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Abstract

Osteoarthritis affects over 250 million individuals worldwide. Currently, there are no options for
early diagnosis of osteoarthritis, demonstrating the need for biomarker discovery. To find
biomarkers of osteoarthritis in human synovial fluid, we used high performance liquid-
chromatography mass spectrometry for global metabolomic profiling. Metabolites were extracted
from human osteoarthritic (n=5), rheumatoid arthritic (n=3), and healthy (n=5) synovial fluid, and
a total of 1233 metabolites were detected. Principal components analysis clearly distinguished the
metabolomic profiles of diseased from healthy synovial fluid. Synovial fluid from rheumatoid
arthritis patients contained expected metabolites consistent with the inflammatory nature of the
disease. Similarly, unsupervised clustering analysis found that each disease state was associated
with distinct metabolomic profiles and clusters of co-regulated metabolites. For osteoarthritis, co-
regulated metabolites that were upregulated compared to healthy synovial fluid mapped to known
disease processes including chondroitin sulfate degradation, arginine and proline metabolism, and
nitric oxide metabolism. We utilized receiver operating characteristic analysis to determine the
diagnostic value of each metabolite and identified 35 metabolites as potential biomarkers of
osteoarthritis, with an area under the receiver operating characteristic curve > 0.9. These
metabolites included phosphatidylcholine, lysophosphatidylcholine, ceramides, myristate
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derivatives, and carnitine derivatives. This pilot study provides strong justification for a larger
cohort-based study of human osteoarthritic synovial fluid using global metabolomics. The
significance of these data is the demonstration that metabolomic profiling of synovial fluid can
identify relevant biomarkers of joint disease.
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Introduction

Osteoarthritis (OA) is the most common degenerative joint disease involving the breakdown
of the extracellular matrix in cartilage. OA affects over 250 million individuals, with the
majority being adults over the age of 65[1]. Currently, symptoms include joint pain and loss
of function. Unfortunately, diagnosis at the onset of symptoms typically occurs after
irreversible structural degeneration. Joint replacement is commonly utilized for advanced
disease[1]. There are currently no available tests for diagnosing early OA or tracking its
progression, demonstrating the need for biomarkers of OA. Previous studies have attempted
identifying biochemical biomarkers in urine[2, 3], blood serum[4, 5], or joint synovial fluid
(SF)[6-8] samples using proteomics, genomics, and most recently, metabolomics[2-7, 9,
10].

Among the studies utilizing metabolomics for OA biomarker identification, many use urine
and blood serum samples[2, 3, 5]. While obtaining a blood sample is less invasive than SF,
metabolites from the diseased joint must move across the synovium prior to entering the
serum for detection. This dilutes potential biomarkers and leaves them susceptible to
potential degradation in the circulatory compartment. One study showed that the
composition of metabolites and their corresponding concentrations were altered in
osteoarthritic SF[7]. The SF is also in direct contact with the diseased joint tissue, making it
a promising candidate for biomarker discovery in OA.

Many studies have used IH NMR for metabolite biomarker discovery[11]. While 1H NMR
has very little sample preparation and high reproducibility, it is mainly used for metabolites
that exist in high concentrations due to sensitivity limitations[7]. Alternatively, mass
spectrometry has a much higher sensitivity than TH NMR and is inherently capable of
detecting larger numbers of metabolites. Liquid chromatography coupled to mass
spectrometry (LC-MS) shows great promise for analyzing complex biofluids such as SF
because it provides chromatographic separation of these heterogeneous samples prior to
reaching the mass analyzer.

Here, we characterized global metabolomic profiles from SF of patients with various joint
diseases using mass spectrometry. Metabolomic profiles of rheumatoid arthritis (RA)
synovial fluid were used to validate the method by confirming established findings in RA.
To our knowledge, this is the first study to perform LC-MS-based global metabolomic
profiling of osteoarthritic SF for biomarker discovery. The long-term goal of this research is
to identify biomarkers of OA phenotypes for earlier diagnosis and quantification of disease
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progression. The objective of this study was to evaluate global LC-MS-based metabolomic
profiles as a tool for quantifying biomarkers within SF. We hypothesized that (1) RA profiles
would be distinct from OA with RA showing increases in inflammatory metabolites and (2)
OA patients would exhibit diverse metabolomics profiles suggesting distinct disease
phenotypes that correlate with clinical symptoms.

Patients and Synovial Fluid Samples

OA (n=5) and RA (n=3) SF samples were obtained under IRB approval. Healthy SF samples
(n=5) were purchased from Articular Engineering (Northbrook, IL) post mortem with partial
clinical data including age, gender, race, and cause of death. All samples were frozen at
—80°C after harvest until analysis.

Metabolite Extraction

Metabolites were extracted from 100 pL of SF prior to analysis by LC-MS. Samples were
thawed on ice for 3-5 minutes prior to centrifuging at 4°C at 500 x g for 10 minutes to
remove cells and debris. The supernatant was collected and evaporated, and dried samples
were re-suspended in 100 uL of 50:50 water:acetonitrile. 500 pL of acetone was added and
the sample was mechanically shaken for 3 min to precipitate polymers. The samples were
then refrigerated for 10 minutes prior to centrifuging at 16100 x g for 5 min. The
supernatant was transferred to a new tube and further evaporated to remove acetone. The
remaining sample volume was doubled with acetonitrile for a final 50:50 water:acetonitrile
LC-MS injection buffer.

Metabolomic Profiling and Data Processing

Metabolites extracted from SF samples were analyzed using an Agilent 1290 UPLC system
connected to an Agilent 6538 Q-TOF mass spectrometer (Agilent, Santa Clara, CA). The
samples were run in normal phase, using a Cogent Diamond Hydride HILIC 150 x 2.1 mm
column (MicroSolv, Eatontown, NJ). The HPLC solvents used were 0.1% formic acid in
water (solvent A) and 0.1% formic acid in acetonitrile (solvent B). The elution gradient
consisted of 100 to 25% solvent B over 13 minutes, and each run began with 2 minutes wash
(15 minutes total run time).

Metabolite detection was performed in positive mode with a resolution of ~20,000 and
accuracy of ~5 ppm. Agilent MSConvert converted data from Agilent’s proprietary file
format, .d files, to mzXML files to filter data in MZMine 2.14 for retention time, noise level,
and peak detection[12]. An intensity threshold of 1000 was applied to detect peaks above the
noise. The processed chromatograms were then normalized and aligned for metabolite (m/z
value) detection. Metabolites with median intensity values of zero across the OA, RA, and
healthy datasets were removed from the analysis. To identify the metabolites, untargeted
metabolite mass to charge (m/z) values were loaded into METLIN, a database containing
over 80,000 metabolites[13]. The batch search used a mass tolerance of 15 parts per million
(ppm), including positively charged molecules with +1H* or +1Na* adducts but excluding
peptides, toxins, and drugs. All m/z values detected were crosschecked against our library of
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metabolite standards. To confirm metabolite identities, both m/z value and retention time
had to match within a m/z value tolerance of 0.01 or 30 ppm and retention time tolerance of
0.25 minutes[14].

Statistical analyses

Results

Statistical analysis was performed in Matlab (Mathworks, Natick, MA USA). To identify
metabolites differentially expressed between OA, RA, and healthy SF, we used Student’s T-
tests and one-way analysis of variance (ANOVA) with false-discovery rate (FDR)
corrections at a significance level of 0.05. Additionally, we used volcano plots to visualize
metabolites significantly upregulated and downregulated in OA or RA in comparison to
healthy SF[15]. The negative logyq of the p-value (y-axis) for each m/z value and the fold
change (logy(ratio)) of the median intensity between disease state and healthy SF (x-axis)
were plotted against one another to yield both significance and magnitude of change. M/z
values with zero intensity for either group were excluded from the volcano plot analysis.
Principal component analysis (PCA) was applied to fold change normalized, log-
transformed metabolites to examine sources of underlying variation in the dataset. To
visualize the unique metabolites in each dataset, we created a scatterplot of median
metabolite intensities from each group against one another (+/- standard deviation). Where
applicable, error bars show standard error.

Hierarchical cluster analysis (HCA) was used to provide a visual representation of global
metabolomic profiles and co-regulated metabolites. Co-regulated metabolites within clusters
were identified using METLIN and subsequently analyzed for pathway enrichment using
IMPaLA[16]. Based on the metabolites in those clusters, IMPaLA identifies potential
pathways implicated by over-representation analysis using established biochemical pathway
databases (7.e. KEGG, Reactome, HumanCyc, etc.).

Potential biomarkers were determined using receiver operating characteristic (ROC)
analysis. By analyzing the area under the receiver operating curve (AUC), we identified
metabolites that could accurately classify between two cases, such as OA and healthy. We
focused on metabolites with an AUC>0.9 as potential biomarkers.

Metabolomic Profiling of Osteoarthritis, Rheumatoid Arthritis, and Healthy Synovial Fluid

We detected a total of 1233 metabolite features across all OA, RA, and healthy SF samples
using LC-MS analysis. HCA of all metabolites in OA, RA, and healthy SF demonstrated
that OA and RA have more similar metabolomic profiles than healthy SF, as indicated by the
dendrogram (Fig. 1A). PCA of all three datasets revealed clear separation between diseased
and healthy SF metabolomic profiles, with the first two principle components associated
with 52.1% of the total variation (PC1=34.2%, PC2=17.9%, Fig. 1B). 26 metabolites were
significantly different between OA, RA, and healthy SF as determined by one-way ANOVA
(psgr <0.05). 15 metabolites were confidently identified by both m/z value and retention time
using our library of standards, with 6 of these being significantly different (psg,<0.05). Citric
acid, D-lactic acid methyl ester, hydroxyl-L-proline, L-isoleucine, and L-methionine were
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significantly upregulated in healthy SF in comparison to diseased. In contrast, L-citrulline
was significantly upregulated in OA over both RA and healthy SF.

Metabolomic Profiles of OA Synovial Fluid

1098 metabolites were detected in OA and healthy SF. 58 metabolites were significantly
different between OA and healthy SF (psq,<0.05). HCA was performed on all 318
significantly different metabolites without FDR corrections to remain consistent with the RA
and healthy analysis (Supplemental Figure 1). HCA showed 2 distinct clusters of co-
regulated metabolites, with cluster 2.1 containing 132 metabolites downregulated in OA and
cluster 2.2 containing 186 metabolites upregulated in OA (Fig. 2A). Enrichment of cluster
2.1 identified similar pathways as cluster S1.1 (metabolites downregulated in healthy
compared to RA) in Supplemental Figure 1A, including purine metabolism, tRNA charging,
and gene expression. Enrichment of cluster 2.2, however, yielded arginine and proline
metabolism, chondroitin sulfate degradation, amino oxidase reactions, COX reactions, and
creatine biosynthesis (Supplemental Table 1, Supplemental Table 6).

PCA showed clear separation between OA and healthy SF, with the first two principle
components (PC1=35.4%, PC2=22.9%) associated with 58.3% of the variation (Fig. 2B). Of
the 1098 metabolites detected in OA and healthy SF, 390 metabolites were exclusively
detected in OA SF and 301 metabolites were exclusively detected in healthy SF (Fig. 2C).
Volcano plot analysis identified 76 metabolites upregulated and 28 metabolites
downregulated in OA, with a p-value<0.05 and fold change>2 (Fig 2D). Enrichment of these
metabolites yielded similar pathways implicated in clusters 2.1 and 2.2 (Supplemental Table
2). Heatmap clustering, PCA discrimination, scatterplot visualization, and volcano plot
analysis clearly demonstrate that OA and healthy SF represent distinct populations with
phenotypic differences.

Differences between Pathological and Healthy Synovial Fluid

OA and RA metabolite intensities were normalized to healthy SF to determine how
metabolomic profiles of SF change with disease. HCA of the normalized metabolites
exhibited distinct clusters of co-regulated metabolites (Fig. 3A). Cluster 3.1 included 276
co-regulated metabolites downregulated in diseased compared to healthy (Fig. 3A). These
metabolites mapped to SLC-mediated transport, gamma-glutamyl cycle, tRNA
aminoacylation, and various amino acid transporters (Supplemental Table 1, Supplemental
Table 7). Cluster 3.2 included 258 co-regulated metabolites upregulated in OA in
comparison to healthy and RA (Fig. 3A). These metabolites mapped to creatine
biosynthesis, alpha-linolenic acid metabolism, galactose metabolism, vitamin B6
metabolism, chondroitin sulfate degradation, arginine biosynthesis, urea cycle, and nitric
oxide metabolism (Supplemental Table 1, Supplemental Table 7). Cluster 3.3 included 305
co-regulated metabolites upregulated in diseased compared to healthy (Fig. 3A). These
metabolites mapped to phospholipid biosynthesis, mMTOR signaling, arginine and proline
metabolism, organic cation transporters, synthesis of PS, acyl chain remodeling,
glycerophospholipid metabolism, and phosphatidylcholine biosynthesis (Supplemental Table
1, Supplemental Table 7). Cluster 3.4 included 152 co-regulated metabolites upregulated in
RA over healthy and OA, mapping to histidine, lysine, phenylalanine, tyrosine, glycine,
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proline, and tryptophan metabolism, ibuprofen metabolism, steroid biosynthesis,
glucocorticoid and mineralocorticoid metabolism, alpha-linolenic acid metabolism, and
leukotriene biosynthesis (Supplemental Table 1, Supplemental Table 7). Select metabolites
implicated in each cluster are displayed in Figure 3B.

Biomarker Candidates for Osteoarthritis

We used ROC analysis to determine the potential diagnostic value of each detected
metabolite as an OA biomarker. ROC analysis identified 65 m/z values as potential
biomarkers of OA, all having an AUC>0.9. 30 of these 65 m/z values were also identified as
potential biomarkers of RA and were consequently removed from the analysis. To identify
the remaining 35 m/z values as metabolites, we searched METLIN for a full list of potential
metabolites that match these m/z values. Of these 35 m/z values, 16 did not have any
METLIN database matches, thus classifying them as potentially novel metabolites for future
analysis. The remaining 19 metabolites with an AUC>0.9 mapped to 91 putative metabolites
identities (Supplemental Table 3). Of those 91 identified metabolites identities, over half
were phospholipids (PC, PAF, PG, PE, PS, and ceramides). Other potential biomarkers for
OA included 2,3,6-trihydroxypyridine, myristate derivatives, arachidonyl carnitine, N-
methyl arachidonyl amine, oleanolic acid acetate, vitamin D3 derivatives, sulfonic acid
derivatives, and ursolic acid derivatives (Supplemental Table 3). Additional studies are
needed to validate these metabolites as OA biomarkers and determine the implications of
their involvement in OA pathogenesis.

Discussion

This is the first study to perform global LC-MS-based metabolomic profiling on human OA
synovial fluid. We used LC-MS for both (1) biomarker discovery and (2) understanding
disease pathophysiology. PCA and HCA of metabolite data distinguished between OA and
healthy SF, creating distinct metabolomic profiles with identifiable features. We detected a
total of 1098 metabolites in OA and healthy SF, more than any previous study we know of[7,
17-20], with 58 significantly different metabolites between OA and healthy SF. Enrichment
analysis of metabolites that were upregulated in OA identified nitric oxide production and
chondroitin sulfate degradation both of which have previously been linked to OA
pathogenesis[5, 21, 22]. Chondroitin sulfate is a glycosaminoglycan that plays an important
structural role in the cartilage matrix. Altered levels of chondroitin sulfate have previously
been found in OA cartilage[21, 22]. Nitric oxide aids in OA disease progression by
promoting expression of proinflammatory cytokines, inhibiting proteoglycan and collagen
synthesis, mediating apoptosis, and activating metalloproteinases[5].

ROC analysis is valuable for determining the diagnostic value of each metabolite as a
potential biomarker. ROC analysis identified 35 potential biomarkers of OA, including
phosphatidylcholines (PC), lysophoshatidylcholines (IlysoPC), ceramides (Cer), myristate
derivatives, and carnitine derivatives. Phospholipids are important components of the SF that
contribute to the mechanical function of the SF to lubricate articular cartilage surfaces[6].
Altered composition and concentration of lubricating agents in the SF are associated with
damaged articular cartilage surfaces in both OA and RA[23-25]. However, the small sample
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size of this pilot study prevents broader interpretation about these metabolites as potential
biomarkers and their implications in OA pathogenesis.

Global metabolic profiles of RA patient SF found anti-inflammatory drug pathways, amino
acid metabolism, leukotriene biosynthesis, alpha-linolenic acid metabolism, glucocorticoid
and mineralocorticoid metabolism, and steroid biosynthesis implicated in RA (Supplemental
Table 1, Supplemental Table 2). Given that rheumatoid arthritis is highly inflammatory, the
identification and upregulation of anti-inflammatory drug pathways is expected in RA SF
and validates the use of our LC-MS global metabolomic profiling approach.

While this pilot study holds great promise for biomarker discovery, this is discovery phase
research with important limitations. First, healthy SF samples were harvested post mortem.
In contrast, the SF from OA and RA joints was harvested from living patients. While post
mortem SF may differ from that of living patients, previous studies found that post mortem
SF maintained normal lubricant components, composition, and function[26, 27]. Second,
patient information was limited. Thus, the ability to decipher effects of age, BMI, or gender
on metabolomic profiles was not possible. The third, and main limitation of this study is the
small sample size. This was a pilot study meant to assess global metabolomic profiling of
human SF for biomarker discovery. Future studies will increase the sample sizes of all
patient groups as well as age and gender match samples to identify potential biomarkers of
OA.

In summary, this study demonstrates the advantages of global metabolomic profiling for
both biomarker discovery and further understanding of OA pathogenesis. Despite extremely
small sample sizes, we were able to detect a number of potential metabolites for future
validation studies. Global metabolomic profiling via LC-MS may provide physicians with a
high sensitivity method for tracking treatment effectiveness, disease progression, and
biomarker discovery for OA and other diseases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Untargeted metabolomics using liquid chromatography-mass spectrometry
clearly discriminates between osteoarthritis, rheumatoid arthritis, and healthy
synovial fluid, showing distinct metabolomic profiles with key features of
each disease state.

Global metabolomic profiling confirmed previously identified pathways
implicated in osteoarthritis including chondroitin sulfate degradation and
nitric oxide metabolism.

Of the 1233 metabolite features identified in human synovial fluid using our
method, 65 features are potential biomarkers of osteoarthritis based on
receiver operating characteristic analysis (AUC>0.9) including various
phospholipids, vitamin D3 derivatives, carnitine derivatives, and oleanolic
acid acetate.
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Figure 1.

Global metabolomic profiles of diseased (OA and RA) SF are distinct from healthy SF. (A)
Clustered heatmap of median metabolite intensities from healthy (n=5), OA (n=5), and RA
(n=3) SF. 1233 metabolites, represented by the rows in this heatmap, were detected in
human SF. Dendrogram of HCA demonstrates that OA and RA metabolomic profiles are
more similar to one another than healthy SF. (B) PCA of metabolite intensities in OA, RA,
and healthy SF, comparing PC1 (34.2%), PC2 (17.9%), and PC3 (11.1%). PCA shows clear

discrimination between diseased and healthy metabolomic profiles
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Figure 2.

OA and healthy SF exhibit distinct metabolomic features. (A) Clustered heatmap of OA
(n=5) and healthy (n=5) SF median metabolite intensities (H=healthy). 1098 metabolites
were detected in OA and healthy SF, with 318 being significantly different as represented in
this heatmap. Clusters of co-regulated metabolites are outlined in black and labeled as 2.1
and 2.2. Cluster 2.1 contains 132 metabolites downregulated in OA and cluster 2.2 contains
186 metabolites upregulated in OA. (B) PCA of OA and healthy SF metabolite intensities.
PC1 (35.4%), PC2 (22.9%), and PC3 (9.3%) were associated with 67.6% of the variation
within the dataset. Comparison of PC1, PC2, and PC3 show clear separation between OA
and healthy SF metabolomic profiles. (C) Scatterplot comparing OA and healthy metabolite
intensity levels (A.U.=Arbitrary Units). 301 metabolites were exclusively detected in OA SF
(blue) and 290 metabolites were exclusively detected in healthy SF (red). (D) Volcano plot
of OA and healthy SF, plotting the —log(p-value) against the fold change (log2(ratio)) of
individual metabolites. Vertical dashed lines mark the twofold change and the horizontal line
marks the cutoff p-value of 0.05. Metabolites in the upper right and left quadrants represent
metabolites with a p-value less than 0.05 and a greater than twofold change. 76 metabolites
were significantly upregulated in OA (upper right quadrant) and 28 metabolites were
significantly downregulated in OA (upper left quadrant) in comparison to healthy (p-
value<0.05; fold change>2).
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Metabolomic profiling reveals features of each disease state with co-regulated metabolites
upregulated or downregulated in comparison to healthy SF. (A) Clustered heatmap of 1233
median metabolite intensities normalized to healthy. Four clusters of interest were identified
as clusters 3.1-3.4, with co-regulated metabolites upregulated or downregulated in OA and
RA. (B) Bar graphs of median metabolite intensities +/- standard deviation (A.U. = arbitrary
units, N.D. = not detected) for 2 individual metabolites implicated in each of the 4 clusters.
Row 1 corresponds to cluster 3.1, row 2 corresponds to cluster 3.2, and so on. Each bar
graph contains the m/z value, the metabolite identification, and its suspected adduct.
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