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Summary

Traditional variable selection methods are compromised by overlooking useful information on 

covariates with similar functionality or spatial proximity, and by treating each covariate 

independently. Leveraging prior grouping information on covariates, we propose partition-based 

screening methods for ultrahigh-dimensional variables in the framework of generalized linear 

models. We show that partition-based screening exhibits the sure screening property with a 

vanishing false selection rate, and we propose a data-driven partition screening framework with 

unavailable or unreliable prior knowledge on covariate grouping and investigate its theoretical 

properties. We consider two special cases: correlation-guided partitioning and spatial location- 

guided partitioning. In the absence of a single partition, we propose a theoretically justified 

strategy for combining statistics from various partitioning methods. The utility of the proposed 

methods is demonstrated via simulation and analysis of functional neuroimaging data.
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1. Introduction

Biotechnological advances have resulted in an explosion of ultrahigh-dimensional data, 

where the dimension of the data can be of exponential order in the sample size. Because of 

high computational cost and poor numerical stability, ultrahigh-dimensional data have long 

defied existing regularization approaches designed for high-dimensional data analysis 

(Tibshirani, 1996; Fan & Li, 2001; Zou & Hastie, 2005; Meinshausen & Bühlmann, 2006; 

Yuan & Lin, 2006; Zhao & Yu, 2006; Zou, 2006; Candès & Tao, 2007; Zhang & Lu, 2007; 
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study.
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Huang et al., 2008; Zou & Zhang, 2009; Meinshausen & Bühlmann, 2010; Wang & Leng, 

2012). An overarching goal of ultrahigh-dimensional data analytics is to effectively reduce 

the dimension of covariates.

Sure independence screening (Fan & Lv, 2008) has been extended to generalized linear 

models (Fan & Fan, 2008; Fan et al., 2009; Fan & Song, 2010), generalized additive models 

(Fan et al., 2012) and proportional hazards models (Zhao & Li, 2012; Gorst-Rasmussen & 

Scheike, 2013; Hong et al., 2016a; Li et al., 2016). By extending screening criteria that are 

solely based on marginal correlations between the outcome and predictors, a variety of 

statistics that account for dependence between predictors have been proposed to improve 

screening accuracy and robustness (Hall & Miller, 2009; Zhu et al., 2011; Cho & 

Fryzlewicz, 2012; Li et al., 2012; Cui et al., 2015). In particular, high-dimensional ordinary 

least squares projection (Wang & Leng, 2016), which uses the generalized inverse of the 

design matrix in lieu of marginal correlations, has good theoretical properties and high 

computational efficiency.

In many cases, scientists have knowledge about important predictors from previous research. 

For example, neuroimaging studies have identified voxel-level imaging predictors clustered 

in certain brain regions that are linked to brain functions or diseases. Genome-wide 

association studies have detected single nucleotide polymorphisms that are strongly 

associated with clinical outcomes. However, most variable screening approaches are not 

designed to make use of such information.

As an alternative to marginal screening approaches, conditional sure independence screening 

methods have been developed for generalized linear models (Barut et al., 2016) and 

proportional hazards models (Hong et al., 2016a). By including important predictors, 

conditional screening ranks the marginal utility of each variable after adjusting for variables 

in the conditioning set.

Partitioning biomarkers into smaller groups according to biological knowledge or other 

useful information may facilitate variable selection. In biological studies, leveraging 

information about groups of weak predictors is often useful because such predictors may 

have a nontrivial impact on outcomes as a group, and without considering the group 

structure these features might be missed. We exemplify the merit of using the grouping 

structure with a simple example.

Suppose that we want to identify the important associations between the outcome Y and X1,

…, X1000, where Y = 0.5X1 − X2 + ε with ε ~ N(0, 1.6) and (X1,…, X1000) follows a 

multivariate normal distribution with mean zero, unit marginal variance and correlation corr 

(Xj, Xk) = 0.5 for any j ⧧ k ∈{1,…, 1000}. To screen for important variables, marginal 

screening would fit 1000 variate regression models, Y = X jβ j + ε∼ for j = 1, …, 1000, and use 

β j, the estimate of βj, as the screening statistic. Suppose that we partition these 1000 

predictors into 200 groups such that the group membership index sets are 

𝒮1 = (1, …, 5), …, 𝒮200 = (996, …, 1000). An alternative screening approach would fit 200 

multivariate regression models along the group partition, Y = ∑ j ∈ 𝒮g
X jβ j + ε∼, and use the 
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corresponding β j as the screening statistic. We examine the performances of the two 

approaches based on 300 samples and 400 replicates. Figure 1 shows plots of the densities of 

β1 and β2 and the mixture density of β3, …, β1000 for both approaches. Due to signal 

cancellation, the univariate regression introduces large biases in estimating β1 and β2, 

causing considerable overlap between the distribution of β1 or β2 and those of the estimates 

for the noise variables, whereas groupwise multivariate regression separates the distribution 

of β1 or β2 from the distributions of the others.

This example motivates partition-based screening, which is based on a partition of covariates 

using prior knowledge. Our work generalizes the univariate framework of sure independence 

screening (Fan & Lv, 2008) and its group version (Niu et al., 2011). Under mild conditions, 

partition-based screening exhibits good theoretical properties. A new functional operator, 

generalized linear conditional expectation, is introduced to help establish sure screening 

properties. When prior grouping information is available, we show that the screening 

accuracy of partition-based screening is superior to that of competing methods. In the 

absence of prior grouping information, we propose correlation-based screening and spatial 

partition-based screening, which make the proposed methods applicable to a wide range of 

problems.

2. Partition-based variable screening

Suppose that we have n independent samples D = {(Xi, Yi), i = 1, …, n}, where Yi is an 

outcome and Xi = (Xi,1,…, Xi,p)T is a collection of p predictors for the ith sample. Assume 

without loss of generality that all the covariates have been standardized so that E(Xi,j) = 0 

and E(Xi, j
2 ) = 1. We consider a class of generalized linear models by assuming that the 

conditional density of Yi given Xi belongs to a linear exponential family,

π(Y i | Xi) = exp{Y i(β0 + Xi
Tβ) − b(β0 + Xi

Tβ) + A(Y i, Xi)} (1)

where A(·, ·) and b(·) are known functions, β = (β1,…, βp)T represent the coefficients of the 

predictors, and β0 is an intercept, regarded as a nuisance parameter. Let ℳ = { j: β j ⧧ 0}. We 

assume that b(·) is twice continuously differentiable, with a nonnegative second derivative b
″(·). For a nonrandom function f (·) and a sequence of independent random variables ξi (i = 

1,…, n), let En{ f (ξ)} = n−1∑i = 1
n f (ξi) be the empirical mean of { f (ξi)}i = 1

n , which are 

independent replicates of f (ξ). The loglikelihood function is

ℓ(β0, β; D) = 1
n ∑

i = 1

n
l(β0 + Xi

Tβ, Y i) = En{l(β0 + XTβ, Y)} (2)

where l(θ, y) = yθ − b(θ). We assume that {Xij, Xi, Yi} are independently and identically 

distributed copies of {Xj, X, Y}. When p < n, the maximum likelihood estimator of β, 
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denoted by βMLE, can be obtained by maximizing ℓ(β0, β; D). When p ⩾ n, regularization 

estimation is often performed under an assumption of sparsity among predictors. When p is 

of exponential order in n, a popular approach for reducing the dimensionality is screening.

First, we consider a simple case where the covariates can be partitioned into G disjoint 

groups in accordance with known information. Denote by gj the group membership of 

variable Xj. Let Xg
∗ = {X j:g j = g} be the collection of predictors in group g, where g ∈ {1,…, 

G}. Additionally, let βg
∗ = {β j:g j = g} represent the corresponding coefficients and let βg,0 be 

the group-specific intercept in the model. Denote their estimates by βg
∗ = {β j:g j = g} and 

βg, 0
∗ , respectively. For predictor j with gj = g, the partition-based screening statistic is 

defined as

(βg, 0
∗ , βg

∗) = arg max
(βg, 0, βg

∗)
En{l(βg, 0 + Xg

∗ Tβg
∗, Y)} .

We call βg
∗ the partition-based screening statistic. Then, for a chosen thresholding parameter 

γ, the set of indices selected by our proposed partition-based screening is ℳγ = { j: | β j | ⩾ γ}.

When gj = j (j = 1,…, p), partition-based screening encompasses sure independence 

screening as a special case.

3. Sure screening properties

Let (Ω, ℱ, pr) be the probability space for all random variables considered in this paper. Let 

ℝd be a d-dimensional Euclidean vector space for some positive integer d. Denote by E(·), 

var(·) and cov(·, ·) the expectation, variance and covariance operators associated with (Ω, ℱ, 

pr). For any vector a = (a1, …, ap) ∈ ℝp, let ac = (a j, j ∈ 𝒞)T be the subvector with elements 

indexed by 𝒞. Let a d = (∑ j = 1
p |a| j

d)
1/d

 be the Ld-norm for any vector a ∈ℝp, and denote 

the Euclidean norm by ||a|| when no confusion is likely to arise. Let λmin(M) and λmax(M) 

be the smallest and largest eigenvalues of the matrix M, respectively.

We start with population-level parameters for the discussion of sure screening properties. Let

(βg, 0
∗ , βg

∗) = arg max
(βg, 0, βg

∗)
E{l(βg, 0 + Xg

∗ Tβg
∗, Y)} (3)

where βg
∗ = {β j:g j = g} is the population version of βg

∗
. We first establish conditions to 

ensure that if |βj| exceeds a threshold, then |β j| will exceed a certain constant. Write 
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β− j
∗ = {βl:gl = g j, l ⧧ j}T and X− j

∗ = {Xl:gl = g j, l ⧧ j}T. With (2), β j satisfies the score 

equations

E{b′(βg, 0
∗ + X− j

∗ Tβ− j
∗ + X jβ j)(1, Xg

∗ T)T} = E{Y(1, Xg
∗ T)T} . (4)

To derive the theoretical properties of the proposed methods, we introduce a functional 

operator on random variables.

Definition 1

For two random variables ζ : Ω → ℝ and ξ : Ω → ℝp, let h : ℝ → ℝ be a continuous link 

function. The generalized linear conditional expectation of ζ given ξ is

Eh(ζ |ξ) = h(α0 + αTξ), (5)

where (α0, αT)T is the solution to the equation E[{ζ − h(α0 + αTξ)}(1, ξT)T] = 0.

The generalized linear conditional expectation measures how ξ can explain ζ through a 

generalized linear model, where ζ is regarded as the outcome variable and ξ as the 

predictors. It can also be interpreted as the best prediction of ζ using ξ based on a 

generalized linear model, leading to an alternative measure of the dependence between ζ and 

ξ. The generalized linear conditional expectation may depend on the choice of link 

functions, and it is equivalent to the conditional expectation if the true conditional 

distribution of ζ given ξ is specified by the corresponding generalized linear model. The 

introduction of (5) facilitates the development of partition-based screening and its theoretical 

properties, and extends the linear conditional expectation proposed by Barut et al. (2016) 

and Hong et al. (2016a). Some basic properties are summarized below.

Lemma 1

Let ζ and ξ be random variables in (Ω, ℱ, pr).

i. When h(x) = 1(x) = x, Eh(ζ | ξ) is unique and has a closed-form expression. 

Moreover, E1(ζ | ξ) = E(ζ) + cov(ζ,ξ)var(ξ)−1{ξ −E(ξ)} and E{E1(ζ | ξ)ξ} = 

E(ζξ).

ii. When the conditional distribution of ζ given ξ belongs to a linear exponential 

family, i.e., f(ζ | ξ) = exp{ζ(γ0 + γTξ) − b(γ0 + γTξ) + A(ζ, ξ)}, then h(x) = 

b'(x) and Eb′(ζ |ξ) = E(ζ |ξ) = b′(γ0 + γTξ).

iii. For any h, we have E{Eh(ζ | ξ)} = E(ζ).

These properties immediately imply the following result.
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Theorem 1

Suppose that the solution to (4) is unique. For j = 1,…,p, the partition-based regression 

parameter β j equals 0 if and only if Eb′(Y | X− j
∗ ) = Eb′(Y | X− j

∗ , X j).

The sufficient part of Theorem 1 implies that if the generalized linear conditional 

expectation of the response given all the predictors within group gj does not involve Xj, then 

the regression coefficient βj will be vanishing, implying that unimportant variables would 

have smaller fitted coefficients.

To ensure the sure screening property at the population level, the important variables 

{X j, j ∈ ℳ} should be conditionally associated with Y given other variables within the same 

group {X− j
∗ , j ∈ ℳ}. The following conditions are required.

Condition 1—For j ∈ ℳ, there exist c0 > 0 and κ < 1/2 such that

|E[X j{Eb′(Y | X− j
∗ , X j) − Eb′(Y | X− j

∗ )}] | > c0n−κ .

Condition 2—The derivative b′(θ) satisfies a Lipschitz condition, i.e., there exists an L > 0 

such that |b′(θ1) − b′(θ2)| < L|(θ1) − (θ2)|for all θ1,θ2 ∈ ℝ.

Condition 3—There exists a constant M > 0 such that E(X j
2) ≤ M for all j.

Condition 1 provides a lower bound on the generalized linear dependence between each 

active covariate Xj and Y conditional on other covariates within the same group, justifying 

the use of group partitions to retain true signals. Linear regression, logistic regression and 

probit regression all satisfy Condition 2.

Theorem 2

If Conditions 1–3 hold, then there exists c2 > 0 such that min j ∈ ℳ | β j | > c2n−κ.

To establish sure screening properties, we need regularity conditions (Fan & Song, 2010; 

Barut et al., 2016); see Conditions A.1–A.6 in the Supplementary Material.

Theorem 3

Let Sg = ∑ j = 1
p I(g j = g) be the size of group g. Assume that Conditions A.1–A.6 in the 

Supplementary Material hold and that Qg, n = n1 − 2κ(Rnrg, n)−2 ∞ as n → ∞ for all g = 1,

…, G.

i. With c2 as in Theorem 2, there exists a positive constant c3 such that

pr max
1 ≤ j ≤ p

| β j − β j | ⩾ c2n−κ /2 ≤ ∑
g = 1

G
Sgexp( − c3Qg, n) + nr2exp( − r0Rn

α),

KANG et al. Page 6

Biometrika. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where r2 = ∑g = 1
G Sg(Sgr1 + s1).

ii. If Conditions 1–3 hold, then with γ = c4n−κ and c4 ≤ c2/2, we have

pr ℳ ⊂ ℳγ ⩾ 1 − ∑
j ∈ ℳ

exp( − c3Qg j, n) − nr3exp( − r0Rn
α),

where r3 = ∑ j ∈ ℳ (Sg j
r1 + s1).

For logistic regression, the Lipschitz constant rg,n is bounded. Therefore, the optimal rate for 

Rn is of order n(1−2κ)/(2+α), ensuring that Qg,n is of the same order as Rn
α. This also implies 

that the partition-based screening method can handle group sizes of order log Sg = 
o(n(1−2κ)α/(α+2)) (g = 1,…, G). The same optimal rate and a similar order of dimensionality 

can be achieved for logistic regression by sure independence screening (Fan & Song, 2010) 

and conditional sure independence screening (Barut et al., 2016).

To provide an upper bound on the number of selected variables, we need the following 

additional conditions:

Condition 4— ∑ j = 1
p var(X jβ j) and b″(θ) are both bounded for all θ and β.

Condition 5—Let g = gj and Ω j = E[δ j(1, Xg
∗ T)T(1, Xg

∗ T)] with

δ j =
b′(βg, 0

∗ + X− j
∗ Tβ− j

∗ + X jβ j
∗) − b′(β

∼
g, 0
∗ + X− j

∗ Tβ
∼

− j
∗ )

βg, 0
∗ − β

∼
g, 0
∗ + X− j

∗ T(β− j
∗ − β

∼
− j
∗ ) + X jβ j

∗ ,

where (β
∼

g, 0
∗ , β

∼
− j
∗ ) = arg max

(β0, β− j
∗ )

E{l(β0 + X− j
∗ Tβ− j

∗ , Y)}. Then there exists a K1 > 0 such 

that λmin(Ω j) > K1 for all j = 1,…, p.

Condition 6—Assume that ║U║2 = o(V) where U = (U1,…, Up)T with

U j = E{E1(X j | X− j
∗ , Xg

∗, g ⧧ g j)(β0 − β
∼

g j, 0
∗ + XTβ − X− j

∗ Tβ
∼

− j
∗ )}

and V = sup1 ≤ j ≤ pE[{X j − E1(X− j
∗ , Xg

∗, g ⧧ g j)}
2]. Here (β0, βT)T are the parameters that 

generate the data.

For a linear model, Condition 5 becomes λmin[E{(1, Xg
∗ T)T(1, Xg

∗ T)T(1, Xg
∗ T)}] > K1 for all g, 

which is a mild condition. In Condition 6, Uj = 0 for the linear model when cov(X) has a 

block-diagonal structure over a group partition, i.e., cov(Xg
∗, Xg′

∗ ) = 0 for g ⧧ g′, because 
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E1(X j | X− j
∗ , Xg

∗, g ⧧ g j) = E1(X j | X− j
∗ ) and 

E1{X− j
∗ (β0 − β

∼
g j, 0
∗ + XTβ − X− j

∗ Tβ
∼

− j
∗ )} = E[X− j

∗ {b′(β0 + XTβ) − b′(β
∼

g j, 0
∗ + X− j

∗ Tβ
∼

− j
∗ )}] = 0.

Condition 6, which requires ||U|| to be bounded, may be restrictive. This condition holds if 

the number of nonzero coefficients is finite or if the correlations among different partitions 

shrink as p → ∞. Condition 6 can be viewed as rigid, even though the group structure is 

natural in many biomedical applications. To overcome this difficulty, one could first perform 

a principal component analysis on X, and then apply the proposed procedures to the 

residuals of X after projecting them to a set of variables with the largest loadings on the 

leading eigenvectors (Hong et al., 2016a). See the Supplementary Material for more details.

Theorem 4

With γ, c3 and r2 as in Theorem 3, if Conditions 4–6 and A. 1–A.6 hold, then as n →∞,

pr{|ℳγ | ≤ O(n2κV)} ⩾ 1 − ∑
g = 1

G
Sgexp(−c3Qg, n) − nr2exp( − r0Rn

α) .

4. Extensions of partition-based screening

4.1. Goodness-of-fit adjustment

One difficulty in the proposed partition-based screening is that the coefficient estimates from 

group-specific models may not be comparable because different models may have various 

degrees of goodness-of-fit. Under the generalized linear model framework, we propose to 

adjust for the goodness-of-fit by weighting the screening statistics using the deviance ratio 

Ψg ∈ (0,1) (Friedman et al., 2010), which is the fraction of null deviance explained by the 

covariates in group g and is equal to R2 in the linear model. In other words, we weight the 

partition-based screening statistic as β j
a = ψg j

β j for predictor j and redefine the selected 

index set as ℳγ
a = { j: | β j

a | > γ}. However, the performance of such a procedure may be 

sensitive to grouping. For instance, in the example in § 1, goodness-of-fit adjustment can 

improve the model selection accuracy when all the true predictors are in the same group, as 

in Fig. 2(a). In contrast, when the true predictors are in separate groups, there is no 

improvement; see Fig. 2(b) and the Supplementary Material.

4.2. Data-driven partition

When prior partitioning information is unavailable, we may use information from the data, 

including correlations between predictors and the spatial locations. Let us denote the data-

driven partition by 𝒢. We derive two procedures for determining 𝒢 based on such 

information.

The data-driven partition can be determined by the covariance or correlation structure of the 

design matrix. We propose a simple correlation-guided partition procedure. We use the 

correlation between covariates to define a p × p distance matrix, denoted by Δ = (dj,k), where 
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dj,k = 1 − |corr(Xk, Xj)| (1 ≤ k,j ≤ p). We apply the nearest-neighbour chain algorithm 

(Murtagh, 1983), a standard hierarchical clustering algorithm, to Δ to obtain an estimate of 

𝒢, where the number of groups, G, can be determined by controlling the corresponding 

maximum group size maxg Sg for the generalized linear model fitting. Based on our 

experience, choosing maxg Sg ∝ n1/2 can lead to good performance. When the correlation 

matrix has a block-diagonal structure and the correlations within each block are high, this 

procedure can correctly identify the block structure. Covariate-assisted variable screening 

(Ke et al., 2014) and graphlet screening (Jin et al., 2014) are also based on the covariance 

structure of covariates, but these procedures focus on linear regression.

Spatial regression models have often been used in environmental health and neuroimaging 

studies, where a spatial location is attached to each covariate. For example, in the scalar-on-

image regression problem for brain imaging, where the spatial location of each voxel is in a 

standard three-dimensional brain template, the imaging intensities at different voxels are 

usually considered as potential predictors for clinical outcomes. It is generally believed that 

spatially close predictors tend to have stronger correlations and may have more similar 

effects on the outcome (Wang et al., 2017). Therefore spatial location information can be 

useful in determining the partition for variable screening. Specifically, model-based 

clustering (Fraley & Raftery, 2002) and k-means clustering (Jain, 2010) can be used to 

assign each predictor to a fixed number of clusters or spatial locations, typically determined 

by controlling the corresponding maximum group size in a similar fashion to correlation-

guided partitioning.

Using a partition 𝒢 determined by data, we can also establish the following theoretical 

results for data-driven partition-based screening, which can be proved by conditioning on the 

event {𝒢 = 𝒢} and using Theorems 1–4.

Theorem 5—Suppose that 𝒢 is a consistent estimator of 𝒢 satisfying Conditions 1–6 and 

A.1–A.6; that is, limn ∞pr(𝒢 = 𝒢) = 1. With the same γ, c3, r2 and r3 as in Theorem 3, as n 

→ ∞ we have

pr ℳ ⊂ ℳγ ⩾ pr(𝒢 = 𝒢) − ∑
j ∈ ℳ

exp( − c3Qg j, n) − nr3( − r0Rn
α),

pr |ℳγ | ≤ O(n2κV) ⩾ pr(𝒢 = 𝒢) − ∑
g = 1

G
Sgexp( − c3Qg, n) − nr2( − r0Rn

α) .

4.3. Combined partition-based screening

Several partitioning rules for covariates may exist, but none is clearly superior. For example, 

in neuroimaging, brain atlases, such as Talairach–Tournoux, Harvard–Oxford, Eickoff–Zilles 

and automatic anatomical labelling, have variable partitioning of brain regions. In genome-

wide association studies, different sources of information, including the locations of genes 
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that harbour single nucleotide polymorphisms and linkage disequilibrium between single 

nucleotide polymorphisms, can be integrated to determine the groups. Using multiple 

sources of partitioning, we propose a strategy for combining screening statistics from 

different partitions and establish its theoretical properties.

Definition 2—Suppose that we have K < ∞ partitions and that partition k has G(k) groups 

and group indices 𝒢(k) = (g1
(k), …, gp

(k))T. Let Sg
(k) = ∑ j = 1

p I(g j
(k) = g) and let 

β(k) = (β1
(k), …, β p

(k))
T
 be the screening statistics for partition k. The combined partition-based 

screening statistic is β
∼ = (β

∼
1, …, β

∼
p)T with β

∼
j = max1 ≤ k ≤ K | β j

(k)|. Given a thresholding 

parameter γ, the selected index set is ℳ∼ γ = { j: β
∼

j ⩾ γ}, which is referred to as combined 

partition-based screening selection.

Theorem 6—Suppose that Conditions 4–6 and A.1–A.6 hold for all partitions k (k = 1, …, 

K), and take γ = c5n−κ for some constant c5.

i. If there exists an l ∈ {1, …, K} such that 𝒢(l) satisfies Conditions 1–3, then 

limn ∞pr(ℳ ⊂ ℳ∼ γ) = 1.

ii. Let V(k) be the V term in Condition 6 for 𝒢(k). Then combined partition-based 

screening controls the false positive rates; that is,

lim
n ∞

pr |ℳ∼ γ | ≤ O n2κ ∑
k = 1

K
V(k) = 1.

Theorem 6 suggests that combined partition-based screening has sure screening properties, 

even when some partition-based screening procedures do not satisfy Conditions 1–3, which 

are in general difficult to verify. Moreover, Conditions 4–6 and A.1–A.6 are true for many 

generalized linear models. Thus, combined partition-based screening can extract useful prior 

knowledge about partitions and maintain good theoretical properties.

4.4. Choice of thresholding parameters

The thresholding parameter γ is critical to the performance of the variable screening 

procedure. Overestimating γ will inflate false positive rates and underestimating γ will 

hinder sure screening. We define the expected false positive rate 

EFPRγ = E( |ℳ∼ γ ∩ ℳc | / |ℳc | ), where ℳc = { j: j ∉ ℳ}. To control EFPRγ, we resort to 

higher-criticism t statistics (Zhao & Li, 2012; Barut et al., 2016; Hong et al., 2016a). We 

introduce ℳτ
# = { j: I j(β j)

1/2 | β j | ⩾ τ}, where I j(β j) is the element that corresponds to βj in the 

information matrix Ig j
(βg j

∗ ). The key idea is to select γ such that ℳγ of the same size as ℳτ
#, 

where τ is chosen to control the expected false positive rate. Under Conditions 4 and 5 and 

Conditions A.1–A.6 and B in the Supplementary Material, we have the following theorem.
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Theorem 7—For a given false positive number q, take τ = Φ−1 {1 − q/(2p)}, where Φ 

denotes the standard normal distribution function. Set γ = | β(s)|, where s = |ℳτ
#| and {(1), …, 

(p)} is a permutation of {1, …, p} such that |β(1) | > ⋯ > | β(p)|. Then there exist N7 > 0 and 

c7 > 0 such that for any n > N7, EFPRγ ≤ q/p + c7n−1/2.

For ℳγ, the set of indices selected by combined partition-based screening in § 4.3, we 

choose γ = | β(s)| with s = min1≤k≤K s(k). Here s(k) is the size of the higher-criticism t-tests for 

partition k.

5. Simulation studies

We conducted simulation studies to compare the model selection accuracy of partition-based 

screening with that of existing variable screening methods. We generated the covariates X 
from multivariate normal distributions and specified the true coefficient β with four different 

settings.

Setting 1: (n, p) = (200, 5000) and β = (3, 3, 3, 3, 3, − 7.5, 0p − 6
T )T. Thus ℳ = {1, …, 6}. 

The covariance structure of X is compound symmetric with unit variance and 

correlation 0.5, i.e., cov(X) = 0.5I p + 0.51p1p
T.

Setting 2: (n, p) = (200, 5000) and βj = 3(−1)jI (j ≤ 10) for j ∈ {1, …, p}. Thus 

ℳ = {1, …, 10}. The covariance structure of X is that of a block first-order 

autoregression model with unit variance and correlation 0.9, i.e., cov(Xj, Xj′) = 0.9|j−j

′| for any j ⧧ j′ ∈ ℬk, where ℬk = { j ∈ ℤ:100k − 99 ≤ j ≤ 100k} for k = 1,…, 50, and 

cov(Xj, Xj′) otherwise.

Setting 3: (n, p) = (200, 5000) and βj = (−1)jI (j ≤ 10) for j ∈ {1,…, p}. Thus 

ℳ = {1, …, 10}. The covariance structure of X is block compound symmetric with 

unit variance and correlation 0.9, i.e., cov(Xj, Xj′) = 0.9 for any j ⧧ j′ ∈ ℬk, where 

ℬk = { j ∈ ℤ:100(k − 1) + 1 ≤ j ≤ 100k} for k = 1,…, 50, and cov(Xj, Xj′) = 0 

otherwise.

Setting 4: (n, p) = (500, 10 000). We first define 𝒮 as a collection of 100 × 100 

equally spaced grid points on [0, 1]2. Specifically, set 𝒮 = {s j} j = 1
p  with sj = 0.01 (l, 

k), j = (100 − 0.5l)(l − 1) + k − l for 1 ≤ l, k ≤ 100, and 𝒮 = ∪g = 1
100 𝒮g, where 

𝒮g ∩ 𝒮g′ = ϕ for any g ⧧ g′ ∈ {1,…, G}. All the sj were clustered into 100 exclusive 

spatially contiguous regions using a k-means clustering algorithm. Set βj = 3(−1)j if 

s j ∈ 𝒮1 and βj = 0 otherwise. The covariance structure of X is exponentially decaying 

over space, cov(Xj, Xj′) = exp(−10‖sj − sj′‖2) for any j ⧧ j′ ∈ 𝒮. For example, cov(Xj, 

Xj′) = 0.9 when ‖sj − sj′‖2 = 0.01 and cov(Xj, Xj′) < 0.05 when ‖sj − sj′‖2 > 0.3. This 

configuration was designed to mimic the spatial data with an active set 

ℳ = { j:s j ∈ 𝒮1}.
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Given X and β generated from each of the above settings, we generated Y from a linear 

regression model and a logistic regression model. For the linear regression model, we set the 

variance of random errors so that the theoretical R2 is equal to 0.9. We replicated our 

simulation 200 times and evaluated the performance using the following criteria: probability 

of including the true model, minimum model size, and true positive rate.

Definition 3

Every partition 𝒢 belongs to at least one of the following types:

i. a size-reduced partition if there exists a group g ∈ 𝒢 that contains all active 

covariates, which means ℳ ∈ { j:g j = g};

ii. an optimal partition if there exists a group g ∈ 𝒢 that is a collection of all active 

covariates, which means ℳ ∈ { j:g j = g};

iii. a misspecified partition if there does not exist a group g ∈ 𝒢 such that 

ℳ ⊂ { j:g j = g}.

Each partition is either a size-reduced partition or a misspecified partition. An optimal 

partition must be a size-reduced partition. Neither the misspecified partition, the size-

reduced partition, nor the optimal partition, is unique in general. For each non-optimal 

reduced partition, there exists at least a group containing ℳ that can be further reduced in 

size while containing ℳ.

We assessed the performance of the proposed methods under various partition types. In 

Setting 1, the size-reduced partition 𝒢red = (g1
red, …, g357

red ) was specified with 357 groups and 

each group had 14 members except for group 357 which had 16 members; the group size 

was approximately n1/2. For covariate j ∈ {1, …, 4998}, its group label was assigned to be 

g j
red = ∑g = 1

357 gI(14g − 13 ≤ j ≤ 14g), and for j = 4999 or 5000, g j
red = 357, where 

ℳ ⊂ { j:g j
red = 1} for each setting. The misspecified partitions 𝒢

mis1 = (g1
mis1, …, gp

mis1)
T
 and 

𝒢
mis2 = (g1

mis2, …, gp
mis2)

T
 were respectively sampled from 

pr(g j
mis1 = g) = 1/178(g = 1, …, 178) and pr(g j

mis2 = g) = 1/357(g = 1, …, 357). In this setting, 

variable X6 is marginally unimportant but conditionally important. Some studies (Barut et 

al., 2016; Hong et al., 2016a,b) have shown that conditional sure independence screening 

performs much better than sure independence screening in terms of retaining X6. In Settings 

2 and 3, where the correlation matrix for covariates is block diagonal, we focused primarily 

on the performance of partition-based screening under reduced partitions and correlation-

guided partition-based screening with the same specifications as in Setting 1. The partition 

determined by the estimated correlation structure is denoted by 𝒢cor. In Setting 4, the 

optimal partition 𝒢opt was designed as follows. For each covariate j, 

g j
opt = ∑g = 1

100 gI(s j ∈ 𝒮g), where ℳ = { j:g j
opt = 1} = 𝒮1. To generate 𝒢red, we combined 

groups 1 and 2 while keeping other groups intact, i.e., for each covariate j, 
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g j
red = I(s j ∈ 𝒮1 ∪ 𝒮2) + ∑g = 2

99 gI(s j ∈ 𝒮g + 1), where ℳ ⊂ { j:g j
opt = 1} = 𝒮1 ∪ 𝒮2. To form 

the misspecified partitions in Setting 4, we split 𝒮1 into two adjacent but mutually exclusive 

subregions 𝒮1, 1 and 𝒮1, 2 such that 𝒮1 = 𝒮1, 1 ∪ 𝒮1, 2. We considered two different 

misspecified partitions, denoted by 𝒢
mis1 and 𝒢

mis2, where 

g j
mis1 = ∑g = 1

2 gI(s j ∈ 𝒮1, g) + ∑g = 3
101 gI(s j ∈ 𝒮g − 1) and 

g j
mis2 = I(s j ∈ 𝒮1, g) + 2I(s j ∈ 𝒮1, 2 ∪ 𝒮2) + ∑g = 3

100 g(s j ∈ 𝒮g). Figure 3 is a graphical 

representation of Setting 4.

For further comparison, we investigated the performance of sure independence screening 

(Fan & Lv, 2008) and high-dimensional ordinary least squares projection (Wang & Leng, 

2016) in Settings 1–4. In addition, conditional sure independence screening (Barut et al., 

2016) with a conditioning variable X1 was considered for Settings 1–3. To evaluate the 

performance of high-dimensional ordinary least squares projection for logistic regression, 

we modified it to accommodate generalized linear models with a ridge penalty by specifying 

the tuning parameter to be 1. Sure and conditional sure independence screening results were 

obtained using the R (R Development Core Team, 2017) package SIS, while high-

dimensional ordinary least squares projection was implemented using the R package 

screening. To make different methods comparable, we chose γ so that the number of 

selected indices was equal to the sample size and computed the true positive rate and the 

probability that the selected indices include the true model, following Fan & Lv (2008).

Table 1 summarizes the simulation results. In Settings 1–3, partition-based screening 

performs best for linear and logistic regression. In Setting 4, the performance of spatial-

oriented reduced partition screening is almost the same as spatial-oriented optimal partition 

screening in linear regression, and is close to spatial-oriented optimal partition screening in 

logistic regression. This indicates that even when an optimal partition is not available, a size-

reduced partition is a good alternative. In Settings 2 and 3, correlation-guided partition 

screening produces better selection accuracy than all three existing methods, and is 

comparable to partition-based screening. Thus, when there is insufficient prior knowledge to 

determine a size-reduced partition but the covariate variables have a block-diagonal 

correlation structure up to permutations, data-driven partition-based screening can yield 

improved selection accuracy. In Setting 1, where the covariance structure of covariates is 

compound symmetric, correlation-guided partition screening does not yield more accurate 

selection than high-dimensional ordinary least squares projection and conditional sure 

independence screening. In this case we examined the performance of partition-based 

screening with randomly generated misspecified partitions, as well as combined partition-

based screening that combines five or ten different random partition-based screening 

statistics. The results indicate that combined partition-based screening with ten random 

𝒢
mis2 is slightly better than combined partition-based screening with five random 𝒢

mis2 and 

outperforms partition-based screening with 𝒢
mis1 only or with 𝒢

mis2 only. Therefore, in the 

absence of an optimal partition, combining multiple partitions for variable screening fares 

better than relying on a single partition. Moreover, it produces better results than high-
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dimensional ordinary least squares projection and sure independence screening in Setting 1. 

The advantages of combined partition-based screening are obvious in Setting 4, where the 

accuracy of spatial-oriented partition screening with 𝒢red can be improved by combining it 

with two misspecified partition-based screening statistics. Thus, combining various 

screening statistics from multiple sources of partitions, even though they may have been 

misspecified, appears to be a useful strategy.

6. Application

We applied the proposed methods to analyse resting-state functional magnetic resonance 

imaging data from the Autism Brain Imaging Data Exchange study (Di Martino et al., 2014). 

The primary goal of this study was to understand how brain activity is associated with 

autism spectrum disorder, a disease with substantial heterogeneities among children. 

Functional magnetic resonance imaging measures blood oxygen levels linked to neural 

activity, and resting-state functional magnetic resonance imaging measures brain activity 

only when the brain is not performing any tasks. This study aggregated 20 resting-state 

functional magnetic resonance imaging datasets from 17 experiment sites. For each subject, 

the resting-state functional magnetic resonance imaging signal was recorded for each voxel 

in the brain over multiple time-points. Standard imaging pre-processing steps (Di Martino et 

al., 2014) included motion correction, slice-timing correction, and spatial smoothing. The 

entire brain was registered into the 3 mm standard Montreal Neurological Institute space, 

which consists of 38 547 voxels in 90 brain regions defined by the automated anatomical 

labelling system (Hervé et al., 2012). After removal of missing values, the complete dataset 

included 819 subjects, consisting of 378 patients and 441 age-matched controls. To select 

imaging biomarkers for autism spectrum disorder risk prediction, we considered the 

fractional amplitude of low-frequency fluctuations (Zou et al., 2008), defined as the ratio of 

the power spectrum for frequencies 0.01–0.08 Hz to the entire frequency range. This 

measure has been widely used as a voxel-wise measure of the intrinsic functional brain 

architecture derived from resting-state functional magnetic resonance imaging data (Zuo et 

al., 2010).

We constructed a spatial logistic regression model that has clinical diagnosis of autism 

spectrum disorder as the outcome and the voxel-wise fractional amplitudes of frequency 

fluctuations as imaging predictors, adjusting for age at scan, sex and intelligence quotient. 

Because imaging predictors on the risk of autism spectrum disorder are spatially clustered 

and sparse (Liu & Calhoun, 2014), the primary aim of this study is to identify imaging 

biomarkers among 38 547 voxel-level fractional amplitudes of low-frequency fluctuations 

that predict the autism spectrum disorder risk. We applied partition-based screening by using 

anatomical information, correlation among imaging predictors and spatial information. 

Specifically, we considered the following methods: brain region partition-based screening on 

90 brain regions; correlation-guided partition screening, which partitions the 38 547 voxels 

into G groups using the clustering algorithm introduced in § 4–2, where G is taken to be 

256, 128, 64, 32, 16 or 8; spatial-oriented partition screening, which partitions the 38 547 

voxels into 1024 equal-sized regions where the voxels are spatially contiguous within each 

region; and combined partition-based screening that combines all of the above. We also 
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applied high-dimensional ordinary least squares projection for logistic regression with the 

ridge penalty, as implemented in the R package screening.

To assess the performance of the different methods, we used ten-fold crossvalidation, 

randomly splitting the data into ten equal-sized subsets. We applied the variable screening 

methods to the training dataset and obtained a set of selected voxels, based on which we 

made a prediction about the disease status in the testing dataset using logistic regression 

with the elastic net penalty, as implemented in the R package glmnet. We repeated this ten 

times and computed the crossvalidation accuracy. Among all the methods, combined 

partition-based screening achieved the smallest crossvalidation prediction error, 37%, and 

high-dimensional ordinary least squares projection had the largest crossvalidation prediction 

error, 48%. All the other partition-based screening methods achieved a prediction error of 

approximately 40%. More details and the receiver operating characteristic curves are given 

in the Supplementary Material.

Next, we applied combined partition-based screening to the entire dataset, using the method 

in § 4–4 to determine the threshold by taking an upper bound on the expected false positive 

rate to be 0.20. A total of 6142 important voxels were selected. Eight regions with more than 

60 selected voxels are reported in Table 2, along with the median rank of voxel-specific 

screening statistics within each region. These regions are known to be involved in specific 

brain functions related to autism (Friederici et al., 2003; Japee et al., 2015).

7. Discussion

The method proposed in this paper can be improved. First, our framework requires that the 

size of each partition group be less than the sample size to make (3) sensible. If this 

condition is not met, penalized likelihood methods such as the lasso can be applied, though 

these approaches may involve the selection of tuning parameters and the correction of biases 

due to penalization. A simple but efficient remedy would be to further refine the groups 

randomly. This refining procedure can be performed multiple times, and the resulting 

screening statistics can be combined using the rule in § 4.3. Second, although this paper has 

focused on non-overlapping partitions for ease of theoretical development, our screening 

framework can accommodate overlapping partitions. According to the combination rule in § 

4.3, for each predictor that is covered by more than one partition, we can simply choose the 

screening statistic with larger value. Third, the time complexity of correlation-guided 

partition screening is O(p2), mainly due to the need to compute the correlation matrix and 

clustering predictors. To compute the correlations among ultrahigh-dimensional predictors 

more efficiently, we suggest adopting parallel computing techniques. To speed up the 

clustering of predictors, we propose to threshold the correlation matrix and generate a binary 

matrix, regarded as the adjacency matrix of an undirected graph. The connected components 

corresponding to group partitions can be obtained by using the breadth-first or depth-first 

search algorithms with time complexity between O(p) and O(p2).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Simple example simulations: (a) summary distributions of 400 replicates of coefficient 

estimates in 1000 univariate regression model fits; (b) summary of 200 group-specific 

multivariate regression model fits. Plotted are the estimated densities of β1 (solid) and β2
(dashed) and the estimated mixture densities of β3, …, β1000 (dotted); true coefficients are β1 

= 0.5, β2 = − 1 and β3 = ⋯ = β1000 = 0.
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Fig. 2. 
Variable screening accuracy in the example in § 1 by sure independence screening (dot-

dash), high-dimensional ordinary least squares projection (dotted), partition-based screening 

without goodness-of-fit adjustment (dashed) and partition-based screening with goodness-

of-fit adjustment (solid). Panel (a) shows results with the group partitions defined in § 1 

where group 1 includes the two true predictors; panel (b) displays results with a random 

group partition where the two true predictors are not in the same group.
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Fig. 3. 
Model designs and configurations of different partitions on 𝒮, the 100 × 100 equally spaced 

grid points in two-dimensional space [0, 1]2, in Setting 4 of the simulation study for spatial 

variable screening: (a) the true coefficient βj, which takes only three possible values, −3 in 

blue, 3 in red and 0 in green; (b) one set of simulated predictors Xj over space from a 

Gaussian random field on 𝒮 with covariance kernel exp(−10||s − s′||2) for s, s′ ∈ 𝒮; (c) the 

partition {𝒮g}
g = 1
100  in Setting 4 to define the true nonzero coefficients, with βj ⧧ 0 if and only 

if s j ∈ 𝒮1, in yellow. Panels (c), (d), (e) and (f) respectively represent the optimal partition 

𝒢opt, the size-reduced partition 𝒢red, and two misspecified partitions, 𝒢
mis1 and 𝒢

mis2, for 

the corresponding partition-based screening for selecting variables in Setting 4; in panels 

(c)–(f), 𝒮1 is coloured yellow.
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