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Abstract

Purpose—To compare estimates for the diffusional kurtosis in brain as obtained from a cumulant 

expansion (CE) of the diffusion MRI (dMRI) signal and from q-space (QS) imaging.

Theory and Methods—For the CE estimates of the kurtosis, the CE was truncated to quadratic 

order in the b-value and fit to the dMRI signal for b-values from 0 up to 2000 s/mm2. For the QS 

estimates, b-values ranging from 0 up to 10,000 s/mm2 were used to determine the diffusion 

displacement probability density function (dPDF) via Stejskal's formula. The kurtosis was then 

calculated directly from the second and fourth order moments of the dPDF. These two 

approximations were studied for in vivo human data obtained on a 3 T MRI scanner using three 

orthogonal diffusion encoding directions.

Results—The whole brain mean values for the CE and QS kurtosis estimates differed by 16% or 

less in each of the considered diffusion encoding directions, and the Pearson correlation 

coefficients all exceeded 0.85. Nonetheless, there were large discrepancies in many voxels, 

particularly those with either very high or very low kurtoses relative to the mean values.

Conclusion—Estimates of the diffusional kurtosis in brain obtained using CE and QS 

approximations are strongly correlated, suggesting that they encode similar information. However, 

for the choice of b-values employed here, there may be substantial differences, depending on the 

properties of the diffusion microenvironment in each voxel.
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1. Introduction

The diffusional kurtosis is a quantitative measure for the non-Gaussianity of the water 

diffusion displacement probability density function (dPDF) [1]. Since diffusional non- 

Gaussianity in brain is strongly linked to microstructural tissue complexity, the kurtosis is of 

interest for investigating various neuropathologies [2,3], as well as for studying both aging 

[4,5] and development [6,7] in normal brain. The kurtosis is the basis of several rotationally 

invariant metrics, such as the mean kurtosis (MK) and the kurtosis fractional anisotropy, 

which augment the more traditional diffusion parameters of mean diffusivity (MD) and 

fractional anisotropy [1,8]. In addition, the directional dependence of the kurtosis in white 

matter can be exploited for fiber tractography [9-11].

The most common approach for estimating the kurtosis from diffusion MRI (dMRI) data is 

fitting with a signal model derived from an expansion in terms of cumulants for the dPDF 

[1,12,13]. This has the advantages of simplicity and practicality, and it corresponds to a 

natural extension of the widely used diffusion tensor imaging method [14]. With the 

cumulant expansion (CE), it is possible to obtain reproducible kurtosis estimates in brain 

within reasonable scan times [1,15,16]. The accuracy of these estimates is, nevertheless, 

limited by several factors, such as the signal-to-noise ratio (SNR), scanner hardware 

constraints, and the diversity of diffusion microenvironments within the brain [1]. As a 

consequence, apparent kurtosis values obtained for brain with the CE potentially have 

significant errors, depending on the region of interest and the specific imaging parameters 

employed [17-19]. In particular, the choice of maximum b-value corresponds to a trade-off 

between accuracy and precision, with a smaller maximum b-value typically resulting in a 

higher accuracy at the price of a lower precision.

An alternative method for estimating the kurtosis is to apply q-space (QS) imaging to 

determine the dPDF explicitly, from which the kurtosis may then be directly calculated 

[20-25]. This avoids the need for choosing to a specific signal model and is more 

conceptually straightforward than the CE. In spite of this, QS imaging has only been rarely 

used for in vivo kurtosis measurements of brain tissue due to its relatively demanding data 

acquisition requirements that include obtaining dMRI data for large b-values 

[20,22,23,26,27]. However, the growing availability of clinical MRI systems with maximum 

gradient strengths of up to 80 mT/m is likely to increase the utilization of QS imaging [28].

The specific purpose of this study is to compare CE and QS kurtosis estimates for in vivo 

human brain data and to determine the extent to which these two methods yield consistent 

results. Our broad motivation is to better understand the systematic errors associated with 

practical dMRI kurtosis measurements, which may eventually support developing 

methodologies, based on CE, QS, or other approaches, with improved accuracy. Better 

accuracy may be especially important when the kurtosis is used in the context of 

microstructural modeling [29,30].

To our knowledge, there is only one prior published work, by Latt and coworkers [26], in 

which both CE and QS kurtosis measurements are obtained for brain tissue. Although the 

two approaches are found to yield similar kurtosis values in several regions of interest, 
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considerable differences are clearly apparent on the parametric kurtosis maps. Here we seek 

to further characterize such differences by more comprehensively quantifying their extent. 

There are two important technical distinctions between this prior investigation and our 

current study. First, we employed a substantially broader range of b-values for the QS 

analysis, which should improve its accuracy. Second, we acquired 16 spin excitations for 

each b-value and diffusion encoding direction in order to enhance the effective SNR, while 

Latt and coworkers [26] used one or two excitations for each set of imaging parameters.

2. Materials and methods

2.1. Stejskal's formula

Both the CE and QS approaches are based on Stejskal's formula that relates the dPDF to the 

dMRI signal [13,14,31,32]. Specifically,

S q = S0∫
− ∞

∞

dsP s e2πiqs, (1)

where S(q) is the dMRI signal as a function of the q-value, P(s) is the dPDF as a function of 

the diffusion displacement, and S0 ≡ S(0). Here we are using the one-dimensional version of 

Stejskal's formula, as we shall be considering each diffusion encoding direction separately. It 

is only exact in the narrow gradient pulse limit, and so there is always some degree of 

approximation inherent in any application to measurements with finite pulse durations. 

However, it may be argued that errors due to this are small for CE kurtosis estimates in 

brain, even for long pulse durations [33], and similar considerations apply to QS imaging as 

well [23]. Therefore, we neglect this source of error in the CE and QS kurtosis estimates. In 

statistical equilibrium, the dPDF has the symmetry P(s) = P(−s), which implies that S(q) = 

S(−q) and that S(q) is a real function. These properties are assumed to hold throughout our 

analysis.

2.2. Cumulant expansion

The CE for the dMRI signal is obtained from Eq. (1) through the Taylor series 

approximation

ln S q = ln S0 −
κ2
2 2πq 2 +

κ4
24 2πq 4 + O q6 , (2)

where we have used the fact that the dPDF is an even function of the displacement and 

defined
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κ2 ≡ ∫
− ∞

∞

dsP s s2 (3)

and

κ4 ≡ − 3 κ2
2 + ∫

− ∞

∞

dsP s s4 . (4)

Here κ2 and κ4 represent the two lowest order nonvanishing cumulants of the dPDF. These 

are related to the diffusivity, D, and diffusional kurtosis, K, by

D =
κ2
2t (5)

and

K =
κ4
κ2

2 , (6)

with t indicating the diffusion time. For any Gaussian dPDF, one may verify that K = 0. For 

this reason, the kurtosis is a natural metric of non-Gaussianity. In terms of D and K, the CE 

of Eq. (2) may be rewritten as

ln S q = ln S0 − Db + 1
6KD2b2 + O b3 , (7)

where b ≡ (2πq)2t is the b-value. Thus the CE corresponds to a series expansion of the 

logarithm of the dMRI signal in powers of b.

Standard methods, such as diffusional kurtosis imaging (DKI) [1,12], estimate both the 

diffusivity and the kurtosis by fitting the signal model

S b = S0 exp −Db + 1
6KD2b2 , (8)
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to dMRI data, where Ŝ(b) is the dMRI signal as a function of the b-value. The signal model 

of Eq. (8) is equivalent to Eq. (7) when the third and higher order terms in the b-value are 

neglected. Because only the lowest order terms of the CE are utilized, there will generally be 

systematic errors associated with the fitted (apparent) values for both D and K. These can be 

reduced by decreasing the maximum b-value used for the fit, as this suppresses the effects of 

neglecting the third and higher order terms. However, lowering the maximum b-value also 

decreases the range of diffusion weightings and tends to increase random errors. Therefore, 

choosing a maximum b-value is a compromise between accuracy and precision. An 

alternative to decreasing the maximum b-value is to add a third order term to the signal 

model [34], which will tend to improve accuracy but also at the price of a lower precision.

For the special case in which dMRI data are acquired for b-values of 0, bce, and 2bce, the 

diffusivity and kurtosis obtained by fitting with Eq. (8) have the analytic formulae [1]

D = 2
bce

ln
S0

S bce
− 1

2bce
ln

S0
S 2bce

, (9)

and

K = 6
D2bce

2 ln
S0

S bce
− 3

D2bce
2 ln

S0
S 2bce

. (10)

2.3. Q-space imaging

For QS imaging, one employs the discrete version of Stejskal's formula, which in one- 

dimension is given by

Sn = S0 ∑
m = − N

N
αmPmeiπmn/N, (11)

where 2N +1 is the total number of QS points,

Sn = S nΔq , for n = − N, − N + 1, …, N, (12)

and

Pm ≡ 1
2NΔqP m

2NΔq , for = − N, − N + 1, …, N . (13)
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In addition,

αm = 1, if m < N, (14)

αm = 1
2, if m = N, (15)

and Δq is the QS resolution.

The field of view in displacement space (dFOV) is

L = 1
Δq , (16)

while the resolution in displacement space is

Δx = 1
2NΔq = 1

2qmax
, (17)

where qmax ≡ NΔq is the maximum q-value magnitude used in Eq. (12). Thus the dFOV is 

inversely related to the QS resolution, and the displacement resolution is inversely related to 

qmax. This is completely analogous to the familiar relationship for the k-space matrix with 

the resolution and field of view of an MRI image.

By exploiting the fact that the dPDF is an even function of displacement, Eq. (11) can be 

recast as

Sn = 2S0 ∑
m = 0

N
βmPm cos πmn

N , (18)

where

βm = 1, if 0 < m < N (19)

and
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βm = 1
2, if m = 0 orN . (20)

The inverse of Eq. (18) is

Pm = 1
NS0

∑
n = 0

N
βnSn cos πmn

N , (21)

which can be used to calculate the dPDF. Note that Eq. (21) only requires the dMRI signal 

for the N +1 QS points with q ≥ 0.

Within the QS approximation, the kth moment of the dPDF is given by

μk = ∑
m = − N

N
αmPm mΔx k . (22)

Note that all odd order moments vanish by symmetry and that Eq. (11) implies μ0= 1. The 

lowest order nonvanishing cumulants are related to the moments by

κ2 = μ2 (23)

and

κ4 = μ4 − 3μ2
2, (24)

which can be used together with Eqs. (5) and (6) to determine the QS estimates for D and K.

The N +1 b-values needed for the QS approximation are

bn = n2bqs, for n = 0, 1, …, N, (25)

where

bqs ≡ 2πΔq 2t . (26)
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The accuracy of the QS diffusivity and kurtosis estimates would usually improve as bqs is 

reduced and bN is increased, since this results in a larger dFOV and a higher displacement 

space resolution. However, expanding the range of b-values also raises the data acquisition 

and SNR requirements.

2.4. Accuracy

Although both the CE and QS approaches yield the true diffusivity and kurtosis in the ideal 

limits of bce → 0, bqs → 0, and N → ∞, in practice the CE and QS estimates may differ 

significantly due to systematic errors associated with the finite values of bce, bqs, and N used 

in any experimental measurement. In order to illustrate these differences, we write the dMRI 

signal as

S b = S0∫
0

∞

dD′e−bD′ f D′ , (27)

where S0f (D′) corresponds to the inverse Laplace transform of Ŝ(b). For a system 

comprised of multiple non-exchanging Gaussian compartments, f (D′) simply represents the 

fraction of water with a compartmental diffusivity D′ and is therefore nonnegative, but it 

may take on negative values for more complex diffusion dynamics.

By applying Eqs. (9) and (10) to Eq. (27), one finds the systematic error in the CE 

diffusivity to be

ΔDce = − 1
3bce

2 ∫
0

∞

dD′ f D′ D′ − D 3 + O bce
3 , (28)

and the systematic error in the CE kurtosis to be

ΔKce = − 3
D2bce∫

0

∞

dD′ f D′ D′ − D 3 + O bce
2 , (29)

which give the leading behaviors of ΔDce and ΔKce for small bce. A direct consequence of 

Eqs. (28) and (29) is

ΔDce
D =

ΔKce
9 Dbce + O bce

3 . (30)
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Thus the relative CE error in the diffusivity is typically small in comparison to the CE error 

for the kurtosis when Dbce < 1. For multiple Gaussian compartment models, Eqs. (28) and 

(29) also imply that ΔDce and ΔKce are, for small bce, proportional to the skewness of the 

water fraction density function, f (D′).

In order to find comparable analytic expressions for the QS errors, it is convenient to work in 

the limit N→∞, but with finite bqs. From Eqs. (5), (6), and (21)-(27), one finds a systematic 

error in the QS diffusivity of

ΔDqs = − 1
bqs

∫
0

∞

dD′ f D′ G′ D′bqs , (31)

and a systematic error in the QS kurtosis of

ΔKqs = ∫
0

∞

dD′ f D′
3D′bqs

2 − 6G D′bqs − πG′ D′bqs

bqs
2 D + ΔDqs

2 − 3D′2

D2 , (32)

where

G s ≡ s2

2 − π2s
6 + 2 ∑

n = 1

∞ −1 n

n4 e−sn2
− 1 (33)

and

G′ s ≡ d
dsG s . (34)

The function G(s) is related to the Jacobi theta function ϑ4 [35] by

d2

ds2G s = ϑ4 0, e−s . (35)

It is straightforward to verify that both ΔDqs and ΔKqs vanish when bqs tends to zero, as 

expected on general grounds.

An interesting property of G(s) is that not only does it vanish in the limit s → 0, as follows 

directly from its definition, but so do all of its derivatives. Consequently, the QS errors of 
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Eqs. (31) and (32) cannot be formulated as a power series expansion in the b-value, in 

contrast with the CE errors of Eqs. (28) and (29). A plot of G(s) is shown in Fig. 1. The fact 

that this function is monotonically increasing implies that ΔDqs is always negative for 

multiple Gaussian compartment models with N →∞, since in this case f (D′) ≥ 0.

As a specific example, let us specialize to a two-compartment model with diffusivities 

D1′ = 0.5 μm2/ms for the first compartment and D2′ = 1.5 μm2/ms in the second. Also let the 

corresponding water fractions be f1 and f2 = 1 – f1. The total diffusivity is then

D = f 1D1′ + f 2D2′ , (36)

while the total kurtosis is [1]

K = 3 f 1 f 2
D2′ − D1′

2

D2 . (37)

The CE and QS errors for this case are plotted in Fig. 2 as a function of f1 for bce = 1000 

s/mm2 and bqs = 400 s/mm2 (which are the b-values of our experimental setup, see below). 

The approximations of Eqs. (28), (29), (31), and (32) are shown together with exact results 

for the CE estimates obtained using Eqs. (9) and (10) and for the QS estimates found using 

Eqs. (21)-(24) with N = 5 (to match the experiment). The approximations are seen to be in 

reasonable agreement with the more exact calculations, although differences are apparent. 

More relevant to the present work is the observation that CE and QS systematic errors have 

no particular correspondence, reflecting the fact that the CE and QS are mathematically 

distinct methods of estimating the diffusivity and kurtosis. In particular, note that the CE 

errors vanish for either f1= 0 or f1 = 1, but this does not hold true for the QS errors which 

may be nonzero for a single Gaussian compartment.

2.5. Precision

While the accuracy of the diffusivity and kurtosis estimates can, as we have seen, be 

improved by reducing both bce and bqs, doing this also tends to increase the estimates’ 

random errors due to signal noise [17-19]. We now demonstrate how to approximate these 

random errors in the limit of small bce and bqs. Our results are derived by applying the 

conventional error propagation formula for the variance, δ2F, of an arbitrary function F (x) 

of a random variable x [36]:

δ2F = 1
NM

∑
m, n

xm − xm xn − xn
∂F
∂xm

∂F
∂xn x − x

, (38)
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where NM is the number of measurements, xi is a component of x, an overbar indicates the 

mean value, and the angle brackets signify an ensemble average. To model the noise, we use 

the signal correlation function

Sm − Sm Sn − Sn = σ2δmn, (39)

with σ2 being the noise variance and δmn representing the Kronecker delta. The limit of N 
→ ∞ is again assumed for the sake of simplicity and clarity.

For the CE estimates, one finds, by applying Eqs. (38) and (39) to Eqs. (9) and (10), a 

diffusivity variance of

δ2Dce = 13σ2

2NMbce
2 S0

2 + O 1
bce

(40)

and a kurtosis variance of

δ2Kce = 54σ2

NMD4bce
4 S0

2 + O 1
bce

3 . (41)

Hence the variance for the kurtosis grows more rapidly with decreasing bce than does the 

diffusivity variance, reflecting a greater sensitivity to noise.

A similar calculation for the QS estimates yields a diffusivity variance of

δ2Dqs = 13π4σ2

180NMbqs
2 S0

2 + O 1
bqs

(42)

and a kurtosis variance of

δ2Kqs = 41π8σ2

3600NMD4bqs
4 S0

2 + O 1
bce

3 . (43)

From Eqs. (40)-(43), one sees that, for small bce and bqs,
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δ2Dqs

δ2Dce
≈

π4bce
2

90bqs
2 ≈ 1.082

bce
2

bqs
2 . (44)

and

δ2Kqs

δ2Kce
≈

41π8bce
4

194400bqs
4 ≈ 2.001

bce
4

bqs
4 . (45)

For our experiment, we use bce/bqs = 2.5. In this case, Eqs. (44) and (45) give δ2Dqs/δ2Dce ≈ 
6.8 and δ2Kqs/δ2Kce ≈ 78. Therefore, we expect the random errors for the QS estimates will 

mostly be larger than for the CE estimates, depending on the extent to which the higher 

order corrections to Eqs. (44) and (45) may be neglected.

2.6. Imaging

Diffusion weighted imaging data were acquired for a healthy volunteer (male, 57 yr) on a 3 

T Prisma MRI scanner (Siemens Healthcare, Erlangen, Germany) under a protocol approved 

by the Medical University of South Carolina institutional review board. A twice-refocused 

echo planar imaging pulse sequence was utilized to minimize eddy current distortion [37], 

with fat suppression added to reduce artifacts. The “adaptive combine” coil data 

combination mode [38] was used with a bandwidth of 1648 Hz/pixel. Phase encoding was in 

the anterior-posterior direction, and the slice and phase encoding acceleration factors were 

both set to 2. A total of 42 axial brain slices with 3 mm slice thickness and 0 interslice gap 

were obtained. The echo time was 110 ms, the repetition time was 3800 ms, the field of view 

was 222×222 mm2, and the acquisition matrix was 74×74, resulting in isotropic voxels with 

dimensions of 3×3×3 mm3.

For each of three orthogonal diffusion encoding directions (slice, read, phase), diffusion 

weighted images were collected for b-values of 0, 400, 1000, 1600, 2000, 3600, 6400, and 

10,000 s/mm2. For each direction and b-value, 16 separate images were obtained in order to 

increase the effective SNR. The total scan time was 27 min 12 s.

2.7. Data analysis

For each b-value and diffusion encoding direction, the 16 different signals obtained for every 

voxel were fit to a Rician distribution in order to estimate the ideal signal magnitude in the 

absence of noise. The choice of a Rician distribution was dictated by our use of the 

“adaptive combine” coil data combination mode, which is also known as the spatial matched 

filter method [39,40]. This fitting is similar in effect to signal averaging, but with less noise 

bias. As there were NM = 16 independent measurements for each set of imaging parameters, 

the SNR was increased by a factor of approximately 4, since the standard deviation for the 

signal estimate decreases as NM
−1/2 [36]. The raw SNR in the brain tissue voxels was about 
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50, with some variability due to regional differences in T2 and the g-factor. Therefore, after 

fitting the effective SNR was about 200. Sample fits for three different voxels are shown in 

Fig. 3. This meticulous noise reduction procedure was undertaken to minimize random 

errors and thereby better reveal the systematic differences between the CE and QS parameter 

estimates.

In order to reduce Gibbs ringing artifacts, the method of Kellner and coworkers [41] was 

applied to all of the denoised images. Subsequently, all images were smoothed with a 

Gaussian kernel of 1.25 times the voxel dimensions in order to further suppress the effects of 

signal noise and Gibbs ringing.

The CE estimates for the diffusivity and kurtosis in each direction were calculated from the 

post-processed diffusion weighted images with b-values of 0, 1000, and 2000 s/mm2 by 

using Eqs. (9) and (10) with bce = 1000 s/mm2 . This corresponds to a typical choice of b-

values for DKI [1]. The QS estimates were determined from the images with b-values of 0, 

400, 1600, 3600, 6400, and 10,000 s/mm2 by using Eqs. (5), (6), (17), (21)-(24), and (26) 

with N = 5 and bqs = 400 s/mm2. This value of bqs was chosen to be large enough to 

suppress the confounding effects of cerebral blood perfusion [42]. Note that the CE and QS 

calculations employ images with distinct sets of nonzero b-values in order to minimize their 

cross-correlations.

In addition to the parametric maps for the diffusivity and kurtosis in each individual 

direction, we also calculated averaged maps from the arithmetic mean of these. For the 

diffusivity, this yields the usual MD. However, for the kurtosis, the average over the three 

orthogonal directions does not give the MK as conventionally defined, since that requires 

data from at least 15 different diffusion encoding directions [1], but may nonetheless be 

regarded as approximating the MK.

In order to eliminate voxels containing substantial amounts of cerebrospinal fluid, voxels 

with MD > 1.5 μm2/ms were excluded from the analysis, where we used the CE maps for the 

MD to create the necessary mask. This resulted in a total of 32,351 voxels being included in 

our whole brain analysis. The consistency of the CE and QS diffusivity and kurtosis values 

were assessed both by computing their means and standard deviations over all voxels and by 

determining the voxelwise Pearson correlation coefficients. The percent difference between 

the mean CE and QS estimates for the diffusivity was obtained using

ɛD = 200 ×
Dqs − Dce
Dqs + Dce

, (46)

where Dce is the CE diffusivity and Dqs is the QS diffusivity. Similarly, the percent 

difference for the kurtosis was calculated as
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ɛK = 200 ×
Kqs − Kce
Kqs + Kce

, (47)

where Kce is the CE kurtosis and Kqs is the QS kurtosis.

3. Results

Table 1 gives the mean estimates for the whole brain diffusivity in the three diffusion 

encoding directions, as well as for the direction-averaged diffusivity. The CE and QS values 

are all within 12%, and the Pearson correlation coefficients (r) exceed G.95, demonstrating 

the consistency of the two approximations. In addition, the standard deviations for the CE 

and QS diffusivities have comparable magnitudes.

The corresponding mean estimates for the whole brain kurtosis are shown in Table 2. The 

QS kurtosis values are 12% to 16% higher than the CE values, while the Pearson correlation 

coefficients range from 0.854 to 0.903. Although this suggests a fairly good agreement 

between the CE and QS approximations, the standard deviations for the QS kurtosis are 

approximately twice those for the CE kurtosis. Thus, the QS approximation yields 

substantially more voxels with extreme kurtosis values that are either very small or very 

large relative to the mean value. Linear regression for the direction-averaged kurtosis data 

yields the best fit line

Kqs ≈ 1.645 × Kce − 0.456 . (48)

For Kce = 0.707, we then have Kce ≈ Kqs, so that the two approximations give similar values. 

However, for Kce ≫ 0.707, Eq. (48) predicts Kqs to be substantially larger than Kce.

Parametric maps of the diffusivity for one axial slice (1322 voxels) are displayed in Fig. 4, 

illustrating the reasonably good agreement between the CE and QS results. The kurtosis 

maps for the same slice are shown in Fig. 5. Here pronounced differences are apparent in 

regions with kurtosis values large in comparison to one. For example, in the splenium of the 

corpus callosum for the slice direction, the QS kurtosis is about twice the CE kurtosis.

Also shown in Fig. 5 is a rescaled CE kurtosis defined by

Kce
∗ ≡ 1.645 × Kce − 0.456, (49)

which is motivated by the best fit line of Eq. (48). Clearly, Kce
∗  bears a close resemblance to 

Kqs, suggesting that CE and QS kurtoses contain similar information. We hasten to add that 
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this rescaling is ad hoc and merely intended to highlight the correspondence between the 

two quantities rather than suggesting some type of general correction scheme.

Scatter plots corresponding to the maps of Figs. 4 and 5 are given by Fig. 6. Relatively 

strong linear correlations hold in every case, again implying that the CE and QS measures 

have similar information content. However, the slopes of the best fit lines for the kurtosis 

estimates deviate from unity considerably more than for the diffusivity.

4. Discussion

The CE and QS approaches for estimating the diffusional kurtosis are complementary in 

being based on distinct mathematical approximations and in having markedly different data 

requirements. This is evident from Eqs. (29) and (32), which have markedly different 

analytic forms. The extent to which their estimates agree thus provides a useful test of their 

validity. In particular, for voxels with substantially different CE and QS values, at least one 

of these two approximations must be inaccurate.

Our data show that the CE and QS kurtosis values in brain are strongly correlated and have 

comparable mean values. These correlations are not noise artifacts, since distinct sets of 

diffusion weighted images were used for the CE and QS calculations. However, there are 

also notable differences in many voxels, as is especially evident when the kurtosis values are 

large in comparison to one. In such cases, the accuracies of these CE and QS kurtosis 

estimates are in question. Nonetheless, the information content of the two parameters is 

similar, as illustrated by the correspondence shown in Fig. 5 between the QS kurtosis and the 

rescaled CE kurtosis, and both parameters may be reasonably regarded as indices of 

diffusional non-Gaussianity even when they deviate from the true kurtosis. These results add 

to those of other recent studies on the accuracy and precision of kurtosis measurements 

[17-19].

It should be possible to refine the CE and QS approximations used here in order to improve 

the consistency of their kurtosis estimates. This would entail reducing bce and bqs, while 

increasing N . In doing this, care should be taken to correct for the intravoxel incoherent 

motion effects of cerebral blood perfusion, which can be important for b-values of about 200 

s/mm2 or less [42]. In addition, the rapid increase in random errors associated with 

decreasing bce and bqs, as indicated by Eqs. (41) and (43), needs to be considered. Such 

refined CE and QS approximations could help to further elucidate their validity, particularly 

in regions such as the splenium of the corpus callosum where large discrepancies are 

observed in this study, and may support the development of improved methods of kurtosis 

estimation via dMRI.

In contrast to the kurtosis, our CE and QS estimates for the diffusivity are in reasonable 

accord for the vast majority of voxels, which suggests that they are fairly accurate. Of 

course, it is conceivable for there to be large systematic errors that just happen to be the 

same in both approximations, but this seems unlikely to occur consistently across the wide 

range of diffusion microenvironments sampled in our study. That the diffusivity estimates 

are more accurate than the kurtosis estimates is not surprising given the kurtosis depends on 
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a higher order cumulant that reflects a more subtle feature of the dPDF. A higher relative 

accuracy for the diffusivity is also implied by Eq. (30) for Dbce ≈ 1 and K ≈ 1 in the limit of 

small bce.

A limitation of this study is that we have only analyzed a single whole brain dataset. 

Nevertheless, this comprised over 32,000 voxels that provided a sufficient dynamic range of 

diffusivities and kurtoses to meaningfully compare the CE and QS approximations. In 

extensions of this preliminary work, it would be valuable to include subjects with a variety 

of ages to investigate the generalizability of our results.

5. Conclusions

CE and QS estimates of the diffusional kurtosis in brain are found to be strongly correlated 

and have similar whole brain mean values for the relatively standard range of b-values 

employed here. Since the CE and QS approaches are quite distinct mathematically, there is 

no general reason for their systematic errors to correspond. Thus the observed agreement 

represents positive evidence supporting the accuracy of the estimates. Nonetheless, there are 

substantial differences in some brain regions for certain diffusion encoding directions. These 

warrant further investigation as may be achieved by refining the methods of this study.
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Abbreviations

CE cumulant expansion

dFOV displacement field of view

DKI diffusional kurtosis imaging

dMRI diffusion MRI

dPDF displacement probability density function

MD mean diffusivity

MK mean kurtosis

SNR signal-to-noise ratio

QS q-space
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Figure 1. 
Plot of the function G(s) as defined by Eq. (33). The flatness of G(s) for small s is a 

consequence of all its derivatives vanishing for s = 0.
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Figure 2. 
The systematic errors of the CE and QS diffusivities (leftmost panel) and kurtoses (rightmost 

panel) for a simple two-compartment model as a function of the water fraction f1 of the first 

compartment. The first compartment has a diffusivity of 0.5 μm2/ms, while the second 

compartment's diffusivity is 1.5 μm2/ms. The b-values are chosen with bce = 1000 s/mm2 

and bqs = 400 s/mm2, in order to match our experimental setup. The solid blue curves 

represent the exact CE values, while the dashed blue curves are for the small bce 

approximations of Eqs. (28) and (29). The solid red curves are the QS values for N = 5, 

which matches the experiment, and the dashed red curves are for the N→∞ approximations 

of Eqs. (31) and (32). Both the CE and QS approximations capture the qualitative behavior 

of the more exact calculations. The CE and QS errors have markedly different dependencies 

on the water fraction, illustrating the distinction between the two approaches.
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Figure 3. 
Histograms of the dMRI signal magnitude obtained from three representative voxels, 

together with fits to a Rician distribution. Fitting a Rician curve to the raw signal leads to a 

more precise estimate of the ideal signal, while also correcting for bias due to the use of 

magnitude data. Since NM = 16 measurements were obtained for each set of imaging 

parameters, we expect the effective SNR for the signal estimated from the fit to be about 

16 = 4 times higher than the SNR of the raw signal.
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Figure 4. 
Diffusivity maps from a single axial brain slice for three different diffusion encoding 

directions (slice, read, phase) together with their arithmetic means (average). The first row 

shows the maps obtained with the QS approximation, while the second row shows those for 

the CE approximation. The scale bar is in units of μm2/ms.

Mohanty et al. Page 22

Magn Reson Imaging. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Kurtosis maps for the same anatomical slice and diffusion encoding directions as in Fig. 4. 

Notable differences are apparent between the QS approximation (first row) and the CE 

approximation (second row), especially in voxels with a high kurtosis. However, the rescaled 

CE kurtosis maps (third row), calculated using Eq. (49), more closely match the QS kurtosis 

maps, suggesting that the CE and QS kurtoses provide similar information. The scale bar is 

dimensionless.
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Figure 6. 
Scatter plots for the same diffusivity and kurtosis data as depicted in Figs. 4 and 5, with each 

data point representing an individual voxel. The CE and QS parameter estimates are strongly 

correlated in every case. The lines are best fits based on linear regression, and r indicates the 

Pearson correlation coefficient. For the diffusivity, the slopes of the best fit lines are all fairly 

close to one, reflecting the good agreement between Dce and Dqs. For the kurtosis, the slopes 

are somewhat lower, which is mainly due to Kce being substantially less than Kqs for the 

largest kurtosis values.
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Table 1

Diffusivity for whole brain data.

Slice Direction Read Phase Average

Dqs (μm2 /ms) 1.134 (0.257) 1.156 (0.265) 1.168 (0.263) 1.153 (0.221)

Dce (μm2 /ms) 1.014 (0.219) 1.036 (0.228) 1.038 (0.222) 1.030 (0.163)

εD 11% 11% 12% 11%

r 0.954 0.961 0.955 0.976

Standard deviations are listed in parentheses.
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Table 2

Kurtosis for whole brain data.

Slice Direction Read Phase Average

Kqs 1.079 (0.657) 1.038 (0.559) 1.066 (0.663) 1.061 (0.408)

Kce 0.916 (0.282) 0.917 (0.265) 0.934 (0.312) 0.922 (0.212)

εK 16% 12% 13% 14%

r 0.854 0.886 0.903 0.856

Standard deviations are listed in parentheses.
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