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Abstract

We study the group bridge and the adaptive group bridge penalties for competing risks quantile
regression with group variables. While the group bridge consistently identifies non-zero group
variables, the adaptive group bridge consistently selects variables not only at group level, but also
at within-group level. We allow the number of covariates to diverge as the sample size increases.
The oracle property for both methods is also studied. The performance of the group bridge and the
adaptive group bridge is compared in simulation and in a real data analysis. The simulation study
shows that the adaptive group bridge selects non-zero within-group variables more consistently
than the group bridge. A bone marrow transplant study is provided as an example.
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1. Introduction

Quantile regression provides an alternative method to the Cox proportional hazards model
and the accelerated failure time (AFT) model in survival analysis [1]. It is often preferred
when the survival distribution is skewed. There is rich literature in survival quantile
regression. Peng and Huang [2] proposed a martingale-based estimating equations. Reich
and Smith [3] developed a semiparametric Bayesian quantile regression model for censored
data. Yin et al. [4] studied a power-transformed quantile regression model for survival data.
Yin and Cai [5] proposed quantile regression models for correlated survival data.

Recently quantile regression for competing risks data have had much attention. Peng and
Fine [1] proposed a semiparametric model based on the competing risks AFT model. Sun et
al. [6] developed a regression model when the failure type is missing in competing risks
data. Lee and Fine [7] studied parametric and nonparametric methods to make inference on
cumulative incidence quantiles.

In spite of increasing popularity of quantile regression for survival and competing risks data,
the current literature on variable selection is somewhat limited. Jiang et al. [8] proposed the
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adaptive lasso for a composite quantile regression with randomly censored data. Wang et al.
[9] also studied the adaptive lasso for censored quantile regression. They all studied a
survival setting, not a competing risks setting. In addition, their proposed methods addressed
variable selection at individual level, not at group level. In practice, clinicians often
encounter group variables such as categorical variables. For example, Verneris et al. [10]
studied the outcomes of the patients having reduced-intensity conditioning allogeneic
hematopoietic cell transplantation from 1999 to 2011. They studied competing risks
outcomes including relapse and treatment-related mortality (TRM), where relapse and TRM
are competing risks to each other. The variables that they considered for analysis consisted
of binary and categorical variables.

Several penalties have been proposed to select group variables for linear regression and
competing risks settings. Yuan and Lin [11] proposed the group lasso, which selects
variables at group level, not at within-group level. Huang et al. [12] developed the group
bridge to select both non-zero group and non-zero within-group variables. However, they
studied group selection consistency only and did not show within-group variable selection
consistency. Zhou and Zhu [13] proposed an adaptive hierarchical lasso having group
variable selection consistency and within-group variable selection consistency. Zhao et al.
[14] applied the adaptive hierarchical lasso penalty to identify non-zero variables at both
levels for quantile linear regression. Fu et al. [15] extensively studied lasso, adaptive lasso,
SCAD, and MCP for individual variable selection and their group variable selection versions
for the subdistribution hazards model. However, they did not address within-group variable
selection. In addition, their oracle property was limited to a fixed number of covariates.
Despite extensive work in group variable selection for linear, linear quantile, and
subdistribution hazards regression models, there is little literature on group variable
selection in competing risks quantile regression. In particular, group and within-group level
variable selection techniques remain unexplored in the current literature to the best of the
authors’ knowledge.

We propose the group bridge and the adaptive group bridge for bi-level variable selection,
that is, group and within-group variable selection, under the competing risks quantile
regression model of Peng and Fine [1]. While the group bridge consistently identifies non-
zero group variables, the adaptive group bridge consistently selects non-zero variables at
both group level and within-group level. When there is no group structure for variables,
individual variable selection can be handled as a special case of the proposed methods.
Based on our knowledge, even individual variable selection has not been studied for the
competing risks quantile regression. We study their oracle property while allowing the
number of variables to diverge as the sample size increases. We show the adaptive group
bridge identifies non-zero within-group variables more consistently than the group bridge in
simulation study. In Section 2, we describe the proposed methods and study their theoretical
properties. In Section 3, we compare the performance of the adaptive group bridge and the
group bridge via simulation study. We illustrate a real data example in Section 4 and have a
brief conclusion in Section 5. All the proofs of the theorems and the lemmas in this paper
can be found in the online Supplementary Materials.
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In this section, we propose a penalized competing risks quantile regression model and study
its theoretical properties. We begin with some notations. Without loss of generality, we
consider two causes of failure e € {1,2} with sample size n. We allow the number of

covariates dj, to increase as 77increases. Let 7; Cj ejand 2, = (1,Z,,.....Z,, )T be the event
n

time, censoring time, cause of failure, and covariate vector of subject /for /=1, ..., n.
Denote By(7) = {Bjo(2); /=0, ..., d,} 7 as the true parameter vector given quantile z, where
Po.o is the true intercept coefficient. Let X; = 7;" C;jbe the observed time and §; = (7; <
C)l(ej=1), where 2" b=min (a, b). We assume that (7}, e, Cj, Z;) are independent and
identically distributed, and the 7;/s and C/s are independent given Z; for /=1, ..., n. The
study period is [0, L]. Let F(4Z;) be the cumulative incidence of cause 1 at time Zgiven Z;,
where F(4Z;) = A(T; < te;j=1|Z;). Given covariate Z, we define the zth conditional quantile
of F(42) as @1(dZ) = inf{t F(42) = }. For T e[z, 7y with 0 < 7,7 < 1, we consider
Q1(dZ) = H{Z7 B(7)}, where ¢(-) is a known monotone link function. Let Il-Il be the
Euclidean norm and a®2 = aa’ for a vector a.

LetZ, = (Z;,.....Z;; )". For simplicity, we assume that Z_’s are fixed over time. Let
n

Nl.G(t) = I(C; < T)I(C; < 1) be the counting process for censoring and Y{(#) = /(X;= 7). We use
the Cox proportional hazards model to fit censoring time C/’s:

a7
N Z)= )\g(t)e ¢

Where xg(t) is an arbitrary baseline hazard function for censoring and a” is the unknown

parameter vector. Define

sDa,n=n! Z Y(t)Z®d
i=1

where @=0,1, and 2. The baseline cumulative hazard function for censoring Ag(t) is

estimated by the Breslow-type estimator [16]:

_ dN ()
A (:8) = / 21 1 7

nS(O)(a )

where « is the estimator of a based on the Cox proportional hazards model. Then, we
estimate G(:1Z,) as follows:
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T
A t@ 2, o
G(tIZl.):exp —A e dAo(u:a) .

We can obtain the consistency of &, Kg(z:&), and G(11Z,) as follows:

Assume Conditions (a)-(e) as in Appendix. Then, we have H& - a” = Op( [d In)
sup,|AG (1:@) — AS ()1 = 0, fd,Tn), and supJG(Z) - GIZ)| = O (,[d, Tn).

When the censoring distribution G does not depend on any covariates, the Kaplan-Meier
estimator can be used instead of the Breslow estimator. The proof of Lemma 2.1 can be
found in the online Supplemental Materials.

Next, we define some notations on group variables and their memberships. Assume that we
have K groups of variables. Let Aq,...,Axbe subsets of {1, ..., dj;} representing group
memberships of variables, where Ay’s may overlap. Define Ba(z) = {B(7)./ e A} Tand
Bao(?) = {Bjo(D); j e A} for a set A. To distinguish the individual memberships between
non-zero Bo(z)’s and zero B;o()’s, we define By and B, such that B;o(z) # 0 if j & By and
Bjo(z) = 0if j e B,. To distinguish the group memberships between non-zero ﬁAk’ o®’sand

Zero ﬁA o(®’s, without loss of generality we further define £; and £; such that

E = uk 1A and E Ap where ﬂAk o #0 for1 < k< Kj and ﬁAk 0 =0

K
2= Uk:K1+1

for Ki+1<ks K

To estimate f(z), Peng and Fine [1] considered the estimating equation S,(b, z) = 0, where

X; <g@b)}I6;= 1)
S,b,0)=n"2Y 7] 1 L o 7.
b =n ,Zl G(XZ,) a0

To solve Sy(b, 7) =0, Peng and Fine [1] proposed the following L4-type convex function:

T

)—bZ ZI(5 )

n
U (b.7) = 21(5_1)| +IM - sz +IM— bTZZZrI
i=1 ( ) i=1 j i=1

where Mis a very large positive number to bound b” Y _  ~Z,1(5, = 1)/G(X,1Z,)l and
'bTZ?: , 227l for all b’s in the parameter space for By(z). They studied the consistency and

the asymptotic normality of the estimator of By(z) obtained by solving S,(b, ) =0 when G
is non-covariate dependent and d), is fixed.
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To select variables at bi-level, we propose the following penalized function:

4

.

K b
W,(b,7) = U,(b,7)+ 1, Y. ¢, —
k=1 jeAkIﬂj(T)l

where ﬁj(r) is a consistent estimator of A(z), v=0, A,>0, and 0 < y < 1. Following Huang

etal. [12], we set ¢, IAkI1 ~ 7, where |A| is the cardinality of A. If v=0, the penalty term is

the group bridge penalty of Huang et al. [12] and Huang et al. [17]. When v> 0, we call the
penalty term as adaptive group bridge penalty. The adaptive group bridge becomes i)
individual variable selection when |Ax| = 1 for all k; and ii) the adaptive hierarchical lasso
penalty of Zhou and Zhu [13] when y = 1/2 and ¢, = 1 for all k.

We can formulate minimizing W(b, ) to minimizing

K b7 K

37 1-1/y 1/

W, (b,0,7) = U,(b,7) + 2 60, e z: == +¢, E:Qk, 3)
k=1 jeAklﬂjl k=1

where 8= (6, ..., 6))7. By defining

/i ]7 k=1,...K

- 1—7)}'
0, =c, | ——
k k( ol )i En B @

we can show the following lemma similarly to Proposition 1 of Huang et al. [12] and thus its
proof is omitted:

Assume that &, = ¢! ~7,77(1 — )7 ~ ! for 0 < y < 1. Then, f(z) minimizes W, (b, 7) if and

only if {ﬁ(r),é} minimizes W (b.0,7), where 6> 0and 8, > 0 for k=1,..., K.

Define S (b,7) =n~ "/ 22;; 1Zl.[Fl{g(Zl.Tb)IZi] — 7]. Denote VS, (b, 7) as the first derivative
of §n(b, 7) with respect to b. We first study the oracle property of the group bridge estimator
given z. We assume that

(C1) There exists w> 0 such that P(C = »!Z) > ¢ > 0 and P(C > »|Z) = 0 for any Z.

(C2) Zjjand Bjo(7) are uniformly bounded for j=1,..., d.

(C3) A(42) is bounded above uniformly in tand z, where 7,(4z) = dF(42)/dt.
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Define H(b) = E{n‘“ VS, (b, T)] =Ez®? fl{ g(ZTb)IZ}(;)(ZTb)]. For some pg >

0, >0,and & >0, infy o,  x{H(b) H(b)| < C, < oo,

>C, and supbe%(p )K

d +1
where B(p,) = ‘bsR n :||b - ﬁo(r)” < pyt and x(H) is the eigenvalue of a

matrix H.

2(z) = Var{S, (b, 7)}. There exist C3 > 0 and C4 > 0 such that
infpecs,, )K[Z(T)}] > C; and WPpech,, )K[Z(T)}] < C, < o, where gy > 0.
0 0

There exists a constant Cs > 0 such that

-1 ~ ~ ..,
Whesa, 0<i<d," Cov{ VS, 6.0, VS, (b0} < C5< oo, forall 0<
O b

< dp, where VS| (b, 7) is the (i, jth entry of VS, (b, 7).

di/n—>0.

* K . .
C;, = max; D _ IGeA,) is bounded and
2 -2

K Y
1
Any L lc,f[ > jeAklﬂj,O(T)ll A <d M, , M= Op(1),where
xn/[ny/zxmax{ > (r)}d}l‘m] —asn—

™20, Ut S0 45 D00] + T 1 000
M @"al =77 o as n— o0

(C1)—(C5) are similar to the standard conditions for the competing risks quantile regression
of Peng and Fine [1]. Peng and Fine [1] suggested to use a truncated censoring time C=
mim(C, L) for win (C1) so that (C1) is always satisfied. In practice, w can be chosen as
large as possible so that only small information loss occurs [1]. (C4) - (C6) and (C8) control
the behavior of the estimating equation as @), grows. Similar conditions to (C4) - (C8) were
used to allow @), to diverge as 7—> oo in Cai et al. [18], Huang et al. [12], and Huang et al.
[17]. (C5), (C6), and (C9) restricts the variability of Va{S(b,?)} and Var{gn(b, f)} as nand

djincrease. (C8) and (C9) control A, the number of variables within group, and the
magnitude of the true parameters in non-zero groups, which were used in Huang et al. [17].
The variance matrix Z(z) in Condition (C5) can be specified as follows: Define eg(ag,? and

A(ap) as in Appendix. We further define h(z, u, Z )= exp(aOZ)f —egla, u) dA Gy,

M%) = NG - f Y (wexp(ay Z)dAS () and

q®) =

expla Z)I(u < 1) o

w0,z DA@)” I{Zl.— @y z)} + M ()

iy
1—1

s(GO)(aO, u)
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w,(b) = Zl.I{Xi < g(Zin)}I(ﬁi = Dg(X)/G(X,|Z,). Then, Y (z) = E{n l(r)nl(r)T}, where
0@ = ZI{X; < @] Bi@)}1(5; = 1IG(X,1Z) - 71+ w,{ B(»)}. The s includes the detailed
derivation of 7;(z) and the asymptotic normality of the estimator obtained by solving S,(b, 7)

= 0 for fixed dj,. Denote — yas convergence in distribution.

First of all, the following lemma shows the consistency of the estimator obtained by solving
S, (b,7) = 0 when d), diverges as n—> oo:
Lemma 2.3

Let 4 (¢) be the estimator obtained by solving S, (b, 7) = 0. Then, under the conditions (C1)
- (C7), we have |6 (2) - @) = 0,( @, /n).

The proof of Lemma 2.3 can be found in the online Supplementary Materials. Peng and Fine
[1] studied the consistency of f () for non-covariate dependent censoring with fixed number
of covariates. Lemma 2.3 extends their result to covariate-dependent censoring with
diverging d,. Similarly to Huang et al. [17], we have the following theorem for the group
bridge estimator given .

Theorem 2.4
Assume v=0in (2). Under (C1) - (C9), we have

1. Consistency: H B(r) - ﬁo(T)H = OP(W)'

2. Group variable selection consistency: P[ ﬁ PROE 0] — 1.
2

Asymptotic distribution: for fixed unknown ’El, B E| 0} ,

\/ﬁ[ﬁEl(r) - ﬁEl,o(r)] —, NOH (@) S @n} (0] 7N,

where HTl{ﬁO(T) and Zfl(r) are the leading |E4| % |£1| submatrices of H{£y(7)}
and Z(z), respectively.

Using Lemma 2.3, Theorem 2.4 can be shown similarly to the proofs of Theorems 1 and 2 of
Huang et al. [17] and thus its proof is omitted. Theorem 2.4 shows the group variable
selection consistency , n/d,-consistency of the group bridge estimator.

Although the group bridge can consistently select non-zero group variables, it may not
effectively eliminate zero individual variables within non-zero group variables. This may be
improved with using v> 0 in (2), that is, the adaptive group bridge penalty. For the adaptive
group bridge, we have the following theorem given z
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Theorem 2.5

Assume v> 0 in (2). In addition to (C1) — (C7), we assume

(C8b) For some vy and v, suchthat 0 < vy <1, 0 < w, and vo/(1 — v) < v,

) v /2 vyl2
minj p Iﬂo’j(r)I=0p[(dn/n) ],maxk IAknBllzo[(n/dn) ,,and

Ky

c
k=1

= OP(\/W

y—1
1-v 1
'AZB V.0 ) 'AZ BB, (O
JeA N5y JeARN BP0

(COBY, I — 0, JaTd B ;= 0 (1), and

v— 1)/2d—(1 +v)/2 A ny(v— 1)/2d—1 +y(1-v)/2
n >'n n

min (4 n ) — oo.

Then, we have

1. Consistency: H B(r) - ﬁo(T)H = 0,(/d,In).

2. Bi-level variable selection consistency: P[ ﬁ 5. (0= 0' — 1.
2

Asymptotic distribution:for fixed unknown l B.p 5,0 ]
Jn /?Bl(r) - 'BBI,O(T)] —, NIOH | [8,0) 'Y oM, [8,0) 7.

where H11 {Bo(7)} and Z11(7) are the leading | By| % | B1| submatrices of
H{By(7)} and Z(7), respectively.

The proof of Theorem 2.5 can be found in the online s. (C8b) controls the magnitude of non-
zero parameters and the number of non-zero parameters. It requires the smallest magnitude
of non-zero parameters does not shrink towards zero too fast. (C9b) controls A,and vas n
— 00 to obtain the oracle property. Theorem 2.5 provides the oracle property of the
adaptive group bridge estimator. In particular, it shows that the adaptive group bridge
consistently identifies not only non-zero group variables, but also non-zero within-group
variables.

To obtain g, we minimize WN/n(b, 0,7) of (3). Then, the optimization algorithm is as follows:

1 Obtain an consistent estimator f(z) and an initial value BO)(z) from Peng and
Fine [1] or the group bridge.

2. Compute

Stat Med. Author manuscript; available in PMC 2019 April 30.
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4
k=1,..,K.

v e

JEAW (o

(i)_,(l—y
0, =c¢,|—=+
k =Tk Cr

3. Obtain A*D (z) by minimizing W, (b,6", ) with respect to b.

4. Repeat (2)=(3) until |#D(z) - g(7)|| < 1074

The minimization in Step 3 can be implemented using R package quantreg [19]. To choose
a tuning parameter ¢, in (3), we propose the following BIC-type criterion motivated by Lee
et al. [20] and Shows et al. [21]:

2

n

log(n)
n 2n ’

Un[ B, r] + Clog(d )p

where pj, is the number of non-zero estimates given £, and Cis some positive number.

3. Simulation

We performed simulation studies under two group variable settings: i) group variables
consisting of continuous variables; and ii) group variables consisting of continuous variables
and categorical variables. Censoring times and event times were independently generated.

L ~T 0 T _0 T

etZ=(12), By @ ={f) (@ By (@i AN L@ = ¢ (@8, (@ - Event
n n

times and cause of failure were generated as follows:

Pe=1=p,.
s —0, Ty
P{TStle_l,Z)_d)(logt—ﬂO ) z},
e —0, T
P{T <1le =2.7) = d(log 1 - £, ) Z|.

k2

log 0, (x12) = &~ +5,° 0" Z,
1

G(1) = exp(~ ) o) Z1).

Thus, g,(2) = (D_l(r/pl),ﬂao(r)}T. We set g ) = ¢, (). Selecting non-zero g;q (2) for j=

1, ..., d,was of interest in this simulation study. We selected p; and A,to generate 40%
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cause 1 events, 30% cause 2 events, and 30% censoring. Each simulation was conducted
1000 iterations. The competing risks quantile regression of Peng and Fine [1] and the group
bridge were used to estimate B.The adaptive group bridge with v =1 was compared to the
group bridge. We evaluated the mean squared error that was calculated by

1000

1
MSE = 10001.21

5

2
15>~ %0 - 55w

where ﬁi’ - O(r) is the estimator of g %) at the #th iteration given z. The proposed BIC-type

criterion with C= 1.5 was used to select the tuning parameter. Two z values were examined:
z=0.1and 0.25. We first considered Setting i) group variables consisting of continuous
variables with non-covariate dependent censoring distribution, that is, ag = 0. We examined
n= 400, 600, and 800. To generate Z, three correlated continuous variables for each group
were generated from MO, X), where

1 05 0.5]

Z:(o.s 105

0505 1

Variables were assumed to be independent if they belong to different groups. For 7= 400,
600, and 800, there were 9, 10, 11 groups, respectively. The true Sy(z) for 7= 400 was
{ﬁl,O(t): e ﬁg'o(‘L’)}T= (l, -1,0,-1,1,0,1,0, O)Tand {ﬁlO,O(T)1 e ,327’0(1')}7_2 (0, e
0) 7. For n=600, we added {3 (), B29,0(7), Br0.0(2)}” = (0,0,0) 7. For n=800, we further
added {Bs1,0(2), B32,0(7), B33.0(D}” = (0,0,0)7. This setting allowed d), to grow as 7
increased. The number of non-zero groups and non-zero individual variables of the
underlying model were 3 and 5, respectively, for each n.

Table 1 summarizes the simulation results. “AGB-CQ”, “AGB-GB”, and “GB” indicate the
adaptive group bridge with B () from Peng and Fine [1], the adaptive group bridge with B
from the group bridge, and the group bridge, respectively. “% Corr. Group” and “% Corr.
Individual” represent the proportions that the corresponding variable selection method
correctly identified the non-zero group variables and non-zero individual variables of the
underlying model, respectively. “Group Size” and “Model Size” are the mean number of
groups and individual variables selected by each variable selection method, respectively.
“MSER?” is the ratio of the median MSE of each variable selection method to that of the
oracle estimator. The adaptive group bridge and the group bridge identified the true non-zero
and zero groups very well in group variable selection. The mean group sizes of the adaptive
group bridge and the group bridge were very close to 3. However, the group bridge
performed poorly in within-group variable selection, that is, individual variable selection. It
over-identified individual variables as non-zero variables. On the other hand, the adaptive
group bridge correctly identified the true non-zero individual variables well. In addition, as 7
increased, the mean group sizes and the mean model sizes of the adaptive group bridge
became closer to 3 and 5, respectively. The MSERs of the adaptive group bridge with B
from the group bridge was lower than those of the other methods. Furthermore, the MSERs
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of the adaptive group bridge got smaller as n7increased in general. We also conducted a
simulation under the same setting except that pairwise correlation between continuous
variables was assumed to be 0.2 if they belonged to different groups. We had similar results
to Table 1 and thus did not report them.

Next, we performed a simulation study for Setting ii) group variables consisting of
continuous variables and categorical variables with non-covariate dependent censoring
distribution. We examined 3 sample sizes: n= 600, 900, and 1200. For /7= 600, there were
10 groups: 5 groups consisting of continuous variables (Groups 1 to 5) and 5 groups
consisting of categorical variables (Groups 6 to 10). Groups 1 and 2 contained 6 continuous
variables each and Groups 3 to 5 were comprised of 3 continuous variables each. The
pairwise correlation among continuous variables within group was 0.5. There was no
correlation between continuous variables if they belonged to different groups. Groups 6 and
7 consisted of 7 categories each (that is, 6 indicator variables each) and Groups 8 to 10
categories had 4 categories each (that is, 3 indicator variables each). The reference group for
each categorical variable was set to 0. Thus, there were 42 variables in total. The true By(z)
for n=600 was {B0(?), ..., Bs.o(D} = (1, -1,0, ..., 0) 7/, {Br.0(2), -... Br2o(D} =0, ...,
0)7, {B13.0(2), Pra0(2), B1s0 (D3} = (1,00)7, and {B1e(), -, Boa(D} = (0, ..., 0),
{B220(), -, Bor0(D} = (1, -1,0, ..., 0) 7, {B2g 0 (9), ... B33,0(D} = (O, ..., 0), {Baa0
(2), Bss.0(2), Bae0(} = (1,00)7, and {Bs1(2), ..., Baa( D)} "= (0, ..., 0) 7. For n= 900, we
added one more group consisting of 3 continuous variables with pairwise correlation 0.5 and
{B13,0(7), Paao(7), Bas,o(D}7 = (0,0,0)7. For n= 1200, in addition to {43 0(7), Bas o(2),
ﬁ45'0(r)}7, we further added a categorical variable having 4 categories, that is, 3 indicator
variables: {B46,0(7), Ba7.0(2), Paso(D}” = (0,0,0)”. Thus, the number of non-zero groups
and non-zero individual variables of the underlying model were 4 and 6, respectively, for
each n.

Table 2 shows the simulation results. The adaptive group bridge identified the true non-zero
and zero groups better than the group bridge when 1= 600 and 900 for z= 0.1, and /7= 600
for £=0.25. When = 1200, both of the methods selected non-zero group variables very
well. The mean group sizes of the adaptive group bridge were very close to 4. The group
bridge performed poorly in individual variable selection as in Setting i). On the other hand,
the adaptive group bridge correctly identified the true non-zero individual variables
proficiently. In addition, as 77 increased, the mean group sizes and the mean model sizes of
the adaptive group bridge became closer to 4 and 6, respectively. The MSERs of the adaptive
group bridge with B (x) from the group bridge was lower than those of the other methods. In
addition, the MSERSs of the adaptive group bridge got smaller as 77increased in general.

Last, we performed a simulation study for Setting ii) with covariate-dependent censoring
distribution. We used the same By(z) as in Setting ii) with non-covariate dependent censoring
distribution. The true ay for G(tlZ) when 7= 600 was (ay g, ..., ag o)’ = (1,-1,0, ..., 0)7,
(a7’0, ceny a21’0) 7= (0, . O)T, (azzlo, . a27,0)7= (1,—1, 0, . O)T, and (azglo, . a42,0)7
=(0, ..., 0)7. For 7=900 and 1200, we added (a43 0, @44,0, as5,0)” = (0, 0, 0) " and (ase o,
as7,0, ag,0) T=(0,0,0)7, respectively. The Breslow-type estimator was used to estimate
G(tli). We selected p; and A, to generate 50% cause 1 events, 20% cause 2 events, and 30%
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censoring. Table 3 summarizes the simulation results. In general, the results were similar to
Table 2. The adaptive group bridge performed better than the group bridge in terms of
individual variable selection and MSER.

4. Bone marrow transplant data example

The adaptive group bridge was applied to a bone marrow transplant data set. \erneris et al.
[10] studied the outcomes of the patients having reduced-intensity conditioning allogeneic
hematopoietic cell transplantation from 1999 to 2011. We considered 2011 patients with
human leukocyte antigen fully-matched unrelated donors. Relapse was the outcome of
interest for the analysis. Treatment-related-mortality (TRM) was a competing risk. There
were 40.5% of relapse, 26.6% of TRM, and 32.9% of censoring. In addition, 69%, 16%, and
8% of relapse events occurred within 6 months, between 6 and 12 months, and between 12
and 24 months, respectively. Thus, the distribution of relapse events were skewed. The
overall relapse rate at 1 year was about 35%. The 13 binary or categorical variables that we
considered for variable selection included disease type, recipient age, donor age, donor-
recipient sex match, donor-recipient cytomegalovirus (CMV) match, ABO blood type
match, donor parity, disease status at transplant, conditioning intensity, total body
irradiation, graft type, graft-versus-host disease (GVHD) prophylaxis, and in-vivo T cell
depletion. They consisted of 28 indicator variables. The censoring distribution did not
depend on any covariates based on the Cox proportional hazards model.

We selected variables for the 0.35th competing risks quantile regression for relapse using the
following three selection methods: the group bridge, the adaptive group bridge with £ ()
from Peng and Fine [1], and the adaptive group bridge with B (z) from the group bridge. The
reference group was set to zero. Table 4 shows the selected variables and their estimates.
The group bridge selected disease status at transplant, CMV match, conditioning intensity,
in-vivo T cell depletion, graft type, and GVHD prophylaxis. On the other hand, both of the
adaptive group bridge with B (x) from Peng and Fine [1] and the adaptive group bridge with
B (v) from the group bridge selected the same variables: disease status at transplant, CMV
match, conditioning intensity, and in-vivo T cell depletion. The adaptive group bridge did
not select graft type and GVHD prophylaxis, which is why all of their estimates are zeros in
Table 4. The competing risks quantile regression of Peng and Fine [1] was fitted using the
variables selected by at least one of the three methods. “CQ” in Table 4 indicates their
estimates and p-values from the competing risks quantile regression of Peng and Fine [1]. It
suggests that all variables selected by the adaptive group bridge appeared to be significant.
However, graft type and GVHD prophylaxis that the group bridge selected appeared not to
be significant based on their p-values.

5. Conclusion

The group bridge and the adaptive group bridge were proposed to select variables for the
competing risks quantile regression. Their oracle property was studied. In particular, the
adaptive group bridge not only consistently identifies non-zero group variables, but also
consistently selects non-zero within-group variables. We also proposed the BIC-type
criterion to choose a tuning parameter. The proposed BIC-type criterion appears to work

Stat Med. Author manuscript; available in PMC 2019 April 30.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ahn and Kim

Page 13

properly in the simulation study. The adaptive group bridge selected non-zero within-group
variables more consistently than the group bridge in the simulation study. A bone marrow
transplant example showed the usefulness of the adaptive group bridge.

The proposed method was limited to when a, < 7. Developing a group variable selection
method when @), <nwould be a crucial research problem. A two-step variable selection
procedure may be developed for this: once we screen group variables in the first step, we
may use the adaptive group bridge to obtain a further parsimonious list of non-zero variables
in the second step. The theoretical justification of the proposed BIC-type criterion needs to
be studied in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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For G(le) and the Breslow estimator, we assume as follows:

L

a A 28(di < oo and P{Y{) =1} >0 for t€ [0, L], i=1, ..., m,and d*/n — 0 as 1
—> 00,

b. Zjjis bounded almost surely for all //and a’Z is bounded almost surely for any
Z and a € 8, where & is a neighborhood a.

C. Ford=0,1,2, there exists a neighborhood & of aq such that s (a. 1) are
continuous functions and sup, ¢ (o /) o %‘|§g)(a, -5, t)” ~0in
probability.

d.

L
The matrix A(a,) = /0‘ vt 1)sDiay, 1§ (0t is positive definite, where

v 1) = s, /D@ 1) - e @) ®? and egla. 1) = sWia. /5@, 1.

e Foralla€ 4 r€[0, L], sW@.n = 05 (@, 1)/ oa, and
sPa.1) = *SP (@, n/(9ada’), where S@a. 1), d= 0, 1, 2 are continuous
functions of a € Zuniformly in t€ [0, L] and are bounded on £ x [0, L], and sg))

is bounded away from zero on &x [0, L].
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