Skip to main content
. 2018 Apr 9;8:5697. doi: 10.1038/s41598-018-22871-z

Table 2.

Classification performance for the sMCI vs. pMCI task: Accuracy (%), Sensitivity (%), and Specificity (%) of the proposed network compared with the published state-of-the-art methods for the task of discriminating between sMCI and pMCI subjects.

Method Modality Year to conversion #Subjects Accuracy Sensitivity Specificity
Young et al.18 MRI 0–3 143 64.3 53.2 69.8
Liu et al.40 MRI 0–3 234 68.8 64.29 74.07
Suk et al.28 MRI unknown 204 72.42 36.7 90.98
Cheng et al.41 MRI 0–2 99 73.4 74.3 72.1
Zhu et al.42 MRI 0–1.5 99 71.8 48.0 92.8
Huang et al.46 longitudinal MRI 0–3 131 79.4 86.5 78.2
Proposed MRI 0–3 626 75.44 (7.74) 73.27 (7.58) 76.19 (8.35)
Young et al.18 PET 0–3 143 65.0 66.0 64.6
Liu et al.40 PET 0–3 234 68.8 57.14 82.41
Suk et al.28 PET unknown 204 70.75 25.45 96.55
Cheng et al.41 PET 0–2 99 71.6 76.4 67.9
Zhu et al.42 PET 0–1.5 99 71.2 47.4 93.0
Proposed PET 0–3 626 81.53 (7.42) 78.20 (7.72) 82.47 (9.30)
Young et al.18 MRI + PET + APOE 0–3 143 69.9 78.7 65.6
Liu et al.40 PET + MRI 0–3 234 73.5 76.19 70.37
Suk et al.28 PET + MRI unknown 204 75.92 48.04 95.23
Cheng et al.41 PET + MRI + CSF 0–2 99 79.4 84.5 72.7
Zhu et al.42 MRI + PET 0–1.5 99 72.4 49.1 94.6
Moradi et al.20 MRI + Age + cognitive measure 0–3 264 82 87 74
Xu et al.43 MRI + PET + florbetapir PET 0–3 110 77.8 74.1 81.5
Zhang et al.44 longitudinal MRI + PET 0–2 88 78.4 79.0 78.0
An et al.45 MRI + SNP 0–2 362 80.8 71.5 85.4
Korolev et al.21 MRI + Plasma + cognitive measure 0–3 259 80.0 83.0 76.0
Proposed PET + MRI 0–3 626 82.93 (7.25) 79.69 (8.37) 83.84 (6.37)

‘PET’ in this table represents FDG-PET neuroimaging. Our proposed approach using deep neural networks was performed using a single FDG-PET image and a single T1-MRI acquired from each of 409 sMCI subjects and 217 pMCI subjects (total 626 subjects) and the average (standard-deviation) of the accuracy, sensitivity and specificity of classifier performance are reported.