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Abstract

We study the group bridge and the adaptive group bridge penalties for competing risks quantile 

regression with group variables. While the group bridge consistently identifies non-zero group 

variables, the adaptive group bridge consistently selects variables not only at group level, but also 

at within-group level. We allow the number of covariates to diverge as the sample size increases. 

The oracle property for both methods is also studied. The performance of the group bridge and the 

adaptive group bridge is compared in simulation and in a real data analysis. The simulation study 

shows that the adaptive group bridge selects non-zero within-group variables more consistently 

than the group bridge. A bone marrow transplant study is provided as an example.
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1. Introduction

Quantile regression provides an alternative method to the Cox proportional hazards model 

and the accelerated failure time (AFT) model in survival analysis [1]. It is often preferred 

when the survival distribution is skewed. There is rich literature in survival quantile 

regression. Peng and Huang [2] proposed a martingale-based estimating equations. Reich 

and Smith [3] developed a semiparametric Bayesian quantile regression model for censored 

data. Yin et al. [4] studied a power-transformed quantile regression model for survival data. 

Yin and Cai [5] proposed quantile regression models for correlated survival data.

Recently quantile regression for competing risks data have had much attention. Peng and 

Fine [1] proposed a semiparametric model based on the competing risks AFT model. Sun et 

al. [6] developed a regression model when the failure type is missing in competing risks 

data. Lee and Fine [7] studied parametric and nonparametric methods to make inference on 

cumulative incidence quantiles.

In spite of increasing popularity of quantile regression for survival and competing risks data, 

the current literature on variable selection is somewhat limited. Jiang et al. [8] proposed the 
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adaptive lasso for a composite quantile regression with randomly censored data. Wang et al. 

[9] also studied the adaptive lasso for censored quantile regression. They all studied a 

survival setting, not a competing risks setting. In addition, their proposed methods addressed 

variable selection at individual level, not at group level. In practice, clinicians often 

encounter group variables such as categorical variables. For example, Verneris et al. [10] 

studied the outcomes of the patients having reduced-intensity conditioning allogeneic 

hematopoietic cell transplantation from 1999 to 2011. They studied competing risks 

outcomes including relapse and treatment-related mortality (TRM), where relapse and TRM 

are competing risks to each other. The variables that they considered for analysis consisted 

of binary and categorical variables.

Several penalties have been proposed to select group variables for linear regression and 

competing risks settings. Yuan and Lin [11] proposed the group lasso, which selects 

variables at group level, not at within-group level. Huang et al. [12] developed the group 

bridge to select both non-zero group and non-zero within-group variables. However, they 

studied group selection consistency only and did not show within-group variable selection 

consistency. Zhou and Zhu [13] proposed an adaptive hierarchical lasso having group 

variable selection consistency and within-group variable selection consistency. Zhao et al. 

[14] applied the adaptive hierarchical lasso penalty to identify non-zero variables at both 

levels for quantile linear regression. Fu et al. [15] extensively studied lasso, adaptive lasso, 

SCAD, and MCP for individual variable selection and their group variable selection versions 

for the subdistribution hazards model. However, they did not address within-group variable 

selection. In addition, their oracle property was limited to a fixed number of covariates. 

Despite extensive work in group variable selection for linear, linear quantile, and 

subdistribution hazards regression models, there is little literature on group variable 

selection in competing risks quantile regression. In particular, group and within-group level 

variable selection techniques remain unexplored in the current literature to the best of the 

authors’ knowledge.

We propose the group bridge and the adaptive group bridge for bi-level variable selection, 

that is, group and within-group variable selection, under the competing risks quantile 

regression model of Peng and Fine [1]. While the group bridge consistently identifies non-

zero group variables, the adaptive group bridge consistently selects non-zero variables at 

both group level and within-group level. When there is no group structure for variables, 

individual variable selection can be handled as a special case of the proposed methods. 

Based on our knowledge, even individual variable selection has not been studied for the 

competing risks quantile regression. We study their oracle property while allowing the 

number of variables to diverge as the sample size increases. We show the adaptive group 

bridge identifies non-zero within-group variables more consistently than the group bridge in 

simulation study. In Section 2, we describe the proposed methods and study their theoretical 

properties. In Section 3, we compare the performance of the adaptive group bridge and the 

group bridge via simulation study. We illustrate a real data example in Section 4 and have a 

brief conclusion in Section 5. All the proofs of the theorems and the lemmas in this paper 

can be found in the online Supplementary Materials.
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2. Method

In this section, we propose a penalized competing risks quantile regression model and study 

its theoretical properties. We begin with some notations. Without loss of generality, we 

consider two causes of failure ε ∈ {1,2} with sample size n. We allow the number of 

covariates dn to increase as n increases. Let Ti, Ci, εi, and Zi = (1, Zi1, …, Zidn
)T be the event 

time, censoring time, cause of failure, and covariate vector of subject i for i = 1, …, n. 

Denote β0(τ) = {βj,0(τ); j = 0, …, dn}T as the true parameter vector given quantile τ, where 

β0,0 is the true intercept coefficient. Let Xi = Ti ˄ Ci be the observed time and δi = I(Ti ≤ 
Ci)I(εi = 1), where a ˄ b = min (a, b). We assume that (Ti, εi, Ci, Zi) are independent and 

identically distributed, and the Ti’s and Ci’s are independent given Zi for i = 1, …, n. The 

study period is [0, L]. Let F1(t|Zi) be the cumulative incidence of cause 1 at time t given Zi, 

where F1(t|Zi) = P(Ti ≤ t,εi = 1|Zi). Given covariate Z, we define the τth conditional quantile 

of F1(t|Z) as Q1(τ|Z) = inf{t: F1(t|Z) ≥ τ}. For τ ε [τL,τU] with 0 < τL,τU < 1, we consider 

Q1(τ|Z) = g{ZTβ(τ)}, where g(·) is a known monotone link function. Let ‖·‖ be the 

Euclidean norm and a⊗2 = aaT for a vector a.

Let Z∼i = (Zi1, …, Zidn
)T. For simplicity, we assume that Z∼i’s are fixed over time. Let 

Ni
G(t) = I(Ci ≤ T i)I(Ci ≤ t) be the counting process for censoring and Yi(t) = I(Xi ≥ t). We use 

the Cox proportional hazards model to fit censoring time Ci’s:

λG(t |Z∼i) = λ0
G(t)e

αTZ∼i,

Where λ0
G(t) is an arbitrary baseline hazard function for censoring and αT is the unknown 

parameter vector. Define

𝕊G
(d)(α, t) = n−1 ∑

i = 1

n
Yi(t)Z

∼
i
⊗ de

αTZ∼i,

where d = 0,1, and 2. The baseline cumulative hazard function for censoring Λ0
G(t) is 

estimated by the Breslow-type estimator [16]:

Λ0
G(t; α) = ∫0

t ∑i = 1
n dNi

G(u)

n𝕊G
(0)(α, u)

,

where α is the estimator of α based on the Cox proportional hazards model. Then, we 

estimate G(t |Z∼i) as follows:
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G(t |Z∼i) = exp −∫0
t
e
αTZ∼idΛ0

G(u:α) .

We can obtain the consistency of α, Λ0
G(t:α), and G

∼(t |Z∼i) as follows:

Lemma 2.1

Assume Conditions (a)-(e) as in Appendix. Then, we have α − α = Op dn/n

supt |Λ0
G(t:α) − Λ0

G(t) | = Op dn/n , and supt|G(t|Z∼) − G|(t|Z∼) | = Op dn/n .

When the censoring distribution G does not depend on any covariates, the Kaplan-Meier 

estimator can be used instead of the Breslow estimator. The proof of Lemma 2.1 can be 

found in the online Supplemental Materials.

Next, we define some notations on group variables and their memberships. Assume that we 

have K groups of variables. Let A1,…,AK be subsets of {1, …, dn} representing group 

memberships of variables, where Ak’s may overlap. Define βA(τ) = {βj(τ),j ε A}T and 

βA,0(τ) = {βj,0(τ); j ε A}T for a set A. To distinguish the individual memberships between 

non-zero βj,0(τ)’s and zero βj,0(τ)’s, we define B1 and B2 such that βj,0(τ) ≠ 0 if j ε B1 and 

βj,0(τ) = 0 if j ε B2. To distinguish the group memberships between non-zero βAk, 0(τ)’s and 

zero βAk, 0(τ)’s, without loss of generality we further define E1 and E2 such that 

E1 = ∪k = 1
K1 Ak and E2 = ∪k = K1 + 1

K Ak, where βAk, 0(τ) ≠ 0 for 1 ≤ k ≤ K1 and βAk, 0(τ) = 0

for K1 + 1 ≤ k ≤ K.

To estimate β(τ), Peng and Fine [1] considered the estimating equation Sn(b, τ) = 0, where

Sn(b, τ) = n−1/2 ∑
i = 1

n
Zi[

I Xi ≤ g(Zi
Tb) I(δi = 1)

G(Xi |Z
∼

i)
− τ] . (1)

To solve Sn(b, τ) = 0, Peng and Fine [1] proposed the following L1-type convex function:

Un(b, τ) = ∑
i = 1

n
I(δi = 1)|

g−1(Xi) − bTZi
G(Xi |Z∼i)

| + |M − bT ∑
i = 1

n −ZiI(δi = 1)

G(Xi |Z∼i)
| + |M − bT ∑

i = 1

n
2Ziτ|,

where M is a very large positive number to bound |bT∑i = 1
n −ZiI(δi = 1)/G(Xi |Z

∼
i)| and 

|bT∑i = 1
n 2Ziτ| for all b’s in the parameter space for β0(τ). They studied the consistency and 

the asymptotic normality of the estimator of β0(τ) obtained by solving Sn(b, τ) = 0 when G 
is non-covariate dependent and dn is fixed.
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To select variables at bi-level, we propose the following penalized function:

Wn(b, τ) = Un(b, τ) + λn ∑
k = 1

K
ck ∑

j ∈ Ak

|b j|

|β∼ j(τ)|ν

γ

, (2)

where β
∼

j(τ) is a consistent estimator of β(τ), ν ≥ 0, λn > 0, and 0 < γ < 1. Following Huang 

et al. [12], we set ck ∝ |Ak|1 − γ, where |A| is the cardinality of A. If ν = 0, the penalty term is 

the group bridge penalty of Huang et al. [12] and Huang et al. [17]. When ν > 0, we call the 

penalty term as adaptive group bridge penalty. The adaptive group bridge becomes i) 

individual variable selection when |Ak | = 1 for all k; and ii) the adaptive hierarchical lasso 

penalty of Zhou and Zhu [13] when γ = 1/2 and ck = 1 for all k.

We can formulate minimizing Wn(b, τ) to minimizing

W∼n(b, θ, τ) = Un(b, τ) + ∑
k = 1

K
θk

1 − 1/γck
1/γ ∑

j ∈ Ak

|b j|

|β∼ j|
ν

γ
+ ζn ∑

k = 1

K
θk, (3)

where θ = (θ1, …, θK)T. By defining

θk = ck
1 − γ
ζnγ

γ
∑

j ∈ Ak

|β j(τ)|

|β∼ j(τ)|ν

γ

, k = 1, …, K,

we can show the following lemma similarly to Proposition 1 of Huang et al. [12] and thus its 

proof is omitted:

Lemma 2.2

Assume that λn = ζn
1 − γγ−γ(1 − γ)γ − 1 for 0 < γ < 1. Then, β(τ) minimizes Wn (b, τ) if and 

only if β(τ), θ  minimizes W∼n(b, θ, τ), where θk > 0 and θk > 0 for k = 1,…, K.

Define S∼n(b, τ) = n−1/2∑i = 1
n Zi[F1 g(Zi

Tb) |Zi − τ]. Denote ∇S∼n(b, τ) as the first derivative 

of S∼n(b, τ) with respect to b. We first study the oracle property of the group bridge estimator 

given τ. We assume that

(C1) There exists ω > 0 such that P(C = ω |Z∼) ≥ c > 0 and P(C > ω |Z∼) = 0 for any Z∼.

(C2) Zij and βj,0(τ) are uniformly bounded for j = 1,…, dn.

(C3) f1(t|z) is bounded above uniformly in t and z, where f1(t|z) = dF1(t|z)/dt.
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(C4) Define H(b) = E n−1/2∇S∼n(b, τ) = E[Z ⊗ 2 f 1 g(ZTb) |Z g′ (ZTb)]. For some ρ0 > 

0, C1 > 0, and C2 > 0, infbεℬ(ρ0)
κ H(b) ≥ C1 and supbεℬ(ρ0)

κ H(b) ≤ C2 < ∞, 

where ℬ(ρ0) = bεℝ
dn + 1

: b − β0(τ) ≤ ρ0  and κ(H) is the eigenvalue of a 

matrix H.

(C5) Σ(τ) = Var{Sn (b,τ)}. There exist C3 > 0 and C4 > 0 such that 

inf βεℬ(ρ0)
κ ∑ (τ) ≥ C3 and supβεℬ(ρ0)

κ ∑ (τ) ≤ C4 < ∞, where ρ0 > 0.

(C6) There exists a constant C5 > 0 such that 

supbεℬ(ρ0),0 ≤ i ≤ dn
n−1Cov ∇S

∼
n, i j(b, τ), ∇S

∼
n, i j′(b, τ) ≤ C5 < ∞, for all 0 < j, j′ 

< dn, where ∇S
∼

n, i j(b, τ) is the (i, j)th entry of ∇S∼n(b, τ).

(C7) dn
4/n 0.

(C8) Cn
∗ = max j ∑k = 1

K I( jεAk) is bounded and 

λn
2/n∑k = 1

K1 ck
2 ∑ jεAk

|β j, 0(τ)|
2γ − 2

|Ak| ≤ dnMn, Mn = Op (1),where 

λn/ nγ /2κmax ∑ (τ) dn
1 − γ /2 ∞ as n → ∞

(C9) λnn−1/2 0, 1/κmin ∑ (τ) +κmax ∑ (τ) + ∑k = 1
K ck

2 = O(1), 

λn/(nγ /2dn
1 − γ /2) ∞ as n → ∞

(C1)−(C5) are similar to the standard conditions for the competing risks quantile regression 

of Peng and Fine [1]. Peng and Fine [1] suggested to use a truncated censoring time C = 

mim(C, L) for ω in (C1) so that (C1) is always satisfied. In practice, ω can be chosen as 

large as possible so that only small information loss occurs [1]. (C4) − (C6) and (C8) control 

the behavior of the estimating equation as dn grows. Similar conditions to (C4) − (C8) were 

used to allow dn to diverge as n ⟶ ∞ in Cai et al. [18], Huang et al. [12], and Huang et al. 

[17]. (C5), (C6), and (C9) restricts the variability of Var{Sn(b,τ)} and Var S∼n(b, τ)  as n and 

dn increase. (C8) and (C9) control λn, the number of variables within group, and the 

magnitude of the true parameters in non-zero groups, which were used in Huang et al. [17]. 

The variance matrix Σ(τ) in Condition (C5) can be specified as follows: Define eG(α0,t) and 

A(α0) as in Appendix. We further define h(t, u, Zi) = exp(α0
TZi)∫u

t
Zi − eG(α0, u) dΛ0

G(v), 

Mi
G(t) = Ni

G(t) − ∫0

t
Y i(u)exp(α0

TZi)dΛ0
G(u) and

q(t) = E 1
n ∑

i = 1

n ∫0
L

hT(t, 0, Zi)A(α0)−1 Zi − eG(α0, t) +
exp(α0

TZi)I(u ≤ t)

sG
(0)(α0, u)

Mi
G(u)
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wi(b) = ZiI Xi ≤ g(Zi
Tb) I(δi = 1)q(Xi)/G(Xi |Zi). Then, ∑ (τ) = E η1(τ)η1(τ)T , where 

ηi(τ) = Zi[I Xi ≤ g(Zi
T β0

T(τ)) I(δi = 1)/G(Xi |Zi) − τ] + wi β0(τ) . The s includes the detailed 

derivation of ηi(τ) and the asymptotic normality of the estimator obtained by solving Sn(b,τ) 

= 0 for fixed dn. Denote → d as convergence in distribution.

First of all, the following lemma shows the consistency of the estimator obtained by solving 

Sn (b,τ) = 0 when dn diverges as n ⟶ ∞:

Lemma 2.3

Let β
∼(τ) be the estimator obtained by solving Sn (b, τ) = 0. Then, under the conditions (C1) 

− (C7), we have β
∼(τ) − β0(τ) = Op dn/n .

The proof of Lemma 2.3 can be found in the online Supplementary Materials. Peng and Fine 

[1] studied the consistency of β
∼(τ) for non-covariate dependent censoring with fixed number 

of covariates. Lemma 2.3 extends their result to covariate-dependent censoring with 

diverging dn. Similarly to Huang et al. [17], we have the following theorem for the group 

bridge estimator given τ:

Theorem 2.4

Assume ν = 0 in (2). Under (C1) − (C9), we have

1. Consistency: β(τ) − β0(τ) = Op dn/n .

2. Group variable selection consistency: P βE2
(τ) = 0 1.

3. Asymptotic distribution: for fixed unknown E1, βE1, 0 ,

n βE1
(τ) − βE1, 0(τ) d N[0, H11

∗ β0(τ) −1∑11
∗ (τ)H11

∗ β0(τ) −1],

where H11
∗ β0(τ) and ∑11

∗ (τ) are the leading |E1| × |E1| submatrices of H{β0(τ)} 

and Σ(τ), respectively.

Using Lemma 2.3, Theorem 2.4 can be shown similarly to the proofs of Theorems 1 and 2 of 

Huang et al. [17] and thus its proof is omitted. Theorem 2.4 shows the group variable 

selection consistency n/dn‐consistency of the group bridge estimator.

Although the group bridge can consistently select non-zero group variables, it may not 

effectively eliminate zero individual variables within non-zero group variables. This may be 

improved with using ν > 0 in (2), that is, the adaptive group bridge penalty. For the adaptive 

group bridge, we have the following theorem given τ:
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Theorem 2.5

Assume ν > 0 in (2). In addition to (C1) − (C7), we assume

(C8b) For some ν1 and ν2 such that 0 < ν1 < 1, 0 < ν2, and ν2/(1 − ν1) < ν, 

min jεB1
|β0, j(τ)| = Op dn/n

ν1/2
, maxk |Ak ∩ B1| = O n/dn

ν2/2
, and

∑
k = 1

K1
ck ∑

jεAk ∩ B1
|β j, 0(τ)|1 − ν

γ − 1
∑

jεAk ∩ B1

1
|β j, 0(τ)|ν

= Op( dn) .

C9b λn/ n 0, n/dnβ
∼

j = Op 1 , and 

min (λnn(ν − 1)/2dn
−(1 + ν)/2, λnnγ(ν − 1)/2dn

−1 + γ(1 − ν)/2) ∞.

Then, we have

1. Consistency: β τ − β0 τ = Op( dn/n).

2. Bi-level variable selection consistency: P βB2
τ = 0 1.

3. Asymptotic distribution:for fixed unknown B1, βB1, 0 ,

n βB1
(τ) − βB1, 0(τ) d N[0, H11 β0(τ) −1∑11(τ)H11 β0(τ) −1],

where H11 {β0(τ)} and Σ11(τ) are the leading |B1| × |B1| submatrices of 

H{β0(τ)} and Σ(τ), respectively.

The proof of Theorem 2.5 can be found in the online s. (C8b) controls the magnitude of non-

zero parameters and the number of non-zero parameters. It requires the smallest magnitude 

of non-zero parameters does not shrink towards zero too fast. (C9b) controls λn and ν as n 
→ ∞ to obtain the oracle property. Theorem 2.5 provides the oracle property of the 

adaptive group bridge estimator. In particular, it shows that the adaptive group bridge 

consistently identifies not only non-zero group variables, but also non-zero within-group 

variables.

To obtain β, we minimize W∼n(b, θ, τ) of (3). Then, the optimization algorithm is as follows:

1. Obtain an consistent estimator β
∼

τ  and an initial value β(0)(τ) from Peng and 

Fine [1] or the group bridge.

2. Compute
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θk
(i) = ck

1 − γ
ζnγ

γ
∑

j ∈ Ak

|β j
i (τ)|

|β∼ j(τ)|ν

γ

, k = 1, …, K .

3. Obtain β(i+1) (τ) by minimizing W∼n b, θ(i), τ  with respect to b.

4. Repeat (2)–(3) until ||β(i+1)(τ) − β(i)(τ)|| < 10−4.

The minimization in Step 3 can be implemented using R package quantreg [19]. To choose 

a tuning parameter ζn in (3), we propose the following BIC-type criterion motivated by Lee 

et al. [20] and Shows et al. [21]:

2
nUn β(τ), τ + Clog dn pn

log(n)
2n ,

where pn is the number of non-zero estimates given ζn and C is some positive number.

3. Simulation

We performed simulation studies under two group variable settings: i) group variables 

consisting of continuous variables; and ii) group variables consisting of continuous variables 

and categorical variables. Censoring times and event times were independently generated. 

Let Z = (1, Z∼)T, β0
−0(τ) = β1, 0(τ), …, βdn, 0(τ)

T
, and ζ0

−0(τ) = ζ1, 0(τ), …, ζdn, 0(τ)
T

. Event 

times and cause of failure were generated as follows:

P ε = 1 = p1,

P T ≤ t|ε = 1, Z∼) = Φ(log t − β0
−0(τ)TZ∼ ,

P T ≤ t|ε = 2, Z∼) = Φ(log t − ζ0
−0(τ)TZ∼ ,

log Q1(τ|Z) = Φ−1 τ
p1

+ β0
−0 τ TZ∼,

G t = exp( − λcα0
TZ∼t) .

Thus, β0(τ) = Φ−1(τ / p1), β0
−0(τ) T

. We set β0
−0(τ) = ζ0

−0(τ). Selecting non-zero βj,0 (τ) for j = 

1, …, dn was of interest in this simulation study. We selected p1 and λc to generate 40% 
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cause 1 events, 30% cause 2 events, and 30% censoring. Each simulation was conducted 

1000 iterations. The competing risks quantile regression of Peng and Fine [1] and the group 

bridge were used to estimate β
∼

. The adaptive group bridge with ν = 1 was compared to the 

group bridge. We evaluated the mean squared error that was calculated by

MSE = 1
1000 ∑

i = 1

1000
βi, − 0(τ) − β0

−0(τ)
2
,

where βi, − 0 τ  is the estimator of β0
−0 τ  at the ith iteration given τ. The proposed BIC-type 

criterion with C = 1.5 was used to select the tuning parameter. Two τ values were examined: 

τ = 0.1 and 0.25. We first considered Setting i) group variables consisting of continuous 

variables with non-covariate dependent censoring distribution, that is, α0 = 0. We examined 

n = 400, 600, and 800. To generate Z∼, three correlated continuous variables for each group 

were generated from N(0, Σ), where

∑ =
1 0.5 0.5

0.5 1 0.5
0.5 0.5 1

.

Variables were assumed to be independent if they belong to different groups. For n = 400, 

600, and 800, there were 9, 10, 11 groups, respectively. The true β0(τ) for n = 400 was 

{β1,0(τ), …, β9,0(τ)}T = (1, −1, 0, −1, 1, 0, 1, 0, 0)T and {β10,0(τ), …, β27,0(τ)}T = (0, …, 

0)T. For n=600, we added {β28,0(τ), β29,0(τ), β30,0(τ)}T = (0,0,0)T. For n=800, we further 

added {β31,0(τ), β32,0(τ), β33,0(τ)}T = (0,0,0)T. This setting allowed dn to grow as n 
increased. The number of non-zero groups and non-zero individual variables of the 

underlying model were 3 and 5, respectively, for each n.

Table 1 summarizes the simulation results. “AGB-CQ”, “AGB-GB”, and “GB” indicate the 

adaptive group bridge with β
∼(τ) from Peng and Fine [1], the adaptive group bridge with β

∼(τ)
from the group bridge, and the group bridge, respectively. “% Corr. Group” and “% Corr. 

Individual” represent the proportions that the corresponding variable selection method 

correctly identified the non-zero group variables and non-zero individual variables of the 

underlying model, respectively. “Group Size” and “Model Size” are the mean number of 

groups and individual variables selected by each variable selection method, respectively. 

“MSER” is the ratio of the median MSE of each variable selection method to that of the 

oracle estimator. The adaptive group bridge and the group bridge identified the true non-zero 

and zero groups very well in group variable selection. The mean group sizes of the adaptive 

group bridge and the group bridge were very close to 3. However, the group bridge 

performed poorly in within-group variable selection, that is, individual variable selection. It 

over-identified individual variables as non-zero variables. On the other hand, the adaptive 

group bridge correctly identified the true non-zero individual variables well. In addition, as n 
increased, the mean group sizes and the mean model sizes of the adaptive group bridge 

became closer to 3 and 5, respectively. The MSERs of the adaptive group bridge with β
∼

τ
from the group bridge was lower than those of the other methods. Furthermore, the MSERs 
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of the adaptive group bridge got smaller as n increased in general. We also conducted a 

simulation under the same setting except that pairwise correlation between continuous 

variables was assumed to be 0.2 if they belonged to different groups. We had similar results 

to Table 1 and thus did not report them.

Next, we performed a simulation study for Setting ii) group variables consisting of 

continuous variables and categorical variables with non-covariate dependent censoring 

distribution. We examined 3 sample sizes: n = 600, 900, and 1200. For n = 600, there were 

10 groups: 5 groups consisting of continuous variables (Groups 1 to 5) and 5 groups 

consisting of categorical variables (Groups 6 to 10). Groups 1 and 2 contained 6 continuous 

variables each and Groups 3 to 5 were comprised of 3 continuous variables each. The 

pairwise correlation among continuous variables within group was 0.5. There was no 

correlation between continuous variables if they belonged to different groups. Groups 6 and 

7 consisted of 7 categories each (that is, 6 indicator variables each) and Groups 8 to 10 

categories had 4 categories each (that is, 3 indicator variables each). The reference group for 

each categorical variable was set to 0. Thus, there were 42 variables in total. The true β0(τ) 

for n = 600 was {β1,0(τ), …, β6,0(τ)}T = (1, −1,0, …, 0)T, {β7,0(τ), …, β12,0(τ)}T = (0, …, 

0)T, {β13,0(τ), β14,0(τ), β15,0 (τ)}T = (1,0,0)T, and {β16(τ), …, β21(τ)}T = (0, …, 0)T, 

{β22,0(τ), …, β27,0(τ)}T = (1, −1, 0, …, 0)T, {β28,0 (τ), …, β33,0(τ)}T = (0, …, 0)T, {β34,0 

(τ), β35,0(τ), β36,0(τ)}T = (1,0,0)T, and {β37(τ), …, β42(τ)}T = (0, …, 0)T. For n = 900, we 

added one more group consisting of 3 continuous variables with pairwise correlation 0.5 and 

{β43,0(τ), β44,0(τ), β45,0(τ)}T = (0,0,0)T. For n = 1200, in addition to {β43,0(τ), β44,0(τ), 

β45,0(τ)}T, we further added a categorical variable having 4 categories, that is, 3 indicator 

variables: {β46,0(τ), β47,0(τ), β48,0(τ)}T = (0,0,0)T. Thus, the number of non-zero groups 

and non-zero individual variables of the underlying model were 4 and 6, respectively, for 

each n.

Table 2 shows the simulation results. The adaptive group bridge identified the true non-zero 

and zero groups better than the group bridge when n = 600 and 900 for τ = 0.1, and n = 600 

for τ = 0.25. When n = 1200, both of the methods selected non-zero group variables very 

well. The mean group sizes of the adaptive group bridge were very close to 4. The group 

bridge performed poorly in individual variable selection as in Setting i). On the other hand, 

the adaptive group bridge correctly identified the true non-zero individual variables 

proficiently. In addition, as n increased, the mean group sizes and the mean model sizes of 

the adaptive group bridge became closer to 4 and 6, respectively. The MSERs of the adaptive 

group bridge with β
∼(τ) from the group bridge was lower than those of the other methods. In 

addition, the MSERs of the adaptive group bridge got smaller as n increased in general.

Last, we performed a simulation study for Setting ii) with covariate-dependent censoring 

distribution. We used the same β0(τ) as in Setting ii) with non-covariate dependent censoring 

distribution. The true α0 for G t|Z∼  when n = 600 was (α1,0, …, α6,0)T = (1,−1,0, …, 0)T, 

(α7,0, …, α21,0)T = (0, …, 0)T, (α22,0, …, α27,0)T = (1,−1, 0, …, 0)T, and (α28,0, …, α42,0)T 

= (0, …, 0)T. For n = 900 and 1200, we added (α43,0, α44,0, α45,0)T = (0, 0, 0)T and (α46,0, 

α47,0, α48,0)T = (0, 0, 0)T, respectively. The Breslow-type estimator was used to estimate 

G t|Z∼ . We selected p1 and λc to generate 50% cause 1 events, 20% cause 2 events, and 30% 
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censoring. Table 3 summarizes the simulation results. In general, the results were similar to 

Table 2. The adaptive group bridge performed better than the group bridge in terms of 

individual variable selection and MSER.

4. Bone marrow transplant data example

The adaptive group bridge was applied to a bone marrow transplant data set. Verneris et al. 

[10] studied the outcomes of the patients having reduced-intensity conditioning allogeneic 

hematopoietic cell transplantation from 1999 to 2011. We considered 2011 patients with 

human leukocyte antigen fully-matched unrelated donors. Relapse was the outcome of 

interest for the analysis. Treatment-related-mortality (TRM) was a competing risk. There 

were 40.5% of relapse, 26.6% of TRM, and 32.9% of censoring. In addition, 69%, 16%, and 

8% of relapse events occurred within 6 months, between 6 and 12 months, and between 12 

and 24 months, respectively. Thus, the distribution of relapse events were skewed. The 

overall relapse rate at 1 year was about 35%. The 13 binary or categorical variables that we 

considered for variable selection included disease type, recipient age, donor age, donor-

recipient sex match, donor-recipient cytomegalovirus (CMV) match, ABO blood type 

match, donor parity, disease status at transplant, conditioning intensity, total body 

irradiation, graft type, graft-versus-host disease (GVHD) prophylaxis, and in-vivo T cell 

depletion. They consisted of 28 indicator variables. The censoring distribution did not 

depend on any covariates based on the Cox proportional hazards model.

We selected variables for the 0.35th competing risks quantile regression for relapse using the 

following three selection methods: the group bridge, the adaptive group bridge with β
∼(τ)

from Peng and Fine [1], and the adaptive group bridge with β
∼(τ) from the group bridge. The 

reference group was set to zero. Table 4 shows the selected variables and their estimates. 

The group bridge selected disease status at transplant, CMV match, conditioning intensity, 

in-vivo T cell depletion, graft type, and GVHD prophylaxis. On the other hand, both of the 

adaptive group bridge with β
∼(τ) from Peng and Fine [1] and the adaptive group bridge with 

β
∼(τ) from the group bridge selected the same variables: disease status at transplant, CMV 

match, conditioning intensity, and in-vivo T cell depletion. The adaptive group bridge did 

not select graft type and GVHD prophylaxis, which is why all of their estimates are zeros in 

Table 4. The competing risks quantile regression of Peng and Fine [1] was fitted using the 

variables selected by at least one of the three methods. “CQ” in Table 4 indicates their 

estimates and p-values from the competing risks quantile regression of Peng and Fine [1]. It 

suggests that all variables selected by the adaptive group bridge appeared to be significant. 

However, graft type and GVHD prophylaxis that the group bridge selected appeared not to 

be significant based on their p-values.

5. Conclusion

The group bridge and the adaptive group bridge were proposed to select variables for the 

competing risks quantile regression. Their oracle property was studied. In particular, the 

adaptive group bridge not only consistently identifies non-zero group variables, but also 

consistently selects non-zero within-group variables. We also proposed the BIC-type 

criterion to choose a tuning parameter. The proposed BIC-type criterion appears to work 
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properly in the simulation study. The adaptive group bridge selected non-zero within-group 

variables more consistently than the group bridge in the simulation study. A bone marrow 

transplant example showed the usefulness of the adaptive group bridge.

The proposed method was limited to when dn < n. Developing a group variable selection 

method when dn < n would be a crucial research problem. A two-step variable selection 

procedure may be developed for this: once we screen group variables in the first step, we 

may use the adaptive group bridge to obtain a further parsimonious list of non-zero variables 

in the second step. The theoretical justification of the proposed BIC-type criterion needs to 

be studied in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

For G t|Z∼  and the Breslow estimator, we assume as follows:

a. ∫0

L
λ0

G(t)dt < ∞ and P{Yi(t) = 1} > 0 for t ∈ [0, L], i = 1, …, n, and dn
4/n 0 as n 

→ ∞.

b. Zij is bounded almost surely for all i,j and αTZ∼ is bounded almost surely for any 

Z∼ and α ∈ ℬ, where ℬ is a neighborhood α0.

c. For d = 0, 1, 2, there exists a neighborhood ℬ of α0 such that sG
d α, t  are 

continuous functions and supt ∈ 0, L , α ∈ ℬ 𝕊G
(d) α, t − sG

d α, t 0 in 

probability.

d.
The matrix A α0 = ∫0

L
vG α0, t sG

(0)(α0, t)λ0
G(t)dt is positive definite, where 

vG α, t = sG
(2)(α, t)/sG

(0) α, t − eG(α, t) ⊗ 2 and eG α, t = sG
(1)(α, t)/sG

(0)(α, t).

e. For all α ∈ ℬ, t ∈ [0, L], 𝕊G
(1)(α, t) = ∂𝕊G

(0)(α, t)/ ∂α, and 

𝕊G
(2)(α, t) = ∂2𝕊G

(0)(α, t)/(∂α∂αT), where 𝕊G
(d)(α, t), d = 0, 1, 2 are continuous 

functions of α ∈ ℬ uniformly in t ∈ [0, L] and are bounded on ℬ × [0, L], and sG
(0)

is bounded away from zero on ℬ × [0, L].
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