
Secreted phospholipase A2 is increased in meconium-stained 
amniotic fluid of term gestations: potential implications for the 
genesis of meconium aspiration syndrome

Roberto Romero1,2,3, Bo Hyun Yoon1,4, Piya Chaemsaithong1,5, Josef Cortez1,6, Chan-
Wook Park4, Rogelio Gonzalez7, Ernesto Behnke8, Sonia S. Hassan1,5, Francesca 
Gotsch1,9, Lami Yeo1,5, and Tinnakorn Chaiworapongsa1,5

1Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD and Detroit, MI, USA

2Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI

3Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI

4Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 
Republic of Korea

5Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA

6Department of Pediatrics, Wayne State University, Detroit, MI, USA

7Center for Perinatal Diagnosis and Research (CEDIP), Hospital Dr. Sotero del Rio, P. 
Universidad Catolica de Chile, Puente Alto, Chile

8Department of Obstetrics and Gynecology, Center for Perinatal Diagnosis and Research 
(CEDIP), Sotero del Rio Hospital, Santiago, Chile

9Azienda Ospedaliera Universitaria, Integrata Verona, Ostetricia Ginecologia, Verona, Italy

Abstract

Background—Meconium-stained amniotic fluid (MSAF) represents the passage of fetal colonic 

content into the amniotic cavity. Meconium aspiration syndrome (MAS) is a complication that 

occurs in a subset of infants with MSAF. Secreted phospholipase A2 (sPLA2) is detected in 

meconium and is implicated in the development of MAS. The purpose of this study was to 

determine if sPLA2 concentrations are increased in the amniotic fluid of women in spontaneous 

labor at term with MSAF.

Materials and methods—This was a cross-sectional study of patients in spontaneous term 

labor who underwent amniocentesis (n = 101). The patients were divided into two study groups: 

(1) MSAF (n = 61) and (2) clear fluid (n = 40). The presence of bacteria and endotoxin as well as 

interleukin-6 (IL-6) and sPLA2 concentrations in the amniotic fluid were determined. Statistical 

analyses were performed to test for normality and bivariate analysis. The Spearman correlation 

coefficient was used to study the relationship between sPLA2 and IL-6 concentrations in the 

amniotic fluid.
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Results—Patients with MSAF have a higher median sPLA2 concentration (ng/mL) in amniotic 

fluid than those with clear fluid [1.7 (0.98–2.89) versus 0.3 (0–0.6), p < 0.001]. Among patients 

with MSAF, those with either microbial invasion of the amniotic cavity (MIAC, defined as 

presence of bacteria in the amniotic cavity), or bacterial endotoxin had a significantly higher 

median sPLA2 concentration (ng/mL) in amniotic fluid than those without MIAC or endotoxin 

[2.4 (1.7–6.0) versus 1.7 (1.3–2.5), p <0.05]. There was a positive correlation between sPLA2 and 

IL-6 concentrations in the amniotic fluid (Spearman Rho=0.3, p <0.05).

Conclusion—MSAF that contains bacteria or endotoxin has a higher concentration of sPLA2, 

and this may contribute to induce lung inflammation when meconium is aspirated before birth.
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Introduction

Meconium-stained amniotic fluid (MSAF) represents the passage of fetal colonic content 

into the amniotic cavity [1–13]. MSAF is a risk factor for maternal infection-related 

complications (e.g. chorioamnionitis [8,14–20], puerperal endomyometritis [16,17,20,21]), 

neonatal sepsis [3,22–25], cerebral palsy [26–29], hypoxic-ischemic encephalopathy [3,30–

33], meconium aspiration syndrome (MAS) [3,6,8,12,13,34–54], and fetal death [55–57].

MAS occurs in a subset of infants born to mothers with MSAF [3,6,8,12,13,34–54]. 

However, why some infants with MSAF develop MAS, and others do not, remains an open 

question [6,38,41–43,45,51]. Meconium-induced lung injury has been attributed to 

mechanical obstruction [51,52,58–60], chemical injury [58,61–66], pulmonary cell apoptosis 

[35,36,60,65,67–70] and an inflammatory response [35,59,67,71–87]. A series of 

experimental and clinical studies have made a strong case for a role of secreted 

phospholipase A2 (sPLA2) in MAS [67,88–95]. This enzyme can exert deleterious effects by 

eliciting inflammation [92,93,96–112] and inactivating lung surfactant [89,90,113–115]. The 

purpose of this study was to determine if sPLA2 concentration is increased in the amniotic 

fluid of women in spontaneous labor at term with MSAF.

Materials and methods

Study design and population

A cross-sectional study was conducted which included patients at term with MSAF (n = 61) 

and clear amniotic fluid (n = 40, controls). Inclusion and exclusion criteria for the study 

population were similar to a previous report [116]. All women provided written informed 

consent before collection of the amniotic fluid samples. The collection and utilization of the 

samples was approved by the Human Investigation Committee of the participating 

institutions and the IRB of the Eunice Kennedy Shriver National Institute of Child Health 

and Human Development (NICHD/NIH/ DHHS). The clinical definitions, sample collection, 

microbiological studies, detection of endotoxin, and statistical analysis have been described 
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in a previous report [116]. sPLA2 immunoassay was performed according to the methods 

defined by Stoner et al. [117,118].

Results

Among women with spontaneous labor at term, 60.4% (61/101) had MSAF and 39.6% 

(40/101) had clear amniotic fluid. The median maternal age was significantly higher in 

patients with MSAF than in those with clear fluid (p = 0.03). Otherwise, the clinical 

characteristics of the two study groups were similar (p >0.05).

Microorganisms in the AF were identified in 16.4% (10/61) of patients in the MSAF group 

and in 5% (2/40) of those with clear fluid (p < 0.05). The most common microorganisms 

were Gram-negative rods (n = 6), followed by Ureaplasma urealyticum (n = 2), Gram-

positive rods (n = 2) and Mycoplasma hominis (n = 1). One patient’s amniotic fluid had both 

a Gram-positive rod and M. hominis. Two patients with clear amniotic fluid had positive 

cultures for bacteria (U. urealyticum).

The Limulus amebocyte lysate (LAL) assay for bacterial endotoxin in the amniotic fluid was 

positive in 32.8% (20/61) of patients with MSAF, but in only 2.5% (1/40) of those with clear 

amniotic fluid (p < 0.001). After heat treatment to eliminate the effect of trypsin [119], the 

frequency of a positive LAL assay was still significantly higher in the MSAF group 

compared to those with clear amniotic fluid, even after heat treatment [19.7% (12/61) versus 

2.5% (1/40); p <0.05].

Patients with MSAF had a significantly higher median amniotic fluid sPLA2 concentration 

(ng/mL) than those with clear amniotic fluid [1.7 (0.98–2.89) versus 0.3 (0–0.6); p < 0.001] 

(Figure 1). Moreover, in the MSAF group, those with endotoxin or microorganisms (defined 

by LAL or amniotic fluid Gram stain or positive amniotic fluid culture) had a significantly 

higher median amniotic fluid sPLA2 concentration (ng/mL) than those with the absence of 

endotoxin or microorganisms [2.4 (1.7–6.9) versus 1.7 (1.3–2.5); p = 0.049] (Figure 2). 

Amniotic fluid sPLA2 concentration had a significant positive correlation with amniotic 

fluid IL-6 concentration (Spearman Rho =0.3, p =0.045).

Discussion

Principal findings of the study

(1) Patients with MSAF in spontaneous labor at term had a higher median sPLA2 

concentration in amniotic fluid than those with clear amniotic fluid; (2) among patients with 

MSAF, women with either microbial invasion of the amniotic cavity (MIAC; defined as a 

positive amniotic fluid culture for microorganisms) or the presence of endotoxin in the 

amniotic cavity had a higher median sPLA2 concentration in the amniotic fluid than those 

without MIAC or bacterial endotoxin; and (3) there was a positive correlation between 

amniotic fluid sPLA2 and amniotic fluid IL-6 concentration. Since sPLA2 is an acute-phase 

reactant protein induced by IL-6, this observation suggests that an inflammatory response is 

associated with an increase in sPLA2.
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What are phospholipases A2?—Phospholipase A2 (PLA2) is a family of enzymes that 

hydrolyze the ester bond at the sn-2 position of phospholipids to generate arachidonic acid 

and lysophospholipids, which are precursors of eicosanoids and other lipid mediators 

(leukotrienes and prostaglandins) [110,112,120–135]. These enzymes are broadly classified 

into two groups: (1) intracellular or cytosolic PLA2 (cPLA2) and (2) extracellular or secreted 

PLA2 (sPLA2) [112,128]. PLA2 participates in the production of prostaglandins, which are 

major mediators of the onset of spontaneous labor at term [136–164], as well as preterm 

labor [151,159,161,163,165–168]. cPLA2 is an intracellular enzyme, while sPLA2 (in 

particular, group IIA isoform) is an acute phase reactant protein released in response to 

tissue damage and infection [169–171]. IL-6 can induce the expression of group II sPLA2 

from hepatic cells in culture [172]. The properties and functions of cPLA2 and sPLA2 have 

been reviewed [112,124,128,130,132–134]. Recently, sPLA2 has been implicated in the 

pathophysiology of meconium-induced lung injury (see below).

More than 10 isoforms of sPLA2 have been described (e.g. groups I, II, III, V, etc.) 

[110,112,130,132–134]. Individual sPLA2 enzymes act on both cellular membrane 

phospholipids and non-cellular phospholipids (e.g. surfactant and lipoproteins) including 

foreign phospholipids (e.g. bacterial membranes and dietary phospholipids) [133]. The 

functions of sPLA2 depend on: (1) specific sPLA2 isoform; (2) specific target phospholipid 

or membrane; (3) lipid mediators produced by enzymatic activity; (4) the mechanisms 

responsible for the activation of sPLA2; and (5) the specific circumstances and site at which 

a particular sPLA2 isoform is present [133]. For example, the group I sPLA2 isoform is 

produced in the pancreas, and its primary function is the catalytic cleavage of dietary lipids 

[173]. The group II sPLA2 isoform is largely expressed and stored in inflammatory cells 

including neutrophils [174], eosinophils [175,176], T-lymphocytes [177,178], monocytes 

[179,180], macrophages [181], mast cells [182] and platelets [183]. This particular isoform 

(group II sPLA2) is detected in high concentrations in biological fluids in the context of 

inflammation (e.g. synovial fluid in rheumatoid arthritis [105,184–188], bronchoalveolar 

lavage (BAL) in patients with acute respiratory distress syndrome (ARDS) [100,114], and 

serum/plasma of patients with septic shock [189], Crohn’s disease [190], ulcerative colitis 

[191], acute pancreatitis [192–194], and rheumatoid arthritis [195].

The group II sPLA2 isoform has potent antimicrobial activity [112,171,196–207]. Elsbach et 

al. purified sPLA2 from polymorphonuclear leukocytes of rabbits, and reported that sPLA2 

was bactericidal against Escherichia coli and Salmonella typhimurium, acting in concert 

with a ‘‘bactericidal/permeability increasing protein’’ [196]. Subsequently, Weinrauch et al. 

extracted group II sPLA2 from sterile peritoneal fluid of rabbits, and demonstrated that it 

had potent antimicrobial activity against Staphylococcus aureus [198,208]. Similarly, group 

II sPLA2 isolated from the plasma of baboons after a challenge with E. coli has potent 

bactericidal properties against S. aureus and Streptococcus pyogenes [198,203]. Such 

activity can be blocked by a monoclonal antibody against the enzyme [198]. Other 

investigators have shown antimicrobial activity against Listeria monocytogenes [197,209] 

and Bacillus anthracis [203,204]. sPLA2 may also participate in host defense against viruses 

[210–212] and parasites [213]. The presence of high sPLA2 concentrations in biological 

fluids (e.g. tears [214,215], semen [216], intestinal lumen [197,217,218], inflammatory 
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exudates [105,184–188], bronchoalveolar lavage [100,114], and serum [189,219]) of both 

animals and humans with bacterial infections has been interpreted as indicating that sPLA2 

is part of the host defense against microbial invasion [112,171].

Group II sPLA2 can induce activation of human neutrophils [101,104], exocytosis in human 

lung macrophages [102], neutrophils [104], eosinophils [176], and degranulation of mast 

cells [99]. Triggiani et al. reported that sPLA2 [group I sPLA2 from cobra venom and group 

II (recombinant synovial fluid) sPLA2] can increase the expression of IL-6 mRNA and the 

rate of secretion of IL-6 from human lung macrophages, as well as the release of β-

glucuronidase (a cytosolic enzyme used as a surrogate marker for cellular exocytosis) [102]. 

Groups I and II sPLA2 generate an intracellular response that activates both exocytosis and 

cytokine gene expression in macrophages [92,102,111]. Other investigators have reported 

that different isoforms of sPLA2 (group IA, IB, IIA, V and X) induce the production of 

cytokines (e.g. IL-6, TNFα and IL-10) and chemokines [e.g. monocyte chemotactic 

protein-1(MCP-1)/chemokine (C-C motif) ligand 2 (CCL2), macrophage inflammatory 

protein-1 (MIP-1α)/CCL3 and MIP1-β/CCL4] from inflammatory cells such as monocytes 

[105], neutrophils [108] and eosinophils [176]. These observations collectively suggest that 

sPLA2 has an important role in inflammation. The catalytic action of sPLA2, cleaving 

membrane phospholipids to generate eicosanoid precursors (arachidonic acid, leukotrienes 

and prostaglandins), has been implicated in the generation of an inflammatory state 

[112,114,170,220].

PLA2 have been localized in lysosomes of chorioamnion [221], decidua [222,223] and 

amniotic fluid [224,225]. Moreover, its activity in fetal membranes was increased before the 

onset of labor [221]. Group II sPLA2 mRNA expression and immunoreactivity has been 

demonstrated in amnion, choriodecidua and placenta [226–228]. Rice et al. concluded that 

this isoenzyme is a major contributor of the net tissue sPLA2 activity in the human placenta 

and may contribute to the production of prostaglandins during labor [227]. The expression of 

this enzyme is increased in placentas of women in labor [228].

Phospholipase A2 in meconium and meconium-induced lung injury—sPLA2 has 

been reported in meconium [67,88,90,93]. The administration of meconium into the trachea 

of neonatal pigs results in severe histologic lung inflammation, increased apoptosis, and 

increased lung sPLA2 activity (measured by the concentration of arachidonic acid following 

incubation of lung homogenates with 1,2-dipalmitoylphosphatidylcholine (DPPC), a 

substrate that is specific to sPLA2) [67].

sPLA2 activity has been detected in meconium (determined by measuring DPPC metabolites 

in suspensions of this material before and after mixing with the substrate) [90]. Enzymatic 

activity is attributed to sPLA2 (rather than other phospholipases), and has been demonstrated 

by the formation of lysophosphatidylcholine after samples had been heat-treated (sPLA2 is 

heat-stable – other lipolytic enzymes are heat-sensitive). sPLA2 extracted from meconium 

inhibits surfactant activity in vitro [90].

sPLA2 activity in lung tissues can be induced by meconium and bile acids [115]. sPLA2 is 

locally produced in lung tissue and contributes to the total PLA2 activity during MAS 
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[53,93]. Collectively, the evidence suggests that: (1) meconium contains sPLA2 activity; (2) 

the lungs of neonates affected with MAS contain higher amounts of sPLA2; (3) cPLA2 was 

not detected in meconium or alveolar fluid; and (4) there is a correlation between sPLA2 

activity and TNF-α concentrations in bronchoalveolar lavage [53,67,90,92,93,115].

Phospholipase A2 in amniotic fluid with MSAF and microbial invasion of the 
amniotic cavity—The findings reported herein suggest that the concentration of sPLA2 is 

higher in MSAF than in clear amniotic fluid among patients in labor at term. After exclusion 

of samples with MSAF with either bacteria or endotoxin, the difference between clear 

amniotic fluid and MSAF disappeared. Moreover, sPLA2 concentrations in amniotic fluid 

correlated positively with IL-6 concentrations. These observations suggest that the elevation 

in sPLA2 can be attributed to the consequences of MIAC or the resulting inflammatory 

process.

Our findings and interpretation are consistent with those reported by Koyama et al., 

indicating that sPLA2 activity (measured by high-performance liquid chromatography) and 

group II sPLA2 concentration in amniotic fluid were higher in patients with preterm labor 

(with or without chorioamnionitis) than in preterm controls (i.e. pregnant women without 

labor who underwent amniocentesis for chromosomal studies between 17–30 weeks of 

gestation) [229].

We recently reported that the frequency of MIAC and bacterial endotoxin in amniotic fluid is 

higher among women in spontaneous labor at term with MSAF than in those with clear 

amniotic fluid [116]. We proposed that microorganisms or microbial products, such as 

endotoxin, present in amniotic fluid can be swallowed by the fetus, resulting in increased 

fetal peristalsis and intrauterine passage of meconium. Aspiration of meconium with 

microorganisms and inflammatory mediators during fetal life could predispose to MAS. 

Since sPLA2 has been proposed to be a major mediator of lung injury in MAS, our findings 

suggest that the meconium of patients with MIAC or endotoxin contains higher 

concentrations of sPLA2. Although exposure to sPLA2 may begin during fetal life, aspirated 

meconium and microbial products contained in such meconium, as well as inflammatory 

mediators, may induce further production of sPLA2 and other inflammatory mediators by 

the lung that may eventually lead to lung injury and respiratory insufficiency observed in 

MAS.

Conclusion

Term meconium-stained amniotic fluid that contains bacteria or endotoxin has a higher 

concentration of secreted phospholipase A2, and this may contribute to induce lung 

inflammation when meconium is aspirated before birth.
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Figure 1. 
Amniotic fluid secreted phospholipase A2 concentrations (sPLA2) in women at term with 

clear amniotic fluid and MSAF. Patients with MSAF had a significantly higher median 

amniotic fluid secreted phospholipase A2 concentration (ng/mL) than those with clear 

amniotic fluid [1.7 (1–2.9) versus 0.3 (0–0.6); p < 0.001].
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Figure 2. 
Amniotic fluid secreted phospholipase A2 concentration (sPLA2) among women with 

MSAF at term with presence and absence of endotoxin or microorganisms. Patients with 

MSAF and intra-amniotic inflammation/infection at term had a significantly higher median 

secreted phospholipase A2 concentration (ng/mL) than those without intra-amniotic 

inflammation/infection [2.4 (1.7–6.99) versus 1.7 (1.3–2.5); p = 0.049].
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