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Abstract
Drug-induced liver injury (DILI) has become a major 
topic in the field of Hepatology and Gastroenterology. 
DILI can be clinically divided into three phenotypes: 
hepatocytic, cholestatic and mixed. Although the clinical 
manifestations of DILI are variable and the pathogenesis 
complicated, recent insights using improved preclinical 
models, have allowed a better understanding of the 
mechanisms that trigger liver damage. In this review, 
we will discuss the pathophysiological mechanisms 
underlying DILI. The toxicity of the drug eventually 
induces hepatocellular damage through multiple molecular 
pathways, including direct hepatic toxicity and innate and 
adaptive immune responses. Drugs or their metabolites, 
such as the common analgesic, acetaminophen, can 
cause direct hepatic toxicity through accumulation of 
reactive oxygen species and mitochondrial dysfunction. 
The innate and adaptive immune responses play also 
a very important role in the occurrence of idiosyncra-
tic DILI. Furthermore, we examine common forms of 
hepatocyte death and their association with the activation 
of specific signaling pathways.
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Core tip: Drug-induced liver injury (DILI) represents 
a broad spectrum of clinical manifestations, and 
is generally divided into two subtypes: intrinsic and 
idiosyncratic hepatotoxicity. Drugs and their reactive 
metabolites covalently bind to mitochondria and cause 
direct hepatic toxicity through accumulation of oxidative 
stress (ROS and RNS), endoplasmic reticulum stress 
and mitochondrial dysfunction, ultimately leading to cell 
death. The innate and adaptive immune responses also 
play an important role in the occurrence of idiosyncratic 
immunological reactions towards the drugs. In this 
review, we discuss the pathophysiological mechanisms 
underlying DILI, specific signaling pathways and the 
common forms of hepatocyte death.
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INTRODUCTION
Drug-induced liver injury (DILI) is the most common 
cause of acute liver failure (ALF) in the United States and 
Europe[1], and is a leading reason for drug withdrawal 
and the high attrition rates in drug development (Table 1). 
In addition, the incidence of DILI has continued to rise 
and is therefore recognized as a major public health 
concern[2]. DILI is one of the most common and serious 
adverse drug reactions (ADRs)[3], and is defined as a 
chemical insult resulting in injury to the liver[4]. It can 
be triggered by the parent drug and/or its metabolites, 
or as a reaction of hypersensitivity to the compound. 
A wide variety of drugs can cause DILI, including anti-
tumor chemotherapy drugs, anti-tuberculosis drugs, 
antipyretic analgesics, immunosuppressive agents, 
hypoglycaemic therapies, or anti-bacterial, anti-fungal 
and antiviral drugs. DILI leads to multiple presentations 
in the clinic, including elevated liver enzymes, hepatitis, 
hepatocellular necrosis, cholestasis, fatty liver and 
liver cirrhosis. Occasionally, the clinical symptoms are 
not specific and they are indistinguishable from other 
hepatic disorders. In some patients, liver injury is easily 
detected by blood tests. The wide range of clinical 
manifestation, the complication of aetiology and the 
lack of effective tests make its diagnosis and treatment 
particularly challenging.

DILI is generally divided into two subtypes ac-
cording to the hepatotoxicity of the drug: “intrinsic” 
hepatotoxicity and “idiosyncratic” hepatotoxicity. The 

former refers to dose-dependent hepatotoxicity that 
is predictable in humans or animal models, while 
idiosyncratic DILI (iDILI) is an unpredictable injury that 
cannot be explained by the known pharmacological 
properties. Recently, the screening of new drugs has 
become more stringent and the monitoring of ADRs 
improved. Problems associated with DILI have become 
a major driver in the development of new medications, 
and for the withdrawal, restriction or project termination 
of existing drugs and drug compound candidates. In 
developed countries, iDILI is less common, occurring 
only very rarely among treated patients, while intrinsic 
hepatotoxicity is still a main cause of DILI[5,6]. The 
pathogenesis of DILI is a complex process that has 
recently attracted much attention. Some researchers 
recently proposed a new hypothesis, providing a clear 
framework and direction for the further study of DILI[7]. 
According to this hypothesis, drug-induced liver injury 
can be divided into three steps: an initial insulting 
stimulation causes the mitochondrial dysfunction, and 
ultimately leads to cell death. However, until now, the 
exact mechanism remains unclear. For the purpose of 
preventing DILI and improving clinical management, 
the study of the pathogenesis of DILI is particularly 
important. In this article, we will review and discuss 
recent progress towards understanding the underlying 
mechanisms triggering DILI.

DIRECT HEPATIC TOXICITY
The liver plays an important role in the metabolism of 
drugs or exogenous toxicants, and the majority of drugs 
are biologically transformed in the liver. The patholo-
gical state of the liver can affect drug metabolism, 
thus changing the efficacy and the ADRs, whilst the 
metabolic products of drugs can cause liver damage.

The cytochrome P450s (CYP) are a superfamily of 
iron porphyrin proteins, which are key factors involved 
in drug oxidative and reduction reactions. Through 
the P450s, drugs are metabolized and can form ions, 
oxygen free radicals and other active substances. The 
balance between toxic formation and detoxification 
is essential for DILI. Toxins are inactivated by the 
detoxification phase Ⅰ-Ⅲ pathways of the liver. However, 
once the amount of toxins exceeds the capacity of the 
hepatic detoxification function, drugs and their reactive 
metabolites impact cell function - leading to liver cell 
damage - eventually causing apoptotic or necrotic cell 
death. At present, the most frequently studied drug, 
which causes intrinsic DILI, is acetaminophen (APAP), 
which is also known as paracetamol[8].

Upon rapid absorption, APAP is mainly metabolized 
via Phase-Ⅰ reactions (sulfation or glucuronidation) and 
then excreted into the urine. APAP toxicity is caused 
mainly by the excess formation of the reactive inter-
mediate, N-acetyl-p-benzoquinone imine (NAPQI)[9], as 
a result of CYP (predominately CYP2E1 and CYP1A2) 
metabolism. Under normal circumstances, NAPQI 
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is detoxified by rapid conjugation with the hepatic 
glutathione (GSH) and excreted into the bile, thus, APAP 
usage is nontoxic. Following overdose, APAP saturates 
both the sulfation and the glucuronidation pathways[10], 
enhanced NAPQI production depletes mitochondrial 
GSH, and the excess NAPQI then reacts with sulfhydryl 
groups of proteins to form protein adducts[11]. The 
interaction of NAPQI with target DNA and proteins in 
the mitochondria and the formation of protein adducts 
is thought to be critical for the development of hepatic 
toxicity[12,13], leading to oxidative stress, mitochondrial 
dysfunction[14,15] and mitogen-activated protein kinase 
(MAPK) activation (Figure 1). Specific targets in the 
mitochondria, including glutathione peroxidase (GPx) 
and the alpha subunit of adenosine triphosphate (ATP) 
synthase, participate in adduct formation, which was 
identified using proteomic approaches[16]. Furthermore, 
some drugs lead to the obstruction of the bile duct 
and mediate inhibition of hepatobiliary transporter 
systems[17]. Bile salt export pump (BSEP) is an efflux 
transporter of bile acids (BAs) transport and responsible 
for the clearance of drugs from liver and the secretion 
of bile salts into bile. The inhibition of BSEP expression 
has profound effects on bile acid homeostasis[18]. The 
cytotoxic bile acids accumulating in the liver results in 
liver cell damage, and potentially cirrhosis[17].

Oxidative and nitrosative stress
Oxidative stress is the result of the generation of ROS, 
which are a by-product of normal metabolism and have 
roles in cell signaling and homeostasis. Some DILI-
causing drugs increase ROS accumulation through a 
variety of mechanisms[19]. Iron overload also amplifies 
oxidative stress as a catalyst for ROS formation via 
the Fenton reaction, in which H2O2 splits into hydroxyl 
radicals (OH•) and hydroxide (OH-) (Figure 2). Free 
radical metabolites participate in the redox process 
and are capable of inducing cell damage by covalently 
binding to macromolecules[20]. Moreover, radical species 
can oxidize essential cell components and result in 
mutations in genomic and mitochondrial DNA (p21, 
p53) and tumor generation.

The role of lipid peroxidation (LPO) remains con-
troversial in APAP hepatoxicity, and is often considered 
to be involved in cell death[21]. However, APAP overdose 
causes severe liver damage but a minor increase in the 
levels of LPO in normal animals[22]. Thus it seems that 
lipid peroxidation is not a critical event in APAP-induced 
hepatotoxicity. The cell injury induced by LPO requires 
not only oxidant formation but also impairment of the 

antioxidant defense systems. Additionally, LPO can be a 
consequence of tissue injury rather than the cause[23].

Given a toxic dose of APAP, histological necrosis 
is evident in the liver at 4 h, and tyrosine nitration 
occurs, indicating peroxynitrite formation[24]. Enhanced 
production of superoxide radicals (O2

●-) reacts with nitric 
oxide (NO), produced by inducible nitric oxide synthase 
(iNOS), forming peroxynitrite (ONOO-)[25]. Since the 
O2

●- anion scarcely passes through the hepatocyte 
cell membrane, this process occurs exclusively within 
the mitochondria. The highly reactive and potent 
oxidant ONOO- also causes nitration of protein tyrosine 
residues[26] which induces damage to mitochondrial DNA 
and the opening of the mitochondrial membrane pore. 

Mitochondrial oxidative stress alone is not suffi-
cient to ultimately trigger mitochondrial membrane 
permeability transition (MPT) and induce cell death. 
A group of protein kinases known as the mitogen-
activated protein kinases (MAPKs), one of the most 
actively studied kinases or signaling pathways, 
participates in this process. Conventional studies have 
shown that MAPK pathways include many proteins 
such as the extracellular signal-related kinases (ERK), 
c-Jun N-terminal kinases (JNKs) and p38[27]. The JNK 
genes, JNK1 and JNK2, are expressed in the liver. A 
dysregulation of JNK1 and JNK2 protein expression is 
characteristic in both human and murine models of DILI, 
and is a potential therapeutic target[28]. JNK activation 
occurs early after APAP overdose and is sustained 
during the process, inducing hepatocyte death. JNK 
activation has been found in both hepatocytes and 
infiltrating cells, and is mediated by MAP kinase kinases 
(MAP2K)[29], which in turn are phosphorylated and 
activated by MAP kinase kinase kinases (MAP3K). The 
apoptosis signal-regulating kinase-1 (ASK1) is involved 
in APAP-induced JNK elevation[30] and activated by 
the dissociation with thioredoxin-1(Trx-1). The mixed-
lineage kinase-3 (MLK3), a member of serine/threonine 
protein kinases family, mediates the initial phase of 
JNK activation[31]. ASK1 and MLK belong to the MAP3K 
group and different MAP3K group members function 
cooperatively in the response to oxidative stress. The 
role of MAP3K in JNK regulation still requires to be 
further investigated; whilst the activation of JNK can 
also be influenced by the dose of APAP[32]. The fact 
that RIP3-deficiency prevented oxidant stress suggests 
that RIPK3 acted upstream of JNK activation[33]. After 
JNK activation and phosphorylation in the cytosol, JNK 
binds to the Sab protein on the outer mitochondrial 
membrane[34,35], leading to the inactivation of p-Src 

1375 April 7, 2018|Volume 24|Issue 13|WJG|www.wjgnet.com

Table 1  The incidence of drug-induced liver injury

Country France Iceland South Korea Spain United Kingdom United States Sweden

DILI incidence (‰) 0.139 0.191 0.12 0.03 0.007-0.013 0.10-1.50 0.023

DILI: Drug-induced liver injury.
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oxidative stress can reduce the synthesis of mitoch-
ondrial proteins and increase mitochondrial permeability 
transition. The induction of MPT increases mitochondrial 
membrane permeability allowing the exit of molecules 
less than 1500 Daltons[37], which causes mitochondria 
to become further depolarized, thus reducing the proton 
gradient leading to the collapse of the mitochondrial 
membrane potential (MMP). The mitochondria then 
swell, rupture and release proteins from the inter-

on the inner mitochondrial membrane, which inhibits 
electron transport and increases ROS generation 
and further mitochondrial injury[36]. Ultimately, the 
pJNK translocates to the mitochondria and results in 
downstream signaling events[34].

Mitochondrial dysfunction
Mitochondrial dysfunction is the main cause of hepa-
tocellular necrosis. The amplification of mitochondrial 
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membrane space[38], a sequence implicated in cell 
death pathways such as apoptosis[39,40]. ROS are also 
produced because of the opening of the MPT pore, in 
turn, exaggerating oxidative stress and inducing DNA 
damage. Furthermore, the β-oxidation respiratory chain 
is compromised, and the process of ATP production is 
disrupted, resulting in reduced energy [41]. 

Endoplasmic reticulum stress
Various cellular stresses such as ROS or alteration in 
the cellular calcium (Ca2+) concentration can impair 
protein folding and initiate the endoplasmic reticulum 
(ER) stress, which plays a critical role in APAP-induced 
hepatotoxicity[42]. Efficient protein folding in the ER 
requires tight coupling between the subunits of new 
proteins in the ER lumen and the ER folding capacity[43]. 
If the demand for protein folding increases, unfolded or 
misfolded proteins in the lumen also increase. ER stress 
is induced late after APAP intoxication (500 mg/kg) in 
murine models, and becomes significant 12 h following 
APAP administration[44]. The mechanisms by which 
APAP induces ER stress are poorly understood. One 
hypothesis is the alteration in the microsomes secondary 
to NAPQI generation. It has been reported that APAP 
induces an oxidative shift of the ER oxidoreductases, 
Erp72 and protein disulfide isomerase (PDI) in liver 
microsomes[45]. Furthermore, NAPQI can covalently 
bind to several microsomal proteins such as PDI and 
calreticulin, which have a significant role in protein 
folding in the ER, thus inducing ER stress. Another 
hypothesis suggests that ER stress might be due to 
ROS overproduction and mitochondrial dysfunction[46], 
including loss of the MMP and increase in intracellular 
Ca2+ concentration. Inhibition of BSEP results in not only 
cholestasis in some cases, but importantly, via bile acid 
retention, causes mitochondrial and ER stress, which 
may amplify injury or sensitize hepatocytes to other 
injury mechanisms[47].

iDILI
iDILI is a rare ADR[48], and occurs with a variable latency 
to onset, usually after several weeks or months of 
continuous treatment with the offending drug but, more 
importantly, it is unpredictable[49]. The incidence of iDILI 
ranges from 1/1000 to 1/200000[50], depending on the 
agent. The diagnosis of iDILI relies on the exclusion 
of other causes of liver injury and detailed medical 
history. The mechanisms of iDILI have not yet been 
elucidated. Although it is thought that iDILI is not dose-
related, recent studies have supported the prediction 
of dose-response to some extent[51]. In general, it is 
associated with host condition, behavioural factors and 
drug exposure. Amongst behavioural factors, excessive 
alcohol consumption and smoking are very common 
triggers of iDILI. The host factors include genetic and 
non-genetic-derived iDILI. For example, genetically, it is 

considered that iDILI is caused by the deficiency or low 
activity of drug-metabolizing enzymes and an abnormal 
immune response. Non-genetic types include existing 
disease states, pregnancy, age and host gender. In 
some iDILI reactions, the same mechanisms of intrinsic 
DILI are involved: ROS, mitochondrial dysfunction and 
altered bile acid homeostasis. The typical drugs are 
tacrine and stavudine. Additionally, in some iDILI, after 
exposure to certain drugs, neoantigens are produced in 
the liver and can mobilize the immune cells and result 
in idiosyncratic immunological reactions towards the 
drugs.

The innate immune response
As a result of hepatocyte damage, iDILI triggers the 
inflammatory reaction, which involves the innate 
immune system. The innate immune system in the 
human liver is mainly composed of Kupffer cells (KCs), 
neutrophils, monocytes and natural killer cells/natural 
killer T cells (NK/NKT cells)[52,53]. In recent years, 
increasingly studies have confirmed that the innate 
immune system participates in the pathogenesis 
of iDILI, but the specific mechanism is still on the 
controversy. The main hypothesis is that neoantigen 
stimulates the cells of the innate immune system and 
creates inflammation by binding to Toll-like receptors 
(TLRs), scavenger receptors (SCRs) and mannitol 
receptors (MRs) of macrophages. In patients with iDILI, 
a large number of macrophages are mobilized in the 
blood and assemble around the damaged hepatocytes 
via adhesion factors. The proliferation of macrophages 
is also seen in the bone marrow[54]. The depletion of 
KC reduces the expression of IL-10, IL-6 and other 
mediators, and increases APAP-induced liver injury. 
Overall, the activation of KC is beneficial because the 
anti-inflammatory effects outweigh potential toxic 
effects[55]. Antigens derived from damage associated 
molecular patterns (DAMPs)[56] act as signals to activate 
innate immune cells. High mobility group box 1 protein 
(HMGB1) is one of the previously identified DAMPs. 
HMGB1 induces the infiltration of neutrophils, associates 
with TLRs and promotes the release of cytokines such 
as TNFα, IFNγ and IL-1, thereby activating the KC[57] 
and aggravating iDILI. In addition, the controversy 
surrounds the role of NK/NKT cells. Some researchers 
believe that NK/NKT cells ameliorate the liver injury 
caused by drugs through secreting IFNγ, IL-4 and 
other cytokines. However, some authors have reported 
no significant differences in the expression level 
of protective cytokines from the liver of NKT-cell-
deficient mice[58]. In addition, the released cytokines 
and chemokines can enhance the adaptive immune 
response through a variety of mechanisms.

The adaptive immune response
The finding that the liver injury recurs promptly after 
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the iDILI patient is re-exposed to the offending drug, 
reflects the involvement of an adaptive immune 
response. This is in fact predictable, given that the 
antigen-specific lymphocytes still remain in the body. 
During the process of drug metabolism, drug metabolite 
covalently binds to hepatic protein or modified proteins 
expressed on the surface of hepatocytes and form 
protein haptens (essentially an incomplete antigen). The 
hapten is released after hepatocyte death or damage 
and presented by antigen-presenting cells (APCs) in 
complex with major histocompatibility complex (MHC) 
class II molecules to cluster of differentiation 4 CD4+ 
T cells. When recognized as ‘foreign’ by T cells and 
following binding to T-cell receptors of CD4+T cells, 
it then activates cluster of differentiation 8 CD8+ T 
cytotoxic cells via secretion of TNFα and IFNγ. CD8+T 
cytotoxic cells mediate cytotoxic reactions though 
FasL or perforin and induce hepatocellular apoptosis. 
The anaesthetic drug Halothane exactly triggers this 
mechanism. Under normal conditions, hapten alone 
is not sufficient to activate the immune response, 
therefore activation of the adaptive immune system 
requires other cell/ tissue threatening events. This is 
termed the ‘Hypothesis of danger signalling’. Indeed, it 
has been shown that the presence of an inflammatory 
background is associated with increased susceptibility to 
iDILI[59,60]. Infection and inflammation act as the danger 
signal and further augment the immune response by 
cell death or cytokine release[61]. However, the specific 
mechanisms still need further study.

The “hapten” hypothesis is a dominant mechanism 
proposed for the creation of neoantigens after drug 
exposure[62]. More recently, the ‘pharmacological 
interaction’ or ‘p-i’ model suggests a new hypothesis for 
activating T-cell-mediated immune responses[63]. The 
drug directly binds to either the T-cell receptor (TCR) 
or human leucocyte antigen (HLA) without intracellular 
antigen processing[64-66], and activates T cells in a 
peptide-independent manner[67]. This hypothesis 
might also explain the rapid reaction of T-cells after 
drug exposure in vitro, which is inconsistent with the 
time-course of antigen processing in vivo. Classic 
drugs that are considered to respond in this way are 
sulfamethoxazole, lamotrigine and carbamazepine.

The immune genetic polymorphism 
A genome-wide association study (GWAS) proved that 
iDILI is associated with the HLA region on chromosome 
6[68,69]. The HLA polymorphism results in the human 
body to be more prone to produce adaptive immune 
responses to certain drugs[70]. HLA genotyping of 
75 amoxicillin-clavulanate hepatotoxicity cases in 
Spain has also demonstrated phenotype-specific HLA 
association[71]. Abacavir, a human immunodeficiency 
virus reverse transcriptase inhibitor, induces multi-organ 
toxicity exclusively in patients carrying the HLA-B*57:01 
allele[72]. A GWAS on flucloxacillin hepatotoxicity 

(FLUX-DILI) has revealed a strong association with 
the HLA-B*57:01 allele[73]. Flucloxacillin is an effective 
antimicrobial drug against staphylococcal infections 
and widely used in Europe and Australia. The incidence 
of cholestatic hepatitis, which is induced by the use of 
flucloxacillin, is estimated to be 8.5 per 100000 in the 
first 1 to 45 d after start of treatment[74]. However, the 
incidence in the HLA-B*57:01 allele carriers raises more 
than 3-fold, indicating the HLA-B*57:01 have an added 
effect on FLUX-DILI[75].

Immune tolerance
Hepatocyte stress can be detected in the majority of 
individuals exposed to the insulting drug, especially at 
high concentrations. However, injury occurs in only a 
very small number of individuals. Although the liver 
is considered itself to be an immune-tolerant organ, 
the variation of susceptibility to the ensuing stress 
response(s) still exists; only in individuals with low 
tolerance, will DILI occur. The tolerance phenomenon 
due to liver immunity can be explained by: apoptosis 
of activated T cells, immune deviation and immune 
active suppression[53]. Antigen-specific CD8+ T-cell 
populations accumulate transiently within the liver 
before apoptosis[76]. It is possible that the liver can 
induce apoptosis of activated T cells through toxic 
molecules or the deprivation of survival signals[77]. 
Hepatocytes can attract apoptotic T cells because 
specific markers are expressed in the membrane and 
are recognized by KCs or other cells in the liver. During 
the hepatic immune responses, there is immune 
deviation occurring. Klugewitz et al[78], reported that the 
liver sinusoidal endothelial cells (LSECs) can selectively 
inhibit T helper-1 (Th1) cells and reduce the production 
of INF-γ, but LSECs can also activate T helper-2 (Th2) 
cells leading to an increase in IL-4 secretion. The third 
mechanism is the result of the unique composition of 
tolerogenic APCs in the liver. The tolerogenic APCs within 
the liver include LSECs, KCs, and hepatic dendritic 
cells (DCs). Although recognized as APCs, these cells 
are incapable of stimulating antigen-specific T-cell 
responses[79]. On the contrary, they trap and interact 
with the inactive T cells in the liver sinusoid, thereby 
promoting tolerance. LSECs can act as APCs to some 
extent, but CD4+ or CD8+ T cells activated by them 
cannot further differentiate into Th1 cells or cytotoxic 
cells. Moreover, hepatic KCs can also suppress T-cell 
activation through the production of prostaglandins[80].

SIgNAL TRANSDUCTION AND 
HEPATOCYTE DEATH
The traditionally recognized forms of cell death are 
apoptosis and necrosis: apoptosis is a highly regulated 
and controlled cell death process that does not cause 
inflammation, while necrosis is a traumatic mode of 
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cell death that induces inflammation and can promote 
tissue fibrosis[81]. Recently, increasing evidence has 
shown that there is a specific subtype of necrosis, 
termed necroptosis[82]. Autophagy was first observed 
by Keith R Porter and his student in 1962[83] and has 
become a controversial topic in the occurrence of 
DILI, which is not only a protective pathway but also 
associated with cell death (discussed below).

Apoptosis
Apoptosis is a process of programmed cell death, which 
maintains physiological homeostasis in the normal 
human liver[84]. Characteristic apoptotic morphology 
includes cell shrinkage, nuclear fragmentation, chro-
matin condensation, chromosomal DNA fragmentation 
and global mRNA decay. Apoptosis can be initiated 
through two pathways: the intrinsic pathway (also called 
the mitochondrial pathway), and the extrinsic pathway. 
The intrinsic pathway is activated by intracellular 
signals generated when cells are stressed and depends 
on the release of proteins from the mitochondrial 
intermembrane space. The extrinsic pathway is 
activated by extracellular ligands binding to cell-surface 
death receptors (DRs). Both pathways induce cell death 
by activating executioner caspases (caspase 3 and 7) 
or enzymes that degrade protein (e.g., non-caspases, 
cathepsins, calpains, granzymes, and the proteasome 
complex, also have roles in mediating and promoting 
cell death).

Death receptors belong to the TNF family, com-
prising TNF receptor (TNFR), FAS and TNF-related 
apoptosis-inducing ligand receptor (TRAIL-R)[85]. The 
most widely expressed on the hepatocellular membrane 
are CD95 (APO-1/FAS) and TNFR1 (CD120a). When 
DRs are engaged by their ligands, the death domains of 
the receptors are oligomerized and form a membrane-
bound supramolecular structure termed death-inducing 
signaling complex (DISC), including TNFR-associated 
death domain (TRADD), receptor interacting protein 
kinase-1 (RIPK1), cellular inhibitor of apoptosis 1 and 
2 (cIAP1 and 2) and TNFR-associated factor 2 (TRAF2) 
or TRAF5[86], thereby recruiting caspase-8[87], and 
transducing a downstream signal cascade resulting 
in apoptosis[88]. The intrinsic pathway is commonly 
triggered via Bid, a protein of the B-cell lymphoma 
2 (Bcl-2) family. Caspase-8 mediates the cleavage 
of Bid and cleaved Bid (tBid) would translocate to 
mitochondria, lead to mitochondrial outer membrane 
permeabilization (MOMP) via Bax and Bak and induce 
cytochrome C release to the cytoplasm, which binds 
to Apaf-1, forming a complex with caspase-9. The 
activation of procaspase-9 initiates the caspase 
cascade, promoting cell death. Several intracellular 
factors can activate this pathway, including ER stress 
and P53 activation[89]. ER stress induces an intrinsic 
cell death pathway termed lipoapoptosis mediated by 
JNK activation, whereas p53 induces apoptosis though 
regulation of specific target genes such as Bax. In the 

liver, the extrinsic and intrinsic pathways are linked, 
because hepatocytes require mitochondrial amplification 
activating caspase-3 for cell death execution[90].

Necrosis
Conventionally necrosis is thought to be ‘unprogrammed’ 
cell death caused by factors external to the cell or 
tissue, such as infection, virus, toxins, drugs or trauma. 
This results in the loss of cell membrane integrity with 
an uncontrolled release of cellular constituents into 
the extracellular space, thus eliciting an inflammatory 
response in the surrounding tissue[91]. The typical 
features of necrosis include depletion of ATP, ion 
imbalance and mitochondrial dysfunction. Similar to 
the intrinsic pathway of apoptosis, mitochondrial injury 
is the key factor of early-stage necrosis. The change 
of cell size and the formation of membrane “blebs” 
are reversible, but once MPT is changed and cellular 
constituents are released, the cascade is irreversible, 
and leads to cell rupture. Hepatocellular necrosis also 
requires the participation of proteases, one of which is 
calpain-mediating necrosis. Furthermore, recent work 
has demonstrated that necrosis can be regulated by 
MPT inhibitor or caspase inhibitors[92]. RIPK3-mediated 
mitochondrial fission seems to be also a feature of 
APAP-induced hepatocyte necrosis. Drp1 translocates to 
the mitochondria mediated by RIPK3, polymerizes and 
constricts mitochondria to facilitate organelle division[33].

Necroptosis
Necroptosis is a “programmed” form of necrosis, 
which incorporates features of necrosis and apoptosis 
(Figure 3)[93]. Necroptosis shares the upstream 
pathway with apoptosis, and leads to cellular leakage, 
as seen in necrosis. Necroptosis can lead to cell death 
without the facilitation of caspase, in the presence of 
caspase inhibitors[93]. The typical signaling pathway 
of necroptosis is mediated by TNF super family 
member receptor. TNFα can stimulate its receptor 
TNFR1, and the TNFR-associated death protein TRADD 
signals to RIPK1 - which recruits RIPK3, to form the 
necrosome through the interaction of RIP-homology 
interaction motif (RHIM). RIPK3 then activates mixed 
lineage kinase domain like pseudokinase (MLKL) by 
phosphorylation, and p-MLKL subsequently drives 
oligomerization of MLKL, allowing MLKL to insert into 
and permeabilize plasma membranes and organelles[94]. 
The pro-inflammatory factors are then released and 
elicit immune responses ensue. The role of necroptosis 
in APAP-derived DILI is still controversial. Although TNF 
receptor signalling pathway is the best studied initiating 
event for necroptosis, there are multiple mechanisms to 
trigger this mode of cell death and further studies are 
needed to identify potential activators[95]. Many studies 
showed that Nec-1, an inhibitor of RIPK1, protects 
against APAP hepatotoxicity in vivo and in vitro[33,96]. 
However, RIPK3 and MLKL seem to be dispensable in 
APAP-derived DILI, whilst RIPK1 is essential for APAP 
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toxicity via JNK activation[97].

Autophagy
Autophagy functions in a wide variety of physiological 
and pathophysiological roles as a complex, destructive 
mechanism of the cell that disassembles unnecessary 
or dysfunctional components[98]. Lysosomes are respon-
sible for intracellular autophagy and the degradation 
of the cell. Autophagy is observable with the formation 
of autophagosomes, which are double-membrane 
vesicles originating from rough ER and contain part 
of the cytoplasm, the organelles and the proteins 
need to be degraded. Then autophagosomes fuse 
with lysosomes and initiate the orderly degradation 
and recycling of cellular components[99]. In disease, 
autophagy is considered to be an adaptive response to 
stress, which promotes survival and plays a vital role in 
cellular reconstruction. Ni et al[100] found that autophagy 
is important for the regulation of APAP protein adducts 
levels in hepatocytes, and this selective autophagic 
removal is mediated by ubiquitin and p62[100,101]. It 

is thought that autophagy activated by 5’-adenosine 
monophosphate-activated protein kinase (AMPK), 
can lead to adiponectin accumulation, which, in turn, 
removes damaged mitochondria, thereby ameliorating 
oxidative stress and hepatotoxicity[102]. And Parkin-
induced mitophagy is also a mechanism of protection 
against APAP-induced liver injury and necrosis by 
negatively regulating JNK activity[36,103] and Mcl-1 
degradation and increasing hepatocyte proliferation[104]. 
However, chronic deletion and acute knockdown of 
Parkin have different regulation towards mitophagy and 
liver injury, the mechanism of which is still unidentified 
and need further study[104]. Autophagy has emerged 
as an exciting new field in DILI and warrants further 
investigation.

CLINICAL PERSPECTIvES
The clinical manifestations of DILI are usually non-
specific. Many patients may have no significant sym-
ptoms and only present with elevations in the level of 
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Figure 3  Schematic overview of three different modes of cell death: apoptosis, necrosis and necroptosis. When FasL or Tumor necrosis factor-alpha (TNF-α) 
bind to their death receptors (DRs), death domains of DRs are oligomerized and form death-inducing signalling complex (DISC), which recruits caspase-8. Active 
caspase 8 cleaves Bid into cleaved Bid (tBid), which translocates to mitochondria and cooperates with Bax. Meanwhile, JNKs are activated by Mitogen-activated 
protein kinases (MAPKs) and pJNK also translocates to the mitochondria via binding to the Sab protein. ROS accumulation and ATP depletion in the mitochondria 
aggravate mitochondrial damage and induce membrane permeability transition (MPT), resulting in release of cytochrome C, in turn promoting the activation of 
caspase-9 and caspase-3. Activated caspase-3 then leads to hepatocyte apoptosis. The extrinsic and intrinsic pathways of hepatocyte apoptosis are linked, because 
hepatocytes require mitochondrial amplification activating caspase-3 for cell death execution. The mitochondrial injury and MPT are also key factors in cascade of 
events leading to necrosis. Necroptosis shares the upstream pathway with apoptosis. When cellular inhibitors of apoptosis (cIAPs) are depleted, Receptor interacting 
protein kinase (RIPK)1 and RIPK3 interact with each other via membrane permeability transition (RHIM) domains to form the necrosome, and further recruit and 
phosphorylate MLKL to initiate necroptosis.
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hepatic biochemical indexes. For about the last half 
century, the traditional serum biomarkers for detecting 
DILI in clinics are alanine aminotransferase (ALT), 
aspartate aminotransferase (AST), alkaline phosphatase 
(ALP) and total bilirubin (TBIL). However, elevations in 
these biomarkers take place when hepatocyte injury 
has already occurred and cannot be used to identify 
a potential for DILI. In recent years, with the further 
understanding of the mechanisms of DILI, several new 
biomarkers have been reported, including apoptosis-
related caspase cleaved keratin 18 (cCK18)[105], 
necrosis-related HMGB1[106,107] and microRNA (especially 
microRNA-122)[108,109], specific mitochondrial injury 
biomarker glutamate dehydrogenase (GLDH)[110], 
biomarkers reflecting cholestasis (e.g. BAs) as well 
as genetic biomarkers reflecting the susceptibility to 
DILI, such as the genetic polymorphisms of HLA, drug 
metabolizing enzymes and drug transport proteins[2]. 
MicroRNA-122 and GLDH have been proposed as 
more sensitive and specific biomarkers of liver injury 
than ALT[111]. APAP-protein adducts and NAPQI are 
specific biomarkers of APAP-mediated DILI[112]. And 
apolipoprotein-A1 and haptoglobin have significant 
predictive values for the prediction of recovery in DILI 
patients[113]. Some of these biomarkers are already 
being used in early clinical trials. Though current 
biomarker are not specific to DILI and their value for 
clinical use still needs to be widely verified, their addition 
to conventional measurements could soon transform 
DILI prediction and detection, thereby promoting earlier 
treatment.

CONCLUSION
The liver works as a central detoxifying organ towards 
xenobiotics and chemicals. However, during the 
process of biotransformation to less toxic substances, 
molecules that can induce liver injury through various 
pathways are produced. The pathogenesis of DILI 
is very complex, and the occurrence of DILI is the 
consequence of multiple factors. Generally, important 
mechanisms involved in drug-induced hepatic injury 
can be divided into: (1) reactive metabolite formation 
via metabolism; (2) covalent binding between 
cellular components with drug; (3) reactive oxygen 
species generation in the cells; (4) activation of signal 
transduction pathways that modulate cell death or 
survival; and (5) cellular mitochondrial damage[114]. The 
common forms of hepatocyte death include apoptosis, 
necrosis, necroptosis and autophagy. The clinical 
characteristics of DILI are variable, and no specific 
laboratory tests are predictable for DILI, thereby 
presenting a major challenge for clinical diagnosis and 
treatment. Research on the molecular mechanisms 
underlying DILI will contribute greatly to early-stage 
screening of new drugs, predicting hepatotoxicity, and 
the monitoring of drug side-effects, eventually reducing 
the incidence of DILI, but clinical translation of the 

numerous mechanisms remains a challenge, requiring a 
considerable investment.
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