold ions in
optical lattices. The parameters used in our simulations assume
a particle with the mass M of 171Yb, and a lattice spacing
a = 500 nm. The lattice potential is taken to be U0 = 38.5ER, in
terms of the recoil energy ER =π2~2/(2Ma2). The corrugation
parameter η= (ωl/ω0)2, defined (9) as the confinement ratio
of the lattice intrawell vibrational frequency ωl = 2

√
U0 ER/~

to the harmonic trap (the pulling spring) vibrational frequency
ω0 = a

√
2kER/π~, is set equal to η= 4, so that the overall poten-

tial energy has just two minima. This automatically sets the value
of the spring constant at k = 190ER/a

2. Finally, the assump-
tion of a weakly coupled Ohmic environment, with α= 0.002
and ωc = 12ER/~, necessary here for a consistent perturbative
theory, is not mandatory, as we have seen, for an experimental
realization and can anyway be realized by a judicious choice of
cooling strengths. The values adopted forα and ωc correspond to
a cooling rate γc ≈ 0.018ER/~. To make the bath effective dur-
ing the dynamics, the condition on the driving velocity v <γc a
must be satisfied, leading to a time scale much larger than the
period of vibrations in the lattice well: v/a�ωl . It may be useful
to mention here what might happen for very different coupling

strengths. For excessively weak coupling, the bath would fail to
absorb the work done on the particle, whose increasing energy
will lead to a classical trajectory. Conversely, excessively strong
coupling, not accessible by our perturbative QME scheme, would
inherently perturb the coherent dynamics, eventually destroying
tunneling and quantum lubricity altogether. Finally, we note that
our choice of temperature T = 1ER/kB was deliberately low
compared with the lowest temperatures achievable in this kind of
experiment, to better emphasize the kind and nature of quantum
effects. However, theoretical studies (20) suggest that LZ tun-
neling is very robust and transition probabilities are only slightly
modified even at temperatures much higher than the minimum
gap. Indeed, even in our simulations, where kBT ' 3∆12, the
transition probabilities show only small deviations from the ideal
LZ formula.

Conclusions
In summary, comparison of classical stick–slip with quantum fric-
tion for a particle sliding in a periodic potential foreshadows
major differences. A classical particle slides from a potential well
to the next by overcoming the full potential barrier, whereas a
quantum particle can permeate the barrier by LZ resonant tun-
neling to a discrete level in the nearby well, a process suddenly
and narrowly available at a well-defined position of the harmonic
trap, leading to discontinuous forward jump, as shown in Fig.
5. This quantum slip preempts the classical slip, giving rise to
quantum lubricity. The potential energy accumulated by the par-
ticle during sticking, and frictionally dissipated after the quantum
slip, is just the amount sufficient to reach the resonant condition
with the excited state in the next well. Conversely, the classical
potential energy increase necessary for classical slip is close to
the top of the barrier, with a correspondingly larger amount of
dissipated energy during and after the slip. In addition to this
quantum lubricity effect, a regime of quantum superlubricity is
in principle expected at sufficiently low temperatures, where the
friction decay with velocity decreasing to zero should be nonan-
alytical, with all derivatives equal to zero. It will be of interest
in the future to pursue these quantum novelties in more detail,
as soon as experimental realizations for single and many-particle
systems will emerge.
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