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The cocktail party problem requires listeners to infer individual sound
sources from mixtures of sound. The problem can be solved only by
leveraging regularities in natural sound sources, but little is known
about how such regularities are internalized. We explored whether
listeners learn source “schemas”—the abstract structure shared by
different occurrences of the same type of sound source—and use them
to infer sources frommixtures. We measured the ability of listeners to
segregate mixtures of time-varying sources. In each experiment a sub-
set of trials contained schema-based sources generated from a com-
mon template by transformations (transposition and time dilation)
that introduced acoustic variation but preserved abstract structure.
Across several tasks and classes of sound sources, schema-based sources
consistently aided source separation, in some cases producing rapid
improvements in performance over the first fewexposures to a schema.
Learning persisted across blocks that did not contain the learned
schema, and listeners were able to learn and use multiple schemas
simultaneously. No learning was evident when schemawere presented
in the task-irrelevant (i.e., distractor) source. However, learning from
task-relevant stimuli showed signs of being implicit, in that listeners
were no more likely to report that sources recurred in experiments
containing schema-based sources than in control experiments contain-
ing no schema-based sources. The results implicate a mechanism for
rapidly internalizing abstract sound structure, facilitating accurate per-
ceptual organization of sound sources that recur in the environment.

auditory scene analysis | perceptual learning | implicit learning |
statistical learning

Sounds produced by different sources sum in the air before
entering the ear, requiring the auditory system to infer sound

sources of interest from a mixture (the “cocktail party problem”)
(1–9). Because many different sets of source signals could gen-
erate an observed mixture, the problem is inherently ill-posed. In
the real world, however, constraints on the generation of sound
mean that assumptions can be made about which components of
sound energy came from the same source, enabling us to cor-
rectly infer source structure much of the time. Understanding
human listening abilities thus requires understanding these as-
sumptions and how they are acquired.
Some of the assumptions guiding scene analysis may be rather

general. For example, frequency components appearing at integer
multiples of a common “fundamental frequency” are usually heard
as arising from the same source (10–12), as are sounds that begin
and end at the same time (13, 14) and sound patterns that repeat
(15–17). These grouping cues are believed to reflect constraints on
sound generation that are common across natural sources (1) and
thus likely apply across a wide range of sounds and contexts.
Other cues to perceptual organization might apply only to par-

ticular contexts. Natural sources often produce sounds that are
patterned consistently across occurrences (as in animal vocalizations,
spoken words, or sung melodies), resulting in an abstract time-
varying structure shared by a subset of sound events. Internalizing
this recurring structure might be expected to aid scene analysis,
but unlike more generic grouping cues, which could be internalized
over evolution or by a general learning process operating on all
auditory input, source-specific structure would have to be learned
upon the appearance of a new sound source.
Although auditory memory has been argued to have lower ca-

pacity than visual memory (18), human listeners clearly acquire

rich knowledge of sound structure from listening. Many docu-
mented examples fall under the rubric of “statistical learning,” in
which humans internalize aspects of the sound input distribution,
such as transition probabilities between sound elements (19–21) or
correlations between sound properties (22). Such learning is
thought to be important for both speech (23) and music (24–26)
perception. Specific recurring sound structures, typically noise
samples, can also be learned (27–29). Such learning is appar-
ently often implicit (24–26, 30).
The ability to learn the structure of sound sources suggests that

such knowledge might be used for scene analysis, and source-specific
structures used for this purpose are often termed “schemas” in the
scene-analysis literature (1, 31–36). A role for learned schemas has
been suggested by prior findings that listeners are better able to
extract highly familiar voices (e.g., one’s spouse) (37), familiar
languages (38), well-known melodies (39–42), and words (43).
However, because these sources were already familiar to listeners
before the experiments, the underlying learning process has
remained opaque. Open issues include the rapidity with which
schemas can be learned and used in scene analysis, the specificity of
the learned representation, whether schemas can be learned in the
presence of multiple sources, whether learning is dependent on
attention to schema exemplars, and whether listeners must be aware
of what they are learning. Also, because prior work has largely been
confined to familiar structures in speech and music, it has been
unclear if schema learning is a general phenomenon in audition.
The experiments presented here were designed to reveal the

process of learning a new schema. Our approach was to have lis-
teners perform source-separation tasks on synthetic stimuli that
traversed a pattern over time and to test if performance improved
for targets derived from a particular pattern (the schema) that
appeared intermittently over the course of the experiment. We
employed this general approach in three separate experimental
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paradigms with different types of stimuli that varied in complexity
but never contained familiar source structure. In paradigm 1, lis-
teners discriminated four-tone melodies presented concurrently
with “distractor” tones, or comparable stimuli composed of noise
bursts (Fig. 1). In paradigm 2, listeners had to attentively track one
of two concurrent sources that changed stochastically over time in
pitch and the first two formants (spectral peaks that determine
vowel quality) (Figs. 2–4). In paradigm 3, pitch and formant
contours were extracted from recorded speech and resynthesized
to produce a stimulus that contained the pitch and formant con-
tours of an actual speech utterance but that was not intelligible.
Listeners heard a mixture of two such utterances followed by a
probe utterance and were asked if the probe utterance was con-
tained in the mixture (Fig. 5). Audio demonstrations of all stimuli
can be found online at mcdermottlab.mit.edu/schema_learning/.
In each of these experimental paradigms, sources generated from

a common schema recurred over the course of the testing session.
These schema-based sources never appeared on consecutive trials
and were transformed each time to avoid exact replication and to
mimic the variation that occurs in real-world sound sources. We
then compared performance for sources derived from a common
schema with that for sources derived from schemas that did not
recur during an experiment. The results show that rapidly acquired
memories contribute substantially to source separation.

Results
Paradigm 1. Detection of Discrete-Tone Melodies. To explore
schema learning with a relatively simple stimulus, we presented
listeners with a six-tone “mixture” composed of a four-note mel-
ody with two additional distractor tones, followed by a four-tone
“probe”melody in isolation (Fig. 1A). Listeners were asked if the
isolated probe melody was contained in the mixture that pre-
ceded it. The probe melody was always transposed away from the
melody in the mixture by up to an octave, and listeners were told
that this would be the case. The transposition required listeners
to extract the structure of the melody and prevented them from
performing the task based on glimpsed features (e.g., note
fragments) of the mixture. On trials where the correct response
was “no” (the probe was not contained in the mixture), the probe
was altered by changing the middle two tones, with the first and
last notes of the melody retaining the relative positions they had
in the mixture. As a consequence, the task could not be per-
formed based on these outer tones alone. The tone onsets and
durations in the probe melody were unaltered on these “foil”
trials so that the task also could not be performed by recognizing
temporal patterns alone. Because we wanted to explore the
learning of novel structure, melodies were not confined to a
musical scale or metrical grid; pitch and timing values were
drawn from continuous uniform distributions so that there was
no conventional musical structure.
A schema-based melody appeared in the mixture on every other

trial (Fig. 1B) and on half of those trials also appeared as the four-
tone probe. Although the recurring schema could thus occur in
isolation (as the probe), the alternating-trials design meant that a
schema-based probe never immediately preceded a mixture con-
taining that schema, preventing immediate priming. The non–
schema-based trials for each participant consisted of trials drawn
randomly from the schema-based sets for other participants (one
from each of the other sets), so that schema- and non–schema-
based stimuli were statistically identical when pooled across par-
ticipants. As a consequence, any difference in performance be-
tween schema- and non–schema-based trials must reflect learning
of the schema.
Because pilot experiments indicated that learning effects might

be rapid, it seemed desirable to run large numbers of participants
on relatively short experiments. The number of participants re-
quired was beyond our capacity to run in the laboratory, and so we
instead recruited and ran participants online using Amazon’s

Mechanical Turk service. To mitigate concerns about sound quality,
we administered a headphone-screening procedure to detect par-
ticipants disregarding our instructions to wear headphones (44).
Evidence that the quality of data obtained online can be compa-
rable to that from the laboratory was obtained by comparing per-
formance between online and in-laboratory participants, described
below (experiment S2).
Schema learning of melodies (experiment 1). Listeners performed
100 trials of this task (taking ∼10–15 min to complete). If ex-
posure to a recurring melodic structure can help listeners detect
it when it is embedded among distractors, then we might expect
performance on schema-based trials to exceed that on non–
schema-based trials over the course of the experiment.
As shown in Fig. 1C, performance improved over time for both

schema- and non–schema-based sources [F(1,159) = 5.06, P =
0.026] but was better for schema- than for non–schema-based
trials [F(1,159) = 7.69 P = 0.0062]. Because the schema- and
non–schema-based stimuli were statistically identical when
pooled across participants, the performance benefit for schema-
based trials indicates that participants learned and applied the
structure of the schema. There was no interaction between trial
type and time [F(1,159) = 0.97 P = 0.32], perhaps because the
learning of the schema was relatively rapid (we return to this
issue in paradigm 2). However, the difference between schema
and non-schema performance was significant in the second half
of the session [t(159) = 2.61, P = 0.0098] but not during the first
half of the session [t(159) = 1.47, P = 0.14]. The above-chance
performance even in the absence of a schema indicates some
ability to match the probe stimulus to the mixture despite the
transposition. However, this ability is augmented by the ac-
quired knowledge of the tones that are likely to belong together
(the schema).
Because schema learning should, at a minimum, produce an

improvement in performance late in the experiment, in most
subsequent experiments we test for learning by comparing per-
formance between conditions in the second half of trials within
an experiment. Figures accordingly plot results binned into a
small number of time bins, typically two (to maximize power).
Schema learning is persistent (experiment 2). To test whether knowl-
edge of the schema could be retained over time, we conducted a
second experiment in which exposure to a schema was followed
by a middle block in which the schema-based melody was totally
absent, which in turn was followed by blocks featuring the original
schema or a new schema (Fig. 1D). The interrupting block con-
tained 20 trials (∼3 min). When melodies based on the original
schema returned in the final block, they showed a performance
benefit compared with the new schema [t(189) = 3.49, P < 0.001].
This benefit suggests that effects of exposure early in the experi-
ment persisted across the interrupting middle block.
Multiple schemas can be learned simultaneously (experiment 3). The
persistence of a learned schema might allow multiple schemas to
be learned and used concurrently. To examine this possibility, we
conducted a third experiment in which two different schemas
alternated, again interspersed with non-schema trials (each
schema thus appeared on every fourth trial). The experiment was
lengthened to 200 trials to present each schema 50 times, as
before. As shown in Fig. 1E, the results suggest a learning effect
for each schema similar to what we saw in the previous experi-
ments [pooled schema-based trials vs. non–schema-based trials
in second half of experiment; t(87) = 2.98, P < 0.005]. These
results suggest that multiple schemas can be learned and used at
the same time.
Schema learning occurs without isolated exposure to the schema (experiment
S1). To test whether the learning effects were dependent on expo-
sure to the schema in isolation via its presence in the probe stim-
ulus, we conducted an experiment which did not present isolated
probes. Instead, listeners were presented with two mixtures and
judged whether they contained the same melody. Performance was
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Fig. 1. Schema learning in melody segregation (paradigm 1). (A) Schematic of the trial structure (Upper) and a spectrogram of a sample stimulus (Lower).
A target melody (green line segments) was presented concurrently with two distractor notes (red line segments), followed by a probe melody (green line
segments). Listeners judged whether the probe melody matched the target melody in the mixture. The probe melody was transposed up or down in pitch by a
random amount. (B) Schematic of the basic experiment structure. On every other trial the target melody was generated from a common schema. On schema-
based trials, the melody in the mixture was drawn from the schema 50% of the time, while the probe was always drawn from the schema. (C) Results of
experiment 1: recognition of melodies amid distractor tones with and without schemas (n = 160). Error bars throughout this figure denote the SEM.
(D) Results of experiment 2: effect of an intervening trial block on learned schema (n = 192). Listeners were exposed to a schema, then completed a block
without the schema, and then completed two additional blocks, one containing the original schema and one containing a new schema. The order of the two
blocks was counterbalanced across participants. (Lower) The two rows of the schematic depict the two possible block orders. (Upper) The data plotted are
from the last two blocks. (E) Results of experiment 3: effect of multiple interleaved schemas (n = 88). Results are plotted separately for the two schemas used
for each participant, resulting in 25 and 50 trials per bin for the schema and non-schema conditions, respectively. (F) Spectrogram of a sample stimulus from
experiment 4. Stimulus and task were analogous to those of experiment 1, except that noise bursts were used instead of tones. (G) Results of experiment 4:
recognition of noise-burst sequences amid distractor bursts, with and without schemas (n = 68).
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low overall for this experiment, presumably because there were
twice as many opportunities to make streaming errors (Fig. S1).
However, the schema learning effect persisted, with better per-
formance for schema-based than for non–schema-based trials in
the second block [t (39) = 3.10, P < 0.005]. Listeners thus appear to
be able to detect and learn recurring structure even when it does
not occur in isolation.
Schema learning occurs for atypical sound sources (experiment 4). To test
whether comparable phenomena would occur for sound sources
that were even less typical of musical sources, we conducted an
analogous experiment with sequences of noise bursts. Unlike the
tones, the noise bursts were aperiodic and lacked a pitch in the
usual sense but nonetheless instantiated patterns of frequency
variation that were recognizable to human listeners (45). As
shown in Fig. 1G, listeners again performed better for stimuli
generated from a common schema [second block; t(67) = 3.56,
P < 0.001]. It thus appears that there is some generality to the
ability to learn recurring patterns and use this knowledge to
improve the extraction of those patterns from mixtures with
other sounds.

Paradigm 2. Attentive Tracking of Smooth Pitch-Formant Contours. To
further explore the generality of this phenomenon, we next turned to
a task and stimulus we had originally developed to study auditory
attentive tracking (46). Synthetic voices were generated that varied in
several speech-relevant feature dimensions (pitch and the first two
formants: f0, F1, F2) according to independent, randomly generated
trajectories. Listeners were presented with mixtures of two such
time-varying sources and were cued beforehand to attend to one of
them (with the starting portion of one voice). Wemeasured listeners’
ability to track this cued voice by subsequently presenting them with
the tail end of one of the voices; their task was to judge whether this
probe segment belonged to the cued voice (Fig. 2A).
Trajectories in a mixture were required to cross each other at least

once in each feature dimension, so listeners could not perform the
task simply by attending to a high or low value of one of the features.
Although the trajectories of each source were continuous, task
performance is not critically dependent on complete continuity, as it
is robust to the insertion of intermittent gaps in the stimuli (46).
Moreover, despite the continuity, the task is effortful for human
listeners, and success depends in part on accurate tracking of the
cued voice as it varies throughout the mixture (46). One other dif-
ference between paradigms 1 and 2 was that the probe in paradigm
2 consisted only of the ending portion of a source (unlike paradigm
1, in which the probe had the same form as the target melody). As a
result, listeners never experienced a source trajectory in the absence
of a concurrent source, providing another test of whether schemas
can be learned and used even when sources never occur in isolation.
Given that we ran experiments online to obtain sufficient sample

sizes, it is natural to wonder whether data quality was comparable
to that in experiments run in the laboratory. To address this issue,
we compared performance on this attentive tracking task between
online and in-laboratory participants (experiment S1). We chose to
perform this comparison for the attentive tracking paradigm be-
cause it seemed most likely to suffer in a subject pool that was less
motivated, as might be expected in an online environment. How-
ever, we found that performance was similar between online and
in-laboratory participants once online participants were screened
for headphone use (Fig. S2). This result gave us some confidence in
our online testing procedures.
Schema learning extends to pitch-formant contours (experiment 5). To
first test for the basic schema learning effect with this task, we
ran an experiment in which the cued voice on every other trial
was derived from a common schema trajectory (Fig. 2B). These
schema-based sources were not exact replicas of each other but
were related by time dilation and transposition, as might occur in
natural sound sources, such as prosodic patterns in speech. Trials
in which the target was not schema-based had targets drawn from

the sets of schema-based targets presented to other participants
(Methods), so that when pooled across subjects the distribution
of schema-based and non–schema-based targets was identical.
To better explore the time course of any learning effect, we ran a
longer experiment than we did for paradigm 1 (168 trials; ∼35–
40 min, which we divided into two time bins for analysis with
maximum power but also plot in six bins to provide a sense of the
dynamics over time).
Performance over the course of the experiment is shown in

Fig. 2C. Overall task performance was again significantly better
for trials whose targets were based on a common schema [main
effect of trial type, F(1,85) = 16.2, P = 0.0001; repeated-
measures ANOVA]. Moreover, although there was a general
improvement over the course of the experiment [F(1,85) = 10.1,
P = 0.002], performance on schema-based target trials improved
more than did performance for regular trials, yielding a signifi-
cant interaction of trial type and time [F(1,85) = 12.5, P =
0.0007; repeated-measures ANOVA], again driven by a perfor-
mance difference in the second half of trials [t(85) = 5.14, P <
10−5]. These results suggest that performance can be facilitated
by recurring structure even when sources vary in multiple di-
mensions and never appear in isolation.
Learning effect is not explained by cues and probes (experiment 6). One
potential explanation for the learning effects in this task is that
listeners learn something about the relationship between the cues
and probes for the schema-based trajectories rather than from the
trajectory itself. Although time dilation of schema-based trajectories
resulted in the associated cues and probes not having a fully con-
sistent relation to one another, we nonetheless guarded against any
such strategy when generating stimuli by matching the distributions
of distances between the cues and the correct and incorrect probes
(Methods). To ensure that these measures indeed prevented lis-
teners from performing the task with the cue and probe alone, we
ran a second experiment in which the mixture on the last one-third
of trials was replaced by noise (Fig. 2D). In a pilot experiment we
found that when the relationship between the cues, correct probes,
and incorrect probes was not controlled, performance remained
significantly above chance during the noise block for both types of
trials [non-schema trials: t(87) = 4.41, P < 0.000; schema trials:
t(87) = 3.22, P < 0.0018], demonstrating the effectiveness of this
control experiment (and the necessity of controlling the stimuli).
Replicating experiment 5, superior performance for schema-

based trajectories was apparent over the first two-thirds of the
experiment [F(1,132) = 8.35, P = 0.005] (Fig. 2D). However,
performance fell to chance levels once the mixtures were
replaced by noise [t tests vs. chance: schema-based trajectories,
t(132) = 0.71, P = 0.48; non–schema-based trajectories, t(132) =
0.06, P = 0.96], with no difference in performance between
schema-based and non–schema-based trajectories [t(132) = 0.46,
P = 0.65]. It thus appears that listeners cannot perform the at-
tentive tracking task based on the cue and probe alone, and that
the benefit of schema-based trajectories is not due to learning
cue–probe relationships for these trajectories.
Rapid learning evident via crowdsourcing (experiment 7). In experiments
5 and 6, the schema-based sources seemed to have elicited different
levels of performance from the outset of the experiment (Fig. 2 C
and D). Because the balancing of the stimulus sets was intended to
prevent an intrinsic difference in difficulty between conditions, we
considered the possibility that learning might be occurring on a fast
timescale. To test this, we pooled the data from experiments 4 and 5
(these experiments were identical for the first 56 trials) and exam-
ined performance over smaller bins of seven trials per bin rather
than 14. A power analysis indicated that additional participants
would be required to discover possible effects at this timescale, and
so an additional 183 participants were run on a shorter, 56-trial
version of the attentive tracking paradigm (experiment 7).
With a resolution of seven trials per bin, it is evident that

performance at the outset of the experiment did not differ
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between conditions [first time bin: t(401) = 0.92, P = 0.36]
(Fig. 2E) but that performance differences emerge quickly
(significant differences for all other time bins: P < 0.05 in all
cases). The ability to observe this rapid learning was facili-
tated by the fact that the experiments were run online, which
allowed us to efficiently test a relatively large number of lis-
teners (n = 402). This observation provides some confirmation
that the stimuli in the schema-based and non–schema-based
conditions do not differ in their intrinsic difficulty; it is only
the presence of other schema-based stimuli that boosts per-
formance. The results are suggestive of a learning effect oc-
curring over relatively small numbers of exposures.

Schema learning need not be explicit. The presence of a learning effect
raises the question of whether participants are aware of what they
are learning. To address this issue, after finishing the task, partic-
ipants were asked if they had noticed repetition in the cued voice.
The proportion of “yes” responses from experiment 5 (the longest
experiment run with this paradigm) is shown in Fig. 3 along with
responses from two control experiments: one that contained no
schema-based sources (control experiment 1) and another in which
every cued voice was schema-based (control experiment 2, in which
we expected participants to notice the recurring source structure).
Participants did not report repetition in experiment 5 any more
often than in the control experiment with no schema-based sources
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test (reported in text). Error bars throughout this figure denote the SEM. (D) Results of experiment 6: a control experiment to ensure listeners could not
perform the task with cues and probes alone (n = 146). In the last one-third of trials, the voice mixture was replaced with noise. (E) Schema learning on a finer
time scale (n = 402). Data from the first 56 trials of experiments 5 and 6 were combined with new data from experiment 7 and replotted with seven trials per
bin. The finer binning reveals similar performance at the experiment’s outset, as expected. n.s., not significant. *P < 0.05.
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(z = 0.98, P = 0.33). This result suggests that the general similarity
across stimuli caused listeners to report hearing recurring structure
whether or not it was actually there. However, when the schema
was made obvious by inserting it into every trial of the experiment
(control experiment 2), listeners reported recurring structure more
than in the other two experiments (experiment 5: z = 2.04, P =
0.021; control experiment 1: z = 2.68, P = 0.0037). Overall, these
results suggest that in our main experiment listeners were not fully
aware of the schema-based similarities that facilitated perfor-
mance, indicating that schema learning need not occur explicitly.
Multiple feature dimensions are concurrently learned (experiment 8).The use
of three feature dimensions (f0, F1, and F2) raises the question of
whether the schema that is learned by listeners incorporates all
three available dimensions. To address this issue, we conducted an
experiment that was identical to experiment 5 except that the for-
mant trajectories of the schema-based stimuli were randomized
from trial to trial starting halfway through the experiment (Fig. 4A).
If the schema that is learned is mainly a function of the f0 trajectory,
listeners should continue to show a schema benefit in the second
half of the experiment. If instead all three feature dimensions are
important to the schema, the learning effect might weaken or dis-
appear altogether once the formant trajectories are randomized.
As shown in Fig. 4B, a schema benefit was obtained in the first

half of the experiment [t(85) = 2.00, P = 0.049] but not in the
second half of the experiment [t(85) = 0.63, P = 0.53]. Moreover,
when the data from the second half of experiment 5 (in which
schema-based formants continued throughout) was compared with
that of the present experiment, there was a significant interaction
between the experiment and the effect of trial type [F(1,170) = 13.0,
P < 0.0005; data pooled across bins 4–6]. This result suggests that
listeners learned the recurring structure in the formants in addition
to the f0 and that schemas are thus not limited to pitch variation.

Generalization from the learned schema (experiment 9). To further ex-
plore the nature of the learned schema, we investigated whether
the schema benefit varied with the similarity of a sound to the
schema’s central tendency, taking advantage of the stimulus vari-
ation inherent to the experimental design. We ran an experiment
otherwise like experiment 5 but with twice as many participants,
allowing analyses of subsets of trials based on similarity to the
schema. To analyze non-schema trials, we evaluated similarity as
the mean of the correlation in each dimension between the ca-
nonical schema (i.e., the one at the center of the dilation/trans-
position range) and the non-schema target. To analyze schema
trials, we considered variants in the middle of the dilation range
separately from those at the extremes of this range. In both cases
we tested whether there was a performance benefit for the one-
third of targets most similar to the canonical schema compared
with the one-third of targets least similar to the schema.
As shown in Fig. 4C, the non-schema target stimuli that were

most similar to the schema produced similar performance to the
schema-based target stimuli [t(171) = 1.28, P = 0.2, with data
pooled over both time bins], unlike the least similar targets [t(171) =
2.95, P = 0.004]. Moreover, the two groups of non-schema targets
produced different performance levels [t(171) = 2.95, P = 0.0037 in
the first of the two time bins, with a nonsignificant trend when
pooled across both bins: t(171) = 1.67, P = 0.098]. Due to the design
of the experiment (in which schema trials alternated with non-
schema trials), this difference could have been driven by immedi-
ate priming by the preceding stimulus rather than the learned
schema. However, analysis of the schema-based stimuli revealed a
similar result: The more canonical schema-based stimuli (the mid-
dle of the range of time-warped variants) produced better perfor-
mance than the schema variants that were most dilated/compressed
[t(171) = 1.96, P = 0.051; data pooled across both time bins] (Fig.
4D). In addition, the most compressed/dilated schema-based stimuli
produced better performance than the non-schema stimuli [t1(171) =
1.98, P = 0.049]. As expected given the results of experiment 8, both
pitch and formants contributed to the schema-similarity boost; the
same analysis on f0, F1, and F2 separately did not reveal signifi-
cant effects, either in the pooled data or in any single time bin
(P > 0.2 in all cases). The results suggest a graded effect of the
schema, perhaps because listeners learn and represent the un-
derlying stimulus distribution to some extent.

Paradigm 3. Segregation of Speech-Like Utterances. The stimuli used
in paradigms 1 and 2 (discrete tone or noise patterns and continuous
voice-contours) are arguably simplistic compared with natural stimuli
such as speech. To test for schema learning in a more naturalistic
stimulus, we extracted pitch and formant contours from utterances in
a large speech corpus and resynthesized them with the same method
used to synthesize the smooth stochastic trajectories in paradigm 2.
We reproduced only the voiced regions of speech and left silent gaps
in place of consonants, so that the resulting stimulus was not in-
telligible but otherwise traversed the space of pitch and formants in a
realistic manner. Listeners were presented with a mixture of two
utterances followed by an isolated probe utterance and had to decide
if this isolated utterance had also appeared in the mixture (Fig. 5A).
The probe utterance not only was transposed away from the mixture
(as in paradigm 1) but also was time-warped (i.e., compressed or
dilated) by up to ±25% (Methods). The transposition and dilation
again required listeners to extract the structure of the utterance and
prevented them from performing the task by recognizing local fea-
tures glimpsed during the mixture.
Schema learning of feature trajectories from real speech (experiment 10).
Would the schema-learning effects in the first two paradigms also
manifest with this more realistic stimulus? We conducted a 100-
trial experiment (∼10–15 min) in which schema-based targets
appeared on alternate trials (Fig. 5B). As with paradigms 1 and 2,
the non–schema-based stimuli for a participant were drawn from
the schema-based trials for other participants, so that schema- and
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non–schema-based trials were statistically identical when pooled
across participants.
As shown in Fig. 5C, a benefit was rapidly obtained from the

recurring schema, with performance on schema-based trials
again exceeding non–schema-based trials during the second half
of the experiment [t(92) = 2.94, P = 0.0041]. These results
demonstrate rapid schema learning for natural feature trajecto-
ries that have more complex generative constraints than the
stimuli used in paradigms 1 and 2, raising the possibility that fast
and flexible schema learning could help us hear behaviorally
relevant sources in the real world.
Schema-based distractors (experiment 11). It seemed of interest to test
effects on performance when schema-based sources appeared as
the distractor instead of the target. However, paradigms 1 and
2 did not provide a clear means to study this: In paradigm 1 the
distractors were not of the same form as the target melodies
(being a pair of two tones rather than a four-note sequence),
while in paradigm 2 the need to control cue–probe relationships
made it methodologically challenging to implement experiments
with similar distractors. The mixture–probe task of paradigm

3 was well suited to address this question, so we conducted an
additional experiment in which the nontarget utterance in the
mixture (on alternate trials) was generated from a common
schema (Fig. 5D). This experiment was run for 200 trials rather
than 100 trials as in experiment 7, providing the listener with
considerable exposure to the schema by the end of the experi-
ment. The results (Fig. 5E) show that the schema-based dis-
tractor nonetheless had no detectable effect on performance
[F(1,201) = 1.85, P = 0.18; no significant difference for any time
bin], providing evidence that a recurring schema is less likely to
be internalized if it does not occur in the attended source.

Discussion
Sources in auditory scenes often produce sound with some de-
gree of consistency. We explored the conditions in which this
consistency might be learned and used to guide scene analysis.
We tested if listeners would obtain a source-separation benefit
from the recurrence of a source under transformations such as
transposition and time dilation, which produce acoustically dis-
tinct variants that share abstract structure. Such a benefit would
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imply learning of the abstract structure of the recurring source (a
schema). Using several types of stimuli and tasks, we found that
source separation benefitted from the presence of a schema and
that the learning of the schema was rapid, persistent, and could

occur without listeners noticing. Schema learning occurred even
when sources never appeared in isolation (experiments S1 and 5–
9). We also found that learning was at least somewhat specific to
attended sources: No benefit was obtained when the schema
appeared in the distractor source. The benefit of the learned
schema generalized to some extent to sounds sufficiently similar
to the schema, with a greater benefit for sounds most similar to
the schema. Overall, our results demonstrate that abstract source
structure can be rapidly internalized to facilitate accurate seg-
regation, demonstrating one way recurring structure in the au-
ditory environment could aid the separation and selection of
sound sources from auditory scenes.

Prior Evidence for Schemas in Scene Analysis. Prior work showing
that source-separation tasks are aided by memory typically used
highly familiar sound sources to which listeners have consider-
able prior exposure, such as familiar voices (37), melodies (39–
41), and linguistic content (43). However, because these sources
were already familiar to participants, the learning process could
not be studied. Our results reveal schema learning in action and
place constraints on the underlying mechanisms.
To our knowledge, the only prior evidence of abstract structure

benefitting source separation for previously unfamiliar sources
came from a study using randomly generated melodies (31). In that
study, listeners judged if two target melodies were the same or
different; one of the melodies was interleaved with a distractor
melody, forming a mixture, and was transposed to a different pitch
range (so that discrimination required comparing pitch intervals).
Performance was better when the mixture appeared second (pre-
ceded by the isolated melody), suggesting that segregation could be
guided by abstract melodic structure when primed immediately
beforehand. However, in this study melodies did not recur across
trials, and so the effect of recurring structure was evident only
within a trial. Our results are distinct from these effects in showing
that schemas can be learned if they recur intermittently over the
course of an experiment and that their effects are persistent over
time, do not seem to require explicit knowledge of the target, and
need not reflect immediate priming. We also find that schemas
extend to nonmelodic stimuli.

Relation to Other Examples of Learning in Audition. A number of
studies have demonstrated auditory learning of unfamiliar sounds
such as noise samples or tone patterns over the course of an ex-
perimental session (28, 29) or of statistical properties of the input
(19–26). Practical effects of such learning may be found in adap-
tation to unfamiliar speakers (47) or foreign accents (48). How-
ever, these studies presented stimuli in isolation and did not assess
the effect of learning on source separation. Before our work, it was
thus unclear whether source structure could be learned in the
presence of concurrent sources and whether any such learning
would benefit scene analysis. Our work used unfamiliar stimuli
in combination with sound-segregation tasks to show that rapid
learning aids source separation.
The learning evident in our experiments bridges two lines of

prior learning research. As in experiments where specific noise
samples are learned (27, 28), our learning effects had some
specificity to the learned source, producing a performance ad-
vantage from schema-based over non–schema-based stimuli, even
though they were similarly generated and shared many of the same
statistical properties. However, as in statistical learning paradigms,
listeners appear to learn aspects of the distribution associated with
the variants of a schema (19–26), with a greater benefit for stimuli
most similar to the central tendency of the schema.
Previously described examples of schema-based source sep-

aration have been thought to rely on explicit knowledge, as
when we follow a familiar melody in music (1, 40). However, like
many other examples of perceptual learning (24–26, 30), our effects
appear to be largely implicit in at least some of the experiments.
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As in some instances of visual implicit learning (49), learning
nonetheless appears to be somewhat limited to task-relevant
stimuli. We thus demonstrate that source structure can be
learned amid concurrent sources but perhaps only when at-
tention is directed to it.

Relation to Effects of Short-Term Source Repetition. Another relevant
line of previous work involves effects of sources that exhibit regular
or repeating structure. For example, cyclically repeating patterns in
ambiguous streams of tones are known to group over time to form
a single auditory stream (16). Repetition also causes random noise
sources to be segregated from mixtures (17). These phenomena
are distinct from those that we studied here in that the recurring
structure is exact, occurs on a short timescale, causes the re-
peating elements to group together, and shows no evidence of
learning (i.e., retention over periods where the source is not pre-
sent). That said, one can envision a continuum between the con-
ditions of these previous studies (back-to-back and exact repetition)
and those of the present study (abstract recurrence across in-
tervening stimuli), and it remains to be seen whether there is any
relation between the underlying mechanisms.

What is Learned?Our listeners evidently learned something about
the recurring structure in each experiment. Because sources were
transposed and time-dilated/compressed over the course of
learning, the recurring schemas were not individuated by par-
ticular feature values. Our results suggest that listeners instead
learned something about the way the source’s features changed
over time. Experiment 8 demonstrated that the learned schema can
incorporate variation in formants as well as pitch, since the per-
formance benefit for schema-based stimuli was eliminated when
formant trajectories were randomized in schema-based trials. Ex-
periment 9 showed that the learned schema provided a benefit to
non-schema targets that were sufficiently similar to the schema
(provided the similarity metric included both pitch and formants)
and an added benefit to schema targets in the middle of the range
of possible time-dilated variants. Overall, the results indicate that
learning can occur over a range of task-relevant features and that
the effect of the schema is graded, providing the greatest benefit to
stimuli most similar to the canonical schema.
The recurring structures in our experiments were abstract,

since the schema always appeared transposed or dilated/com-
pressed to varying degrees (transformations inspired by the varia-
tion that occurs in speech and music). It would be interesting to
further explore the nature of the learned representation by testing
the transfer of learning across different transformations (e.g., time
reversal or rotation of trajectories in feature-space) and to explore
limits to the types of abstract structure that can be learned (e.g., by
exposing listeners to different types of source transformations dur-
ing learning). There are also likely limits to the contexts in which
they can be utilized. For example, listeners are known to have dif-
ficulty detecting even a highly familiar melody if it is perfectly in-
terleaved with a set of distractor tones (31, 39). Understanding how
schemas interact with other constraints on source separation is thus
another important topic for future research.

Primitive vs. Schema-Based Scene Analysis. Schema-based scene anal-
ysis in audition has historically been contrasted with “primitive”
scene analysis, in which putatively universal grouping cues are me-
diated by processes that do not require attention or memory (1, 8,
35, 50). For example, sequential sounds that are similar (e.g., in
pitch or timbre) often arise from the same source in the world and
tend to group perceptually over time (7, 35, 51). However, because
schema-based scene analysis has not been studied extensively in
the laboratory, little is known about the underlying mecha-
nisms, and the extent to which they are distinct from those of

primitive scene analysis has been unclear. The methodology
introduced here should enable future progress on these issues.
It is possible that the schemas that are learned in our experi-

ments affect perception in much the same way as putatively
primitive grouping cues (e.g., pitch differences between talkers).
This notion could be tested by comparing the neural or behavioral
consequences of schema-driven segregation with those of segre-
gation via other cues (e.g., pitch differences). For instance, it could
be diagnostic to examine whether a learned schema affects the
ability to discriminate the temporal relationship between elements
of the schema and another concurrent source, which is often taken
as a signature consequence of streaming (43, 52, 53).
The effect of the learned schema may also be to alter the in-

teraction of streaming and attention. It could be that a learned
schema makes it easier to attend to a source conforming to the
schema, explaining the better performance on our tracking task,
for instance. Alternatively, if memory is complementary to attention,
then schema learning might serve to reduce the attentional resources
that would otherwise be required to segregate a recurring source
from others. These possibilities could be disentangled by measuring
attentional selection [for instance, by asking listeners to detect per-
turbations to sources (46)] before and after schema learning.
However, should the tasks we used even be considered to in-

volve streaming? All the stimuli involve discriminating sound
sources embedded in mixtures with other sounds, but the stimuli
were relatively short. As such, they are distinct from the long se-
quences of alternating tones commonly used to study streaming
(35, 51). Such stimuli notably exhibit a “buildup of streaming” in
which the likelihood of hearing two streams increases with time (3,
53, 54). Although the stimuli we used do not evoke this particular
phenomenon, they nonetheless require sound energy to be grouped
over time. As such, we conceive them as involving streaming in a
more general sense of the term and view them as useful for un-
derstanding real-world scenarios in which sources do not repeat
cyclically ad infinitum.
The rapidity of the learning effects shown here also raise the

possibility that learning could influence all aspects of scene anal-
ysis, even those that are quite general in their applicability. Even
evidence that newborns exhibit aspects of similarity-based stream-
ing (55, 56) is consistent with learning from early experience. The
difference between primitive and schema-based processes might
thus be better described in terms of the scale and scope of learning:
Primitive scene analysis could effectively be mediated by schema
that are very general and that can be applied indiscriminately.

Schema Learning May Be Ubiquitous in Audition. In real-world au-
ditory scenes, sources are sometimes unfamiliar, and recurring
structure may occur only intermittently and concurrent with
other sounds. Our results demonstrate that the auditory system
can rapidly learn to utilize abstract source structure even in such
challenging conditions. The robustness of this learning could
allow schema-based scene analysis to occur across a much wider
range of scenarios than previously imagined.

Materials and Methods
All experiments were approved by the Committee on the Use of Humans as
Experimental Subjects at the Massachusetts Institute of Technology. On the
initial page of the online task, participants read a disclaimer (as required by the
MIT Committee for the Use of Humans as Experimental Subjects) and consented
to participation in the experiment. Participants in the in-laboratory condition in
experiment S1 signed a form indicating their consent to participate. Methods
are described in SI Materials and Methods.
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