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Abstract

Purpose of review—A successful HIV-1 vaccine will require immunogens that induce 

protective immune responses. However, recent studies suggest that the response to human 

immunodeficiency virus-type 1 (HIV-1) and perhaps other viruses may be altered by immune 

system exposure to intestinal microbiota (IM)-antigens. This review will discuss select aspects of 

these studies.

Recent findings—Naïve CD4 T and B cell repertoires can be imprinted by IM-antigens to 

respond to virus epitopes prior to virus infection. A multiclade Env gp145 DNA prime, 

recombinant adenovirus type 5 boost vaccine tested in a HIV Vaccine Trials Network (HVTN) 

phase IIb human vaccine efficacy trial (HVTN 505) induced a dominant gp41-reactive antibody 

response that was non-neutralizing and cross-reactive with IM. This vaccine regimen also induced 

a dominant gp41-reactive, IM-cross-reactive gp41 antibody response in neonatal and adult Rhesus 

macaques. Studies of naïve CD4 T cells have demonstrated cross-reactivity to both HIV-1 and 

influenza peptides.

Summary—HIV-1 Env vaccine-induced CD4 T and B cell responses can originate from a pool of 

IM-cross-reactive immune cells. Moreover, IM-cross-reactive HIV-1 Env antibodies are ineffective 

in protection against HIV-1 infection. Thus, IM-imprinting of the B cell repertoire may be one of 

several roadblocks to the induction of protective HIV-1 antibodies.
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Introduction

Both B cell receptor (BCR) and T cell receptor (TCR) diversity contributes to the 

development of an effective humoral immune response that can recognize pathogens and 

environmental antigens (1). Many B cells responding to pathogens are polyreactive, and thus 

are capable of responding to multiple antigens (2). In this regard, naïve B cell subsets can be 

stimulated with environmental antigens and become primed for responding to pathogens and 

vaccine-immunogens with shared properties, including sequence and structural motifs (2-4). 
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The notion that environmental antigens can prime naïve B cell subsets to respond to 

pathogens is important for understanding CD4 T and B cell responses to infectious diseases. 

Here we discuss recent findings of IM cross-reactivity with viruses, focusing on HIV-1 Env 

cross-reactivity with bacterial IM.

Cross-reactive T cell responses in viral infections

For generating a T cell response, T cells must be present in sufficient numbers to recognize a 

specific antigen, but given the remarkable number of environmental antigens, the TCR 

repertoire must be able to recognize a vast array of peptides in the context of major 

histocompatibility complex (MHC) class I or class II (5). The ability of T cells to bind 

multiple ligands may be conferred by cross-reactivity with environmental antigens of 

similarity in epitopes recognized by T cells or the flexibility of TCR recognizing different 

epitopes presented by the same MHC (6, 7). Intestinal microbiome proteins are candidate 

environmental antigens with sequence and structural similarities to viruses that may be able 

to stimulate naïve T cells (7).

Antigen-specific CD4 T helper cells, particularly T follicular helper (Tfh) cells, are required 

for optimal B cell affinity maturation and class switching (8). Two studies have shown the 

existence of memory CD4 T cells that cross-reacted with HIV-1 and IM peptides in HIV-1 

uninfected individuals (9, 10). Using a human leukocyte antigen (HLA)-restricted, peptide 

MHC tetramer enrichment technique, Su and colleagues characterized the CD4 T cell 

repertoire in 26 healthy adults and found T cells that reacted with tetramers derived from 

HIV-1, cytomegalovirus (CMV) or herpes simplex virus (HSV) epitopes (10). Reactive T 

cells had surface markers and gene expression profiles of memory T cells and showed 

evidence of clonal expansion. Su et al. demonstrated that one mechanism for accruing virus-

specific CD4 T cells was naïve CD4 T cell cross-reactivity with environmental antigens, 

including microbiota antigens (10). Specifically, peptides derived from intestinal commensal 

bacteria Ruminococcus flavefaciens, Lachanospiraceae bacterium, and Bifidobacterium 
bifidum had sequence homology with HIV-1 peptides and were found to cross-react with 

CD4 T cells (10). Similarly, influenza-reactive T cells from two individuals vaccinated with 

an influenza vaccine responded to an HA 391-410 peptide sequence and could be activated 

by peptides from a human skin bacterium Finegoldia magna (10). Campion and colleagues 

used an HLA-unbiased T cell library technique to characterize the naïve and memory T cell 

repertoires of seven healthy HIV-1 seronegative individuals and found clonally-expanded 

naïve and memory CD4 T cells that reacted with HIV-1 peptides (9). The HIV-1 peptides 

that cross-reacted with naïve and memory CD4 T cells from HIV-1-negative individuals had 

epitope-length matches with microbial sequences of human microbiome proteins, suggesting 

that microbial proteins could have been responsible for T cell priming (9). Therefore, using 

two independent approaches, both Su et al. and Campion et al. found naïve and memory 

CD4 T cells that cross-reacted with virus and IM-antigens, and provided evidence that virus-

reactive T cells may be induced by cross-reactivity with environmental antigens, including 

commensal microbial antigens. Thus, CD4 T cell anti-viral repertoires may be shaped by 

microbial antigens and can influence the immune response to HIV-1 vaccines.
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Pre-existing naïve CD8 T cells that can recognize viral antigens have also been described. 

Schmidt and colleagues found naïve CD8 T cells that cross-reacted with Hepatitis C virus 

(HCV)-epitopes in seven HCV-uninfected individuals (11). Interestingly, the HCV epitope 

that most commonly reacted with naïve precursor CD8 T cells in the uninfected individuals 

was the most frequently targeted epitope in an independent cohort of 26 HCV infected 

individuals, suggesting that immunodominance in HCV infection was linked to precursor 

frequency of CD8 T cells cross-reactive with HCV-specific epitopes (11).

Cross-reactive B cell responses in viral infections

Humans have a diverse B cell repertoire capable of generating antibodies that can mediate 

immune effector functions against viruses and virus-infected cells (1). High affinity anti-

pathogen antibodies are generally monospecific since host tolerance mechanisms, including 

clonal deletion, anergy and receptor editing normally restrict the maturation of high affinity 

autoreactive B cells during B cell development (12, 13). However, ~20% of mature naïve B 

cells are low affinity self-reactive or polyreactive, and provide breadth of response to the B 

cell receptor repertoire (13). Interestingly, HIV-1 Env-reactive antibodies, including bnAbs 

are frequently polyreactive (14, 15), and have been suggested to be derived from a 

polyreactive pool of B cells such as marginal zone B cells and to be controlled by immune 

tolerance mechanisms (14, 16-18). Polyreactivity may be beneficial for HIV-1 Env-reactive 

antibodies, since neutralizing antibody epitopes on glycosylated HIV-1 Envs mutate 

extensively during viral evolution, are shielded by glycans, and each virion contains ~7-10 

functional viral spikes (15, 19). Polyreactivity of HIV-1 Env-reactive antibodies may be 

conferred by high levels of somatic mutations (15), thus suggesting that polyreactive B cells 

may be positively selected in response to HIV-1 infection.

In acute HIV-1 infection (AHI), the initial humoral immune response consists of plasma IgM 

and IgG antibodies that target the gp41 region of HIV-1 envelope (Env) and are non-

neutralizing and ineffective at controlling viremia (20). It was interesting to note that in AHI, 

both IgM and IgG responses arise at the same time, implying a mixture of IgM and IgG 

BCR-expressing responding B cells in AHI (20). Two subsequent studies addressed the 

origin of predominant gp41-reactive antibodies during AHI (3, 4). Ninety-one percent 

(61/67) of the Env-reactive antibodies isolated from plasma cells of the five AHI subjects 

were gp41-reactive, consistent with immunodominance of gp41-reactive plasma antibodies 

(3, 20). Moreover, plasma cell-derived gp41-reactive antibodies from AHI were highly 

mutated and thus led to the hypothesis that they originated from a pool of preexisting 

mutated B cells that cross-reacted with HIV-1 Env gp41 (3). Liao and colleagues went on to 

isolate gp41-reactive antibodies from plasma cells in peripheral blood of two uninfected 

individuals and demonstrated that the gp41-reactive antibodies from uninfected and AHI 

subjects were indeed cross-reactive with IM-antigens (3). Trama and colleagues studied the 

plasma cell and memory B cell repertoires of the terminal ileum in early and chronically 

HIV-1 infected individuals (4). Mutated gp41-reactive antibodies that cross-reacted with IM-

antigens were also dominant in terminal ileum of six early-HIV-1-infected and three HIV-1-

uninfected individuals (4). Thus, both of these studies suggested that the initial gp41-

reactive antibody response observed in AHI were derived from a pool of preexisting IM-

cross-reactive B cells (3, 4). That gp41-IM cross-reactive antibodies were class-switched and 

Williams et al. Page 3

Curr Opin HIV AIDS. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mutated, supported the hypothesis that these antibodies were derived from a pool of 

preexisting B cells primed by IM-antigens.

Recent studies have assessed how changes in the microbiome following HIV-1 infection may 

impact disease progression towards AIDS. In a cohort of HIV-1-infected Ugandan 

individuals, post-infection fecal virome DNA was characterized using next generation 

sequencing, and the bacterial microbiome was characterized using 16S rRNA gene 

amplification (21). Analysis in HIV-1 infected Ugandans revealed alterations of virome and 

bacterial microbiome that were associated with low peripheral CD4 T cell counts. HIV-1 

infected Ugandan subjects with CD4 T cell count <200 had significantly less bacterial 

phylogenetic diversity compared to infected subjects with CD4 T cell count >200 and HIV-1 

uninfected subjects (21). In a cohort of rhesus macaques that received an Ad26 prime, Env 

protein vaccine prior to simian immunodeficiency virus (SIV) challenge, the overall 

bacterial communities remained relatively stable after SIV infection independent of vaccine-

mediated protection, but the fecal samples of unprotected animals had a higher frequency of 

gastrointestinal adeno-associated viruses and picornaviruses compared to the fecal samples 

from vaccine-protected animals (22). Moreover, detection of adenovirus sequences in SIV-

infected macaques was associated with macaque death due to AIDS-related complications, 

suggesting a possible emergence of pathogens during lentivirus infections (22). Thus, these 

studies demonstrated that gut viruses and bacteria are impacted by lentivirus infection and 

SIV vaccination may prevent overgrowth of pathogens that promote disease progression (21, 

22).

Microbiota regulation of B cell responses has also been reported to impact Ab responses to 

influenza. Germ-free mice immunized with trivalent inactivated influenza vaccine (TIV) had 

impaired TIV-specific antibody responses that were restored upon recolonization of germ-

free mice with strains of E. coli microbiota antigen, thus demonstrating a role for gut 

microbiota in response to influenza vaccines (23).

Cross-reactive B cell responses in HIV-1 Env vaccination

A National Institute of Health (NIH) Vaccine Research Center (VRC) DNA prime, 

recombinant adenovirus type 5 (rAd5) boost vaccine (VRC vaccine) that was studied in an 

HVTN phase IIb human vaccine efficacy trial (HVTN 505) in adult participants showed 

futility for protection against HIV-1 acquisition (24). This VRC vaccine was also studied in 

HVTN phase 1b (HVTN 082) and phase 2a (HVTN 204) human clinical trials (25, 26). The 

dominant plasma and memory B cell-derived antibodies induced by this VRC vaccine were 

neither neutralizing nor mediated FcR-dependent anti-HIV-1 activities (24, 26). The 

dominant blood-derived vaccine-induced antibody responses targeted the gp41 region of 

Env, gp41-reactive antibodies cross-reacted with IM-antigens, and gp41-reactive antibodies 

originated from B cells cross-reactive with both IM and HIV-1 Env that were present prior to 

vaccination (26). This phenomenon of dominant gp41 antibody response to gp41-containing 

Env vaccine was similarly observed in another human clinical trial HVTN 205 that studied a 

DNA prime, Modified Vaccina Ankara (MVA) boost with HIV-1 Env gp140 (27).
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Infants live in a relatively sterile environment prior to birth (28), but neonate B cell 

repertoires may be imprinted soon after birth by microbiota antigens (29, 30). Thus, one 

hypothesis for induction of HIV-1 protective antibodies is to vaccinate infants early in life. 

The immune cells of neonates and adults have phenotypic and functional differences (31), 

but infants can respond robustly to some vaccines (32). We recently immunized neonate 

macaques with the VRC DNA prime, rAd5 boost vaccine at ~2-6 days after birth and found 

that vaccine-induced memory B cell-derived antibodies were predominantly gp41-reactive, 

and 16S rRNA-derived IM taxa profile was similar for neonate and adult macaques 

immunized with the same VRC vaccine (33). These data confirmed that the imprinting of the 

B cell repertoire occurs soon after birth. A recent review highlighted studies that suggested 

that the infant microbiome can in some cases be seeded in utero (34). Additionally, neonate 

B cells have been shown to express CD5 and CD1c, markers of marginal zone B cells (35, 

36), and marginal zone B cells have low affinity IgM, autoreactive and polyreactive BCRs 

(37, 38). Since HIV-1 bnAbs are frequently autoreactive and subjected to immune tolerance 

controls during B cell lineage development in adults (14, 18), the polyreactive nature of 

infant B cells could be exploited for bnAb induction via HIV-1 vaccination. Indeed, human 

infants that are HIV-1 infected have a higher frequency of bnAbs and generate them sooner 

than HIV-1 infected adults (39, 40). HIV-1-induced immune dysfunction with disrupted 

immune tolerance has been associated with bnAb induction (41). Thus, one hypothesis to 

explain these observations in infants is that infant immune systems have possibly less 

stringent immune tolerance controls or respond to HIV-1 infection with more HIV-1-induced 

immune dysregulation.

Macaques are used as an animal model to study human HIV-1 infections and for testing 

candidate HIV-1 vaccines (42). Thus, evaluating gp41 immunodominance induced by HIV-1 

Env gp140 in macaques is important for the HIV-1 vaccine field. Han and colleagues 

recently showed that, as in humans, the VRC DNA prime, rAd5 boost vaccine induced a 

dominant gp41-reactive, memory B cell response in both neonate and adult macaques (33). 

In this study, Han and colleagues also showed IM-cross-reactivity of the VRC vaccine-

induced gp41-reactive antibodies. Thus, neonatal non-human primates may be a model to 

define immunoregulatory controls of bnAb induction in HIV-1 infection, and to elucidate 

roles the microbiome might have in imprinting the B cell repertoire to respond to pathogens.

HIV-1 Env and IM crossreactive epitopes

Many cross-reactive epitopes between HIV-1 proteins and human proteins have been 

described (43, 44). Studies of HIV-1 Env immunization in humans (24-27) and macaques 

(33) raised the hypothesis that IM-primed B cells can respond to the gp41 component of a 

HIV-1 Env vaccine. Two IM antigens have been identified, bacterial E. coli RNA 

polymerase and pyruvate flavodoxin oxidoreductase, that shared sequence and structural 

motifs with a region in the heptad-repeat 1 (HR1) region of gp41 containing the LLRAIE 

amino acid residues (4, 26). Interestingly, Han et al. demonstrated that human gp41-IM 

cross-reactive antibodies bound macaque IM and provided evidence of neonate and adult 

macaque IM bacterial proteins that encode the gp41-IM cross-reactive epitope found on E. 

coli RNA polymerase (33). Whether the LLRAIE amino acid sequence motif in Env gp41 

HR1 region (26) is the principal candidate IM cross-reactive epitope on gp41 remains 
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unknown. Interestingly, it is likely that additional IM proteins have Env-cross-reactive 

epitopes, since gp120-reactive antibodies induced by the VRC DNA prime, rAd5 boost 

vaccine (26, 33) and HIV-1 infection (45) have also been isolated that cross-react with IM. 

Identifying IM-antigens and epitopes for Env-IM cross-reactivity will provide a toolbox of 

IM proteins that can be used to evaluate the IM-cross-reactivity of candidate HIV-1 Env 

vaccine immunogens. The new generation of stabilized trimers (SOSIPs) has been designed 

to present only bnAb epitopes that can be recognized by the immune system during 

vaccination (46-49). The membrane proximal external region (MPER) region targeted by 

gp41-reactive bnAbs was not included in the SOSIP trimers, but a portion of the gp41 

ectodomain region remained at the base of these proteins. While most studies have found 

SOSIP trimers to induce primarily autologous tier 2 nAbs (50-52), a recent study in mice 

have shown that BG505 SOSIP.664 trimers induced non-neutralizing antibodies that targeted 

the base of the SOSIP (53). It will be key to determine if the new generation of HIV-1 Env 

immunogens induce gp41-dominant responses in non-human primates or in humans.

Conclusions

The microbiome can shape the repertoire of immune cells to respond to viruses, and 

influence the response to vaccine immunogens (Figure 1). Analysis of individuals vaccinated 

with Env-immunogens has demonstrated that IM-antigen cross-reactivity with HIV-1 Env 

can possibly divert HIV-1 Env vaccine-induced antibody responses away from protective 

immunity. Here we have reviewed evidence for three hypotheses: (i) the microbiome can 

influence the specificity of B and CD4 T cell responses to infections; (ii) the microbiome 

can modulate the response to HIV-1 Env immunization; and (iii) modification of the 

microbiome may enhance vaccine responses.
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Key bullet points

• The microbiome can influence immune responses to infections.

• Cross-reactivity of naïve and memory CD4 T and B cells occurs with 

intestinal microbiota antigens

• The microbiome can modulate antibody responses to HIV-1 Env vaccines.

• Modification of the microbiome and HIV-1 Env-Intestinal microbiota cross-

reactive epitopes may enhance HIV-1 Env vaccine responses.
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Figure 1. 
Microbiota priming of CD4 T and B cell repertoires. For T cells (upper path); HIV-1-

reactive T cells can be activated by antigens with sequence homology between HIV and 

microbiota proteins. For B cells (lower path); a dominant B cell response to HIV-1 infection 

and vaccination can be shaped by microbiota stimulation of a pre-existing pool of 

polyreactive B cells. Thus, microbiota-stimulated CD4 T and B cells can respond to viral 

antigens in the setting of infection or vaccination.
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