
De-identification of medical records using conditional random 
fields and long short-term memory networks

Zhipeng Jiang*, Chao Zhao*, Bin He, Yi Guan, and Jingchi Jiang
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 
Heilongjiang, 150001, CHN

Abstract

The CEGS N-GRID 2016 Shared Task 1 in Clinical Natural Language Processing focuses on the 

de-identification of psychiatric evaluation records. This paper describes two participating systems 

of our team, based on conditional random fields (CRFs) and long short-term memory networks 

(LSTMs). A pre-processing module was introduced for sentence detection and tokenization before 

de-identification. For CRFs, manually extracted rich features were utilized to train the model. For 

LSTMs, a character-level bi-directional LSTM network was applied to represent tokens and 

classify tags for each token, following which a decoding layer was stacked to decode the most 

probable protected health information (PHI) terms. The LSTM-based system attained an i2b2 

strict micro-F1 measure of 0.8986, which was higher than that of the CRF-based system.
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1. Introduction

The Electronic Health Record (EHR) is the systematized collection of electronically stored 

health information of patients in digital format [1]. It consists of a large amount of medical 

knowledge, and is a novel and rich resource for clinical research. A limitation of the large-

scale use of EHR is the privacy of information contained in the text. To protect the privacy 

of patients and medical institutions, the US Congress passed the Health Insurance Portability 

and Accountability Act (HIPAA) in 1996. HIPAA defines 18 kinds of protected health 

information (PHI) that must be removed before the EHR can be reused, such as names, all 

geographic subdivisions smaller than a State, and so on1. The i2b2 (Informatics for 

Integrating Biology and the Bedside) Center defines more types of PHI based on the 

HIPAA-PHI categories. The removal of PHI information from clinical narratives is called 

de-identification. However, manual de-identification is time consuming, expensive, and 

ineffective. To explore the possibility of automatic de-identification approaches using natural 

language processing (NLP), i2b2 held its first clinical narrative de-identification event in 

2006 [2], and again in 2014 (The 2014 i2b2/UTHealth NLP Shared Task 1) [3], and 2016 

(CEGS N-GRID 2016 Shared Task 1 in Clinical NLP) [4]. Most participants of the events 

proposed solutions to this problem using machine learning algorithms, whereas rule-based 

methods were also presented.

According to the results, the highest-ranking team attained an i2b2 strict micro-F1
2 of over 

0.9. Although certain PHI can not be de-identified by an automatic system, studies have 

shown that it is sufficient for preventing re-identification from these processed records [5, 6]. 

These studies together confirmed the efficiency of the automatic de-identification systems.

In this paper, we describe two de-identification systems utilized in CEGS N-GRID 2016 

Shared Task 1 based on conditional random fields (CRFs) and long short-term memory 

networks (LSTMs). We also contrast the principle and performance of these two systems, 

and analyze the identification errors. The remainder of this paper is structured as follows: In 

Section 2, we give a brief introduction of recent models used for named entity recognition 

(NER) and medical narrative de-identification. Section 3 describes the general pipeline of 

this task, and Sections 4 and 5 provide details of the principles and implementation of CRFs 

and LSTMs, respectively. We then report the evaluation of our systems on the CEGS N-

GRID 2016 Shared Task 1 dataset in Section 6, and provide results and discussion in Section 

7 and 8, respectively. Our conclusions and directions for future studies are presented in 

Section 9.

2. Related Work

From the perspective of NLP, de-identification is an NER task. NER was first introduced at 

the Sixth Message Understanding Conference (MUC-6) [7], and has developed rapidly in 

the 20 years since. Many statistical learning algorithms have been applied to it, such as 

hidden Markov networks (HMMs) [8], CRFs [9], support vector machines (SVMs) [10]. 

1https://www.hipaa.com/hipaa-protected-health-information-what-does-phi-include/ lists all PHIs in the HIPAA
2The evaluation measures are introduced in Section 6.4
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These methods all depend on several features and regard the problem as a tagging process, 

which is the classification of each token over text sequences. The common features include 

word-level, list-level (i.e., dictionary features), and document-level features. The CRF is the 

most commonly used model in general NER tasks because of its theoretical advantage and 

experimental efficiency [11]. In the past two i2b2 de-identification tasks in 2006 and 2014, 

the best systems were based on CRFs. In the 2014 task, [12] identified the word-token, 

context, orthographical, sentence-level, and dictionary features to train a CRF model, and 

achieved the highest F-measure of 0.936 of all participants. Moreover, manually derived 

post-processing approaches are often used, and can yield considerable improvement in some 

PHI categories, like DATE and HOSPITAL.

Despite their good performance, a problem with these approaches is that performance is 

highly dependent on the extracted features. The quality of the features relies heavily on the 

experience of researchers and their familiarity with the data. In recent years, the rise of 

representation learning [13] methods has brought new vitality to NER tasks. Representation 

learning attempts to extract efficient features directly from data, and then applies deep neural 

networks [14], such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs), to compose the features. Features are then transformed layer by layer using non-

linear functions to fit the intricate structures of the data. Better performance is obtained than 

that by CRFs when the training data is abundant. Many modified and combined deep neural 

networks have been applied to tagging tasks, from the simplest feed-forward neural 

networks [15] to long short-term memory (LSTM) networks [16] and various combinations, 

such as LSTM-CRF [17], LSTM-CNNs [18], CNN-LSTM-CRF [19], and so on. [20] 

proposed a character-level bidirectional LSTM-CRF architecture and claimed to obtain 

state-of-the-art NER results in standard evaluation settings. [21] transferred this work to 

EHR de-identification tasks and obtained an F1 measure of 0.9785 on the i2b2 2014 dataset, 

higher than that of the best CRF-based approach in [12] (0.936).

In addition to statistical approaches and deep learning methods, rule-based methods are 

helpful for NER, although they are usually adopted as a deliberately weakened component in 

many academic papers [22]. Such rules include regular expressions, domain dictionaries, 

and a series of hand-crafted grammatical, syntactic, and orthographic patterns.

3. De-identification Pipeline

Although many machine learning approaches are available for NER, they follow the general 

processing procedure of pre-processing, tagging, and post-processing, which is also used in 

our two de-identification systems. Pre-processing is indispensable when the data are not as 

clean as expected. After pre-processing, we use an algorithm to tag the entities through 

annotated data3, or use several models to boost the results. During post-processing, hand-

derived rules are applied to correct potential tagging errors and find more missing entities. It 

is not indispensable, but can help improve the accuracy of the system in many cases. Since 

we had limitations of time during the task, we did not introduce a post-processing module. 

This section gives an overview of pre-processing and tagging modules in our two systems.

3In this paper, we focus on supervised NER approaches
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3.1 Pre-processing

In pre-processing, we focus on tokenization and sentence detection. Tokenization is 

necessary because some separators between entity tokens and ordinary tokens may be 

missing. Without these segments, the tagger cannot accurately detect the boundaries of 

entities. For example, in the phrase “09/14/2067CPT Code,” “09/14/2067” is the date entity, 

but “CPT Code” is not. Without tokenization, the tagger would either recognize 

“09/14/2067CPT” as an entity or not, and neither is correct. In this case, extent or missing 

errors4 occur.

Some kinds of cases can be tokenized easily through regular expressions, such as the above 

example. In other cases, a token dictionary is needed. For simplicity, we only tokenize text 

by regular expressions listed in Table 1.

Sentence detection is another part of pre-processing. Records must be separated as sentences 

to feed into models because neither CRFs nor LSTMs can receive sentences that are very 

long. Detection only according to punctuation can cause problems. For example, if “Dr. 

Vincent” is separated according to the period, “Vincent” becomes the first word of the 

sentence and “Dr.,” which is an important identifier of the DOCTOR category is lost. 

Sentence boundaries can be detected using either rule-based methods or machine learning-

based methods[23]. In this study, we detected the boundaries using the OpenNLP sentence 

detector5, which is a supervised toolkit. We only used the officially provided detection 

model.

3.2 Tagging

We used the BIOEU tagging schema for this task. It tagged the Beginning, Intermediate, and 

End parts of the entities, as well as the Outside of a named entity. If an entity consisted of 

only one token, it was simply tagged as of Unit length.

Like other classification problems, tagging relies on feature extraction. The traditional 

features of text are indicator functions. These features are really flexible and have been 

shown to be efficient. However, they face two problems. First, these features are 

handcrafted, and feature templates need to be re-designed when handling new data. Second, 

these features are numerous and sparse. This large number of features leads to more 

parameters and higher computational cost. It also restricts the size of the context windows 

during feature extraction.

The emergence of representation learning and deep neural networks led to the introduction 

of new feature extraction approaches. Researchers tried to learn the distributed 

representation of each token, called word vectors, or word embedding [24]. This kind of 

representation maps discrete words as vectors in a continuous low-dimensional vector space. 

That is to say, for each word wi, there is a map ϕ(·) to ensure that ϕ(wi) = wi ∈ ℝde, where de 

is the number of dimensions of the embedding. The word embeddings are trained according 

to the contexts of the words, and words with similar semantic meanings are mapped into 

4We discuss the type of errors in Section 8.3
5https://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html#tools.sentdetect
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nearby representations. In this way, language is converted into signals that can be 

numeralized and computed, just like sounds and images. The vectors of each word can be 

directly regarded as features, and de is usually between 50 and 1,000, which is much smaller 

than in one-hot representation. The difference between word embeddings and other signals 

is that the operations for these vectors, such as translation, rotation, scaling and 

superposition, have no actual meanings, or their meanings are still unknown. However, to 

combine the representation of words into higher-level representations, like the 

representations of sentences, the word embeddings must be manipulated. Thus, different 

kinds of neural networks are used to combine word embeddings, including CNNs, RNNs, 

and recursive neural networks.

4. CRF-based Model

The pipeline of our CRF-based system is shown in Figure 1. The CRF model was 

implemented using the CRF++ toolkit6. The details of feature generation is given below, 

while the representation and inference part of CRFs can be found in Appendix B.

A large number of rich features were extracted to feed the CRF classifier, including lexical, 

orthographic, morphological, and dictionary features. All features of the given token within 

its ±2 context window were considered. More details of the features are listed in Table 2. 

The POS and chunk features were obtained by utilizing OpenNLP POS tagger and chunker7. 

The dictionaries used in the system were collected from the training data as well as 

Wikipedia.

It is not the case that the more features, the better the performance. Some features may 

introduce noise and degrade performance. To avoid bad features, we selected them in a 

greedy way. That is, we added features in turn and evaluated the tagging results. Once 

performance degraded, we discarded the given added feature. This approach cannot 

guarantee optimal feature selection, but can reduce time complexity from O(2n) to O(n) with 

ease. The contribution of each feature sub-category to the final performance is analyzed in 

Section 7.

5. LSTM-based Model

LSTM is a special type of RNN. It utilizes word embeddings as inputs. The embedding of 

the given tokens are then combined with the context embeddings by the LSTM layer, which 

yields the new hidden representation of the tokens. Finally, the hidden representations are 

used directly for classification. These three steps are discussed in the following subsections. 

Figure 2 shows the architecture of the LSTM networks used in the task.

5.1 Long short-term memory networks

RNN is one way to combine a sequence of word embeddings x<1:t> to an embedding ht ∈ 
ℝdh. The combination is defined using the recurrent formula

6https://taku910.github.io/crfpp/
7https://opennlp.apache.org/
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ht = tanh(Wxt + Uht − 1 + b), (1)

where xt ∈ ℝde is the word embedding of t-th word, W ∈ ℝdh×de, U ∈ ℝdh×dh, b ∈ ℝdh are 

the weight and bias parameters to be learned, and the initial condition is h0 = 0.

After feeding all x<1:t> into the above formula, we obtain ht, which contains not only the 

given token, but also the previous context as well, and can be used as a new representation of 

t-th word wt. However, this kind of combination leads to difficulty in gradient descent while 

training parameters, since the partial derivatives of ht with respect to hi continuously 

increase or decrease with growth in t − i, and finally vanish or explode [25, 26]. To address 

this problem, LSTMs are proposed [16]. They limit the increase in t − i through a forget gate 

ft. In this study, we use a modified LSTM [27], which sets the forget gate ft = 1 − it to reduce 

the parameters. The details of the gate and the cell computation of LSTM can be found in 

the Appendix C

The LSTM can combine the embeddings forward as well as backward. Once we obtain the 

forward hidden layer ht and the backward hidden layer ht and concatenate them together as 

ht, we get the contextual information for this token to some extent.

5.2 Word representation enhancement

As the input of LSTM layer, the word embeddings of each token are pre-trained from the 

training data. We utilized the Word2Vec toolkit8 and selected the skip-gram model to obtain 

the pre-trained, non-case-sensitive word embeddings.

Since we only used the training data, we were not able to obtain the representations of 

tokens that did not appear in the training set. These tokens are called out-of-vocabulary 

(OOV) tokens. One simple solution to this problem is to assign the embeddings of OOV 

tokens randomly. A better solution is to obtain the representations according to the 

characters composing the words [28]. Although there are hundreds of thousands of tokens in 

the English corpus, it consists of less than 100 characters. If we regard each token as a 

sequence of characters, LSTMs can be used to obtain two hidden representations of it. After 

concatenating the hidden representations, we get the character-level word embedding, which 

can represent the morphological meanings of the OOV token to some extent. Because we 

regard the upper and lowercase of one letter as different characters, the character-level word 

embeddings are case-sensitive.

Moreover, although the word embeddings can be utilized directly as features, incorporating 

hand-crafted features is also helpful, for example, the capital and dictionary features listed in 

Table 2. We used two four-bit binary numbers to indicate the capital and the dictionary 

feature values of each word, and allocated two feature embeddings accordingly. For 

8https://code.google.com/archive/p/word2vec/
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example, the word “Vincent” in Table 2 can be encoded as “1110” and “0010”, and these 

two codes can be further represented as two feature embeddings.

Based on the considerations above, we concatenated the character-level word embeddings 

and feature embeddings to the pre-trained word embeddings to enhance the word 

representation. Figure 3 gives an example of the enhanced word representation. The 

contribution of each part of the enhanced representation is verified in Section 7.

5.3 Label Decoding

Once we get hidden representation ht of each token wt and its context, we can predict its 

corresponding label immediately. That is,

Pt = softmax(Wlht + bl) (2)

Pt ∈ ℝdl and the i-th entry of Pt is the probability that wt is labeled as the i-th tag. dl is the 

number of candidate tags. Wl ∈ ℝdl×2dh and bl ∈ ℝdl are the weight and bias parameters to 

be learned.

However, this classifier ignores the dependency of labels, which is helpful for tagging. We 

model this dependency in the classification layer by adding a transition matrix M ∈ ℝdt×dt, 

which is depicted as the “decoding lattice” in Figure 2. Mij is the unnormalized transition 

score from the i-th tag to the j-th tag. The transition score is time invariant, which means that 

it is independent of the tokens. In this way, the score of a sequence X and one of its 

predictions yi is a combination of the classification score and the transition score:

s(X, yi) = ∑
t = 0

T − 1
M

yt
i, yt + 1

i + ∑
t = 0

T
P

t, yt
i (3)

The probability of the j-th prediction yi can be obtained via a softmax classifier

p(yi | X) = es(X, yi)

∑ie
s(X, yi)

(4)

During training, the log-probability of the correct label sequence is maximized:

log(p(yi | X)) = s(X, yi) − log(∑
i

es(X, yi)) (5)
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Although the number of possible numbers of y increases in O(nT), the calculation of 

Equation (5) can be completed in O(n2) time using dynamic programming. The details of the 

derivation can be found in the Appendix D.

In the decoding, the label sequence that obtains the maximum score is selected as the 

prediction:

y∗ = arg max
i

s(X, yi) (6)

6. Experiment

6.1 Corpus

The medical record set used in CEGS N-GRID 2016 Shared Task 1 in Clinical NLP 

contained 1,000 psychiatric evaluation records provided by Harvard Medical School. They 

consisted of XML documents containing raw text and PHI annotations. Table 3 shows the 

statistics of some main measurements of the corpus.

6.2 Experimental setup

For CRF based system, we set the cut-off threshold of the features -f to 4, the hyper-

parameter -c to 10, and used L2-norm for regularization. The hyper-parameter was 

determined via a subset of training data during the task. This subset is referred to from here 

on as the “validation set”.

For LSTM-based system, the dimensions of each layer were set as follows:

• Character embedding dimension: 25

• Character-level LSTM hidden layer: 25

• Pre-trained embedding dimension: 100

• Capital embedding dimension: 6

• Dictionary embedding dimension: 6

• Word-level LSTM hidden layer: 64

Dropout [29] with a probability of 0.5 was applied to prevent overfitting. The model was 

trained using the stochastic gradient descent (SGD) algorithm, and the learning rate was set 

to 0.005. The dimension of pre-trained embedding was tuned via the validation set, while 

other parameters were determined through experience. The system should perform better 

after fine-tuning.

6.3 Improvement following best official run

We submitted three outputs to the task committee, the results of which are referred to from 

here on as the “official runs”. In the experiments after the challenge, we enhanced the results 

further by improving the tagging models and the pre-processing module. This yielded two 

unofficial runs for CRFs and LSTMs.
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The improvements to the models were centered around feature selection and hyper-

parameter tuning. For the CRFs, we enriched the features and re-selected them in a greedy 

way. We also fine-tuned the hyper-parameters “-c” of the CRF++ toolkit to balance 

overfitting and underfitting. For LSTMs, we set the number of dimensions of the word 

embeddings from 50 to 100. We also added more training epochs to ensure that the 

parameters had been trained sufficiently.

More importantly, we added sentence detection and further improved tokenization in the pre-

processing module. In the official run, we simply detected sentences according to 

punctuation, and many integrated sentences were hence separated, leading to a loss of 

contextual information. Besides, we did not tokenize the corpus in the official run as 

thoroughly as described in Table 1, because we thought that excessive tokenization might 

have split a complete PHI term into two and caused errors. In the unofficial run, we 

introduced the sentence detection strategy, and enriched regular expressions to ensure that as 

many potential entities as possible were well tokenized. The result showed that the side-

effect of excessive tokenization was not severe.

The contribution of these improvements to the final performance is discussed in Section 7.

6.4 Evaluation

The system output was evaluated using precision (P), recall (R), and the F1 measure, which 

are defined as follows:

P = ⧣ (true positives)
⧣ (true positives + false positives) (7)

R = ⧣ (true positives)
⧣ (true positives + false negatives) (8)

F1 = 2PR
P + R (9)

According to the count method of true positives, the evaluation measures can further be 

classified in three independent dimensions.

There were two sets of PHI categories in the evaluation, defined by i2b2 and HIPAA. The 

i2b2 PHI categories were an expanded set of the HIPAA categories and contained more PHI 

terms, such as PROFESSION and COUNTRY.

• When the system was evaluated according to i2b2 categories, all subcategories 

under the seven main ones were evaluated.

• When the system was evaluated according to HIPAA categories, only the 

categories defined by HIPAA were evaluated.
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The evaluations also differed according to whether we assessed the system at the instance 

level or the record level:

• micro-F: All of the PHI instances in the dataset were evaluated together.

• macro-F: Each record was evaluated and the ultimate score was obtained using 

the average.

If only part of the tokens of an integrated entity were identified by the system, entity-level 

and token-level evaluations can lead to different measures. In entity-level evaluation, there 

were two standards according to different matching strictness:

• Entity level: An entity must be identified as a whole, despite the number of 

tokens it contained.

– Strict: The recognized entity must exactly match the first and last 

offsets of the gold standard entity.

– Relaxed: The last offset can be off by up to 2.

• Token level: If the entity was separated into several parts and each was identified 

as the correct type, the entity was regarded as correctly identified. For example, 

if the PHI “2072 winter” in golden-standard with the category DATE is 

annotated as two DATE terms “2072” and “winter”, the token-level evaluation 

would regard the output as correct, but the entity level would not.

Unless otherwise specified, all F1 measures in the remainder of this paper are strict entity-

level micro-F1 measure, the primary evaluation metric in CEGS N-GRID 2016 Shared Task 

1.

7. Results

The best result of the three official runs mixed the outputs of the CRFs (F1 = 0.845) and the 

LSTMs (F1 = 0.861), and achieved an F1 score of 0.857. The median F1 score of all system 

outputs of the task participants was 0.822 (standard deviation = 0.183, mean = 0.779, 

minimum = 0.019). The best system achieved an F1 of 0.914 [4]. With the improvements 

described in Section 6.3, the F1 score of the CRF model increased by 3.52% and that of the 

LSTM model by 3.71%. Table 4 lists the evaluation measures of the best official run and the 

two unofficial runs based on the CRFs and the LSTMs. Details of the evaluation measures 

for each sub-category are listed in Table 5. Only the results of LSTM-based system are 

listed.

To verify the contribution of each module of system to overall performance, we removed 

them separately in turn, and re-calculated the F1 measure. For the CRF model, we removed 

one feature sub-category of five. The results are shown in Figure 4. For the LSTM model, 

we sequentially removed one of the three word representation parts. We also removed the 

dropout layer and the decoding lattice to show their influence on overall performance. When 

the decoding lattice was removed, the probability that the word wt was labeled using tag ti 
was calculated directly from Equation (2). The results are shown in Figure 5.
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To demonstrate the effectiveness of the improvements described in Section 6.3, we 

calculated the statistical significance among the strict results of the three runs using 

approximate randomization[30, 31], which has been used in the last two i2b2 challenges[2, 

3]. The best strict results with significant differences are marked with a star in Table 4. We 

further evaluated the individual contributions of improvements on model and pre-processing 

module to the increase of performance. We first modified the model and then improved the 

pre-processing module. The i2b2 micro-averaged P, R and F1 measures were calculated after 

each step. The modification of the models increased the F1 measures of the two systems by 

1.8% and 1.68%, and the improvement in pre-processing increased the results by another 

1.69% and 2.06%. Figure 6 shows more details of the results, which suggest that pre-

processing the raw text is highly beneficial before feeding it into the de-identification 

models.

8. Discussion

8.1 Discussion of the results

Generally speaking, the de-identification on the 2016 dataset is more difficult than that on 

2014. One evidence is that the performance of the participating systems in the 2016 track 

was poorer than that in the 2014 track(maximum = 0.936, median = 0.845). Another is that 

we re-trained our participating system in 2014 track (F1 = 0.924) [32] directly on the 2016 

training set, and achieved a much lower F1 score of 0.823 on the test set.

Our CRF-based system performed much worse on the official test set than the validation set, 

which drove the mixed result below that of LSTM only. This showed that the submitted CRF 

model, which was trained and validated by the training data, did not generalize to the test 

data well.

It is clear from Table 4 that the results of HIPAA were better than those of i2b2 because the 

systems performed poorly on some categories in the i2b2 set but not in the HIPAA set, such 

as PROFESSION, which reduced the F1 score of the i2b2 categories. Further, the token-level 

evaluation measures were higher than the entity-level measures. It implied that the systems 

cannot identify the boundaries of PHI terms well in some cases, which led to extent errors.

For sub-categories in Table 5, the ZIP category obtained the highest F1 score of 1.000 

because of its highly regular form and relatively fixed context. AGE, DATE, DOCTOR, and 

PHONE also achieved F1 scores of more than 0.9 for similar reasons. Although the 

PATIENT sub-category belonged to the categories NAME as well as DOCTOR, its recall 

rate was much lower, only slightly over 0.7. This was due to the high rate of missing errors, 

and potential causes are analyzed in Section 8.3.4. EMAIL and ID were also regular, but 

instances of these categories were rare compared with the above categories. A data-driven 

system was unlikely to learn patterns from so few instances, and thus yielded poor 

performance. For these categories, regular expressions may be helpful.

Three classes of sub-categories were shown in the LOCATION category. The first contained 

CITY, STATE, and COUNTRY, which had relatively fixed dictionaries, and obtained higher 

F1 scores. The second contained HOSPITAL and STREET. These sub-categories had some 
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signal words, such as “hospital,” “clinic,” “road,” and “avenue,” which were also helpful for 

recognition. The third class, which contained ORGANIZATION and LOCATION-OTHER, 

had neither complete dictionaries nor signal words, and thus was more difficult to recognize.

PROFESSION was one of the most difficult categories to identify. One reason for this was 

the lack of dictionaries and signal words, and another was that the contexts for the terms in 

this category were complicated. Moreover, the terms in PROFESSION could be long, such 

as “Telecommunications Installation and Repair Worker” and “Inspector in Public and 

Environmental Health and Occupational Health and Safety.” Identification of such terms 

needed to rely on longer contextual information, which is still a hard problem in NLP.

8.2 Comparison of CRFs and LSTMs

LSTMs outperform CRFs in all F1 measures. LSTM-based systems have similar precision 

but much higher recall than CRF-based systems. This is because the hand-crafted features 

used in CRFs are selected carefully for token classification, but cannot cover all scenarios. 

On the contrary, the automatic features utilized by LSTMs are derived directly from data, 

and can depict intrinsic features hidden in the data. Thus, the features are more general and 

the recall is much higher than that of CRFs.

From a model-building perspective, LSTMs have an additional hidden layer compared with 

CRFs, which have only two layers. If we regard LSTMs as deep neural networks, CRF is a 

kind of shallow network. It has been claimed that deep neural networks have more powerful 

fitting capabilities compared with shallow log-linear models. Moreover, LSTM can model 

long-term dependency, which can capture contextual information for a longer period.

An advantage of CRFs is that they optimize entire sequences of tags rather than tags of each 

token. To use this in the LSTMs, we introduce the transition matrix while decoding the 

labels.

8.3 Error analysis

8.3.1 Error categories—Errors under the entity-level strict evaluation were divided into 

four categories according to [33]:

• Type error: The entity was identified by a correct start and end location but the 

wrong type.

• Extent error: The location span of the entity overlapped with that of a gold-

standard entity, but did not match it exactly. There were three scenarios of 

overlapping:

– Short: The location span of the entity fell within that of a gold-standard 

entity.

– Long: The location span of the entity covered that of a gold-standard 

entity.

– Short&Long: The location span of the entity neither fell into nor 

covered that of a gold-standard entity
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• Spurious error: The location span of the entity had no overlap with any correct 

entity.

• Missing error: The location span of the entity in the gold standard had no overlap 

with that of any entity in the system.

Figure 7 shows the distribution of the four error categories. The percentages of type error, 

spurious error, and extent error were calculated based on the system output, whereas the 

percentages of missing error were calculated based on gold-standard data. If a PHI term 

produced by the system was incorrect, the error would certainly be grouped into one of the 

above four categories, except missing error. Consider the first column of Figure 7 as an 

example. It shows that approximately 91% of the entities in PATIENT were identified by 

system according to the gold standard, 2% of which from the category DOCTOR, 4% were 

not PHI terms, and 1% were shorter than their corresponding standard answers. The sum of 

these percentages is not exactly 100% because the values in each block were rounded due to 

limitations of space. The original data for this figure can be found in Table A.1. From the 

first row of missing errors in the sub-figure, we see that approximately 23% of the terms in 

PATIENT in the gold-standard were not identified by the system.

8.3.2 Type errors—Type errors are shown as a confusion matrix in Figure 7. It can be 

seen easily that entities tended to be identified incorrectly among the sub-categories 

belonging to a main category. For example, 19 entities of PATIENT were incorrectly 

identified as entities of DOCTOR, and 14 entities of DOCTOR were incorrectly identified as 

those of PATIENT. The same scenario also obtained among subcategories in LOCATION 

and CONTACT. The difficulty in finer-grained classification lay in the similarity of the 

morphological features and the context of these entities.

There were also several confusions between the categories PROFESSION and LOCATION. 

This was because they sometimes occurred together and shared similar contexts. For 

example, the sentence “a retired Landscape architecht from Albemarle Corporation” 

contains a PROFESSION term (Landscape architecht) and an ORGANIZATION term 

(Albemarle Corporation).

8.3.3 Spurious errors—Spurious errors occurred when ordinary tokens had similar 

lexical or contextual features with real PHI entities. For example, a token with the first letter 

capitalized was likely to be identified as a PHI term, and one consisting of two digits tended 

to be recognized as DATE or AGE. In other cases, the word itself had more than one 

semantic meaning. For example, in the sentence “Her last depressive episode was last 

winter,” the token “winter” was annotated as a DATE entity. However, in the phrase “winter 

boots,” the token was just an adjective rather than a PHI term. There were also some cases 

where the tokens themselves were confusing. For example, the system identified “big 

company” and “JEwish day schools” as ORGANIZATION, though they were not exactly 

PHI terms.

8.3.4 Missing errors—Missing errors occurred more often in sub-categories with few 

instances in the training set. For EMAIL, URL, and MEDICALRECORD, there were fewer 

than 10 instances each, and it was hence natural that the error rate in the test set was high. In 
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addition to CONTACT, PROFESSION and ORGANIZATION had the highest missing rates. 

As discussed above, this was due to a lack of complete domain dictionaries and signal 

words.

It is interesting that although both PATIENT and DOCTOR were sub-categories of NAME, 

the system yielded entirely different missing rate for these two sub-categories. The missing 

rate of entities in PATIENT was approximately 23%, much higher than the 1% of those in 

DOCTOR. In addition to the more complicated context of PATIENT, we found that the 

document frequency of PATIENT was much lower than that of DOCTOR. This meant that 

the system more easily remembered token of DOCTOR. The document frequency 

distributions of the main sub-categories are shown in Figure 8.

8.3.5 Extent errors—The occurrence of extent errors showed that the model could not 

satisfactorily detect the boundaries of several entities. We checked cases for all three types 

of extent errors and described them below.

There were two main causes of short errors. The first was tokenization. For example, 

“Zenith Uni.” was an ORGANIZATION entity. However, since the period was separated 

from “Uni” during tokenization, the system can only identify “Zenith Uni” as a PHI term. 

Another type of short error was that the system tags one entity as two. “State University of 

Wyoming” was an ORGANIZATION entity. However, the system tagged “State University” 

as an ORGANIZATION and “Wyoming” as a STATE. This showed that the system could 

not handle the “of” phrase structure well. It sometimes tagged two sub-structures of an 

integrated term with “of” as two independent entities. Similar examples were “winter of 

2091” and “Cancer Center of America.”

Similarly, these two problems can also cause long errors. For example, the system tagged 

“Educare-Fargo\,” rather than “Educare-Fargo” as a “hospital” entity because of the failure 

of tokenizing “\” out from “Fargo.” The system sometimes also tagged two or more entities 

as one. For example, the entity “computer science health informatic” identified by the 

system were in fact two entities in the gold standard. There were some long errors as well 

that were confusing. For example, the system tagged “Woodland Park High School” as an 

“organization,” but the gold standard tagged only “Woodland Park” as a “city.” Similar 

examples were “landscaping employer” and “HMC Home Services.” Perhaps some extra 

information, like tf-idf, can help the system filter more general tokens, such as “high school” 

and “employer.”

Short&Long errors occurred less frequently compared with the above two extent errors, and 

mainly in PROFESSION when preceded by an ORGANIZATION entity. For example, in the 

sentence “33yo married palauan female Bob Evans buildings construction worker,” the gold 

standard tagged “Bob Evans buildings” and “construction worker” as ORGANIZATION and 

PROFESSION, respectively. However, the system tagged “buildings construction worker” as 

a PROFESSION entity.
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8.4 Limitations

Text in the clinical domain has its own characteristics. The direct transformation of NER 

from the open to the clinical domain is not the best way. However, limited by the time 

available for the task, specific processing against clinical narratives was not introduced to 

the systems. We did not exploit the characteristics of the corpus fully, and therefore, no rule-

based post-processing module was added. We also just utilized a small part of the 

dictionaries. The sentence detector and the POS/chunk tagger were open-domain toolkits. 

We believe these rules, resources, and domain-specific toolkits can further improve the 

performance of the system.

At the same time, open-domain prior knowledge is also helpful for some categories, such as 

PROFESSION and LOCATION, which are also common named entities in open-domain 

corpora. The pre-trained word embedding based on these large-scale corpora should be 

helpful for identification.

9. Conclusion

This paper proposed two automatic de-identification systems based on CRFs and LSTMs. 

The LSTM-based system attained a micro-F1 score of 0.8986 in i2b2 strict evaluation, which 

was higher than that of the CRF-based system. LSTMs can identify PHI terms without 

depending on handcrafted features and obtain higher recall rates than CRFs. In addition to 

the model, the preprocessing module can significantly affect the performance of the system. 

Accurate sentence detection and tokenization is a premise and foundation of subsequent PHI 

term recognition.

Furthermore, as Section 8.4 pointed out, we will attempt to incorporate prior knowledge and 

domain-specific resources to help increase the results for categories that yielded poor 

performance.

Acknowledgments

The CEGS N-GRID 2016 Shared Task 1 in Clinical Natural Language Processing was supported by NIH P50 
MH106933, NIH 4R13LM011411. This work is also supported by the Natural Science Foundation of China (No. 
71531007). The authors would like to thank the organizing committee for this task and the annotators of the dataset. 
We also thank the anonymous reviewers for their comments, which provided us with significant guidance.

Appendix A

Table A.1 is a quantitative version of Figure 7.

Table A.1

Error distribution of system output.

system output

Pt Dct Pf Hpt Og Strt Ct Stat Ct Zip L-O Age Dt Phn Fax Em Url Mrd Hp Lcs Fax ID Missing Total

PATIENT 597 19 1 8 2 5 6 1 187 826
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system output

Pt Dct Pf Hpt Og Strt Ct Stat Ct Zip L-O Age Dt Phn Fax Em Url Mrd Hp Lcs Fax ID Missing Total

DOCTOR 14 1491 4 2 4 1 22 1538

PROFESSION 1 688 9 242 940

HOSPITAL 3 11 1096 19 13 2 151 1295

ORGANIZATION 2 18 26 434 14 1 1 1 136 633

STREET 1 27 1 4 33

CITY 1 1 2 11 5 748 4 1 4 18 795

STATE 2 30 419 1 1 3 14 470

COUNTRY 3 1 2 22 5 307 1 26 367

ZIP 17 0 17

LOCATION-OTHER 1 1 1 10 4 1 18

AGE 2 2234 5 97 2338

DATE 2 1 1 2 1 1 11 3646 56 3721

PHONE 1 106 2 109

FAX 2 3 0 5

EMAIL 0 4 4

URL 0 2 2

MEDICALRECORD 0 2 2

HEALTHPLAN 0 0 0

LICENSE 19 0 19

IDNUM 1 5 0 2 8

total 623 1526 710 1148 476 28 848 440 311 17 9 2247 3655 108 3 0 0 1 0 24 0 966 13140

Spurious 26 20 52 33 29 9 8 11 1 59 45 1 294

short 9 27 35 21 21 26 10 3 3 6 52 1 1 1 3 1 220

long 14 26 9 26 9 1 2 5 37 2 131

sl 5 1 5 11

total 9 41 66 30 47 0 35 11 5 0 3 11 90 3 0 1 1 0 0 3 0 6 362

system 658 1587 828 1211 552 28 892 459 327 17 13 2317 3790 112 3 1 1 1 0 28 0 973

Appendix B

When the CRF is applied to NER, X = x0, x1, ⋯, xt, ⋯, xT denotes the features of an input 

sentence of length T, where xt is the features of the word xt at position t and its context. And 

Y = y1, y2, ⋯, yt, ⋯, yT denotes the corresponding output labels of each word xt.

The feature set used in linear-chain CRF can be written as ℱ = {fk(yt, yt−1, xt)|∀k}, where 

fk(yt, yt−1, xt) = qk(xt)I(yt = y)I(yt−1 = y′). qk(xt) is the k-th observed feature of xt and its 

context, and I(·) is the indicator function. It can further simplified as two kinds of features: 

fk(yt, xt) = qk(xt)I(yt = y) and f(yt, yt−1) = I(yt = y)I(yt−1 = y′).

Then, the distribution of Y given X can be written as
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p(Y | X) = 1
Z(X) ∏

t = 1

T
Ψt(yt, yt − 1, xt) (10)

where

Ψt(yt, yt − 1, xt) = exp{ ∑
k = 1

K
θk f k(yt, yt − 1, xt)} (11)

is the log-linear combination of the feature space. θk is the corresponding weight parameter 

of k-th feature fk(·), which can be learned by regularized maximum-likelihood estimation 

(MLE). K = |ℱ| is the size of feature set.

Appendix C

LSTMs introduce cell state ct to cover all information over time. At every time step, ct is 

updated with ct−1 and zt, which is exactly the same as in Equation (1). There are two gates, it 
and ot, which are calculated by the weight combination of current embedding xt, last ht−1 

and last ct−1, and output through a sigmoid function. This guarantees that each element of it, 
1 − it, and ot are numbers in [0, 1]. After pointwise multiplication operation with another 

vector with the same shape, they determine the contribution of this vector to the result. In 

LSTMs, it modulates the combination of ct−1 and zt, whereas ot modulates the contribution 

of ct to ht:

zt = tanh(Wzxt + Uzht − 1 + bz) (12)

it = σ(Wixt + Uiht − 1 + Vict − 1 + bi) (13)

ct = (1 − it)ct − 1 + itzt (14)

ot = σ(Woxt + Woht − 1 + Voct − 1 + bo) (15)

ht = ot ⊙ tanh(ct) (16)
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W ∈ ℝdh×de, U ∈ ℝdh×dh, V ∈ ℝdh×dh, and b ∈ ℝdh are weight and bias parameters to be 

learned. These parameters are time invariant, and reduce the size of the hypothesis space.

Appendix D

We present the formula used to calculate log(Σi es(X,yi)) in Equation (5). This term is a form 

of log-sum-exp, and we rewrite it as LSE
∀y1:T

s(X1:T, y1:T). Like the forward algorithm in CRF, a 

middle variable δt(k) is introduced:

δt(k) ≜ LSE
∀y1: t ∩ yt = k

s(X1: t, y1: t) = LSE
∀i, y1: t ∩ yt = k

(s(X1: t, y1: t − 1)|
yt − 1 = i

+ Mik + Pt, k)

= LSE
∀i, y1: t ∩ yt = k

(s(X1: t, y1: t − 1)|
yt − 1 = i

+ Mik) + Pt, k

= LSE
∀i, yt = k

( LSE
∀y1: t − 1 ∩ yt − 1 = i

[s(X1: t − 1, y1: t − 1) + Mik]) + Pt, k

= LSE
∀i, yt = k

( LSE
∀y1: t − 1 ∩ yt − 1 = i

s(X1: t − 1, y1: t − 1) + Mik) + Pt, k = LSE
∀i, yt = k

(δt − 1(i) + Mik) + Pt, k

Finally, we obtain log(∑ie
s(X, yi)) = LSE

∀y1:T
s(X1:T, y1:T) = ∑k δT(k).
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Highlights

• The described LSTM model attains F1 measure of 0.8986 in CEGS N-GRID 

2016 Shared Task.

• The LSTM-based model attains higher F1 measure than the CRF-based 

model.

• Accurate sentence detection and tokenization can significantly improve the 

performance.
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Figure 1. 
The pipeline of CRF-based tagging system. The raw text is parsed from training data, 

tokenized, and split into sentences. Five categories of features are generated for each token. 

These features are then fed into CRF++ toolkit to obtain the de-identification tagging model. 

The same pre-processing and feature generation steps are applied to test data, then the 

trained model would label each test token according to their features. The labels are decoded 

and the system would output the final PHI results.
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Figure 2. 
The architecture of LSTMs tagging model. The word-level LSTMs receive the 

representation of each token as input and provide the hidden layer ht as output. This output 

is used to predict the probability of tags of each word xt through a fully-connected layer, 

where the dropout is applied. In the decoding lattice, we find the most probable tag path 

from the tag lattice, along which the PHI information could be obtained.
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Figure 3. 
An example of the enhanced representation of word “Rone”. It is composed of the character-

level embedding, the pre-trained embedding and the feature embedding.
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Figure 4. 
Overall performance curve of CRF-based system, with one feature sub-category removed 

from the feature set.

Jiang et al. Page 25

J Biomed Inform. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Overall performance curve of LSTM-based system, with one layer removed from the LSTM 

architecture.
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Figure 6. 
P, R and F1 measures change of two systems after the model and pre-processing module 

improvements. CRF-based system (left), LSTM-based system (right).
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Figure 7. 
The visualization of error distribution. The main sub-figure is a confusion matrix used to 

depict type error. The other three sub-figures show the distribution of missing, spurious, and 

extent errors. The meanings of each row and column are listed in the headings. Different 

PHI categories are separated by the dashed blue line.
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Figure 8. 
The boxplot of document frequencies of the main sub-categories.
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Table 1

Regular expressions used for tokenization

Regular expression Original token After tokenization Comment

[A-Za-z][0–9] a26 yo man a26 yo man
digit

[0–9][A-Za-z][A-Za-z]+ 10/6/2098SOS 10/6/2098_SOS

[A-Z]{3,}[a-z]{2,}+ USMeaningful US_Meaningful
uppercase

[a-z][A-Z] WhalenChief Whalen_Chief

\d{1,2}([/−])(\d{1,2}(\1))?\d{2,4} 09/14/2067CPT 09/14/2067_CPT DATE

\D\d{3}\D{0,2}\d{3}\D{0,2}\d{4} 109 121 1400Prior 109 121 1400_Prior PHONE

\w+@\w+\.[a-z]+ hcuutaj@bdd.comOther hcuutaj@bdd.com_Other EMAIL
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Table 2

The features utilized at the CRFs-based system.

Category Features Feature Instantiations
of “Vincent”

Lexical lowercase vincent

word lemma vincent

POS tag of the token NNP

Chunk tag I-NP

Long Shape of the token Aaaaaaa

Length of the token 7

Letter Whether the token contains a letter 1

Whether the token contains a capital letter 1

Whether the token begins with a capital letter 1

Whether all characters in the token are capital letters 0

Digit and Punctuation Whether the token contains a digit 0

Whether all characters in the token are digits 0

Whether the token contains a punctuation character 0

Whether the token consists of letters and digits 0

Whether the token consists of digits and punctuation characters 0

Morphological First two characters of the token Vi

Last two characters of the token nt

First three characters of the token Vin

Last three characters of the token ent

First four characters of the token Vinc

Last four characters of the token cent

Dictionary Whether the lowercase of the token is in the “profession” dictionary 0

Whether the lowercase of the token is in the “city” dictionary 0

Whether the lowercase of the token is in the “country” dictionary 1

Whether the lowercase of the token is in the “state” dictionary 0
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