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Abstract

Material decomposition in CT has the potential to reduce artifacts and improve quantitative 

accuracy by utilizing spectral models and multi-energy scans. In this work we present a novel 

Model-Based Material Decomposition (MBMD) method based on an existing iterative 

reconstruction algorithm derived from a general non-linear forward model. A digital water 

phantom with inserts containing different concentrations of calcium was scanned on a kV 

switching system. We used the presented method to simultaneously reconstruct water and calcium 

material density images, and compared the results to an image domain and a projection domain 

decomposition method. When switching voltage every other frame, MBMD resulted in more 

accurate water and calcium concentration values than the image domain decomposition method, 

and was just as accurate as the projection domain decomposition method. In a second, slower, kV 

switching scheme (changing voltage every ten frames) which precluded the use of traditional 

projection domain based methods, MBMD continued to produce quantitatively accurate 

reconstructions. Finally, we present a preliminary study applying MBMD to a water phantom 

containing vials of different concentrations of K2HPO4 which was scanned on a cone-beam CT 

test bench. Both the fast and slow (emulated) kV switching schemes resulted in similar 

reconstructions, indicating MBMD’s robustness to challenging acquisition schemes. Additionally, 

the K2HPO4 concentration ratios between the vials were accurately represented in the 

reconstructed K2HPO4 density image.

1. INTRODUCTION

While quantitative CT is an important tool in bone disease diagnosis and study,1 traditional 

CT acquisitions are prone to beam hardening artifacts and reduced accuracy in quantitation.
2,3 By acquiring CT datasets at multiple energies, direct quantitative estimates of material 

density for particular targets of diagnostic interest can be obtained (e.g., calcium and water). 

This improved specificity, artifact reduction, and quantitative accuracy has the potential to 

improve diagnosis and study of diseases such as osteoporosis.

Material decomposition techniques can be grouped into three categories: image domain 

decomposition,2 projection domain decomposition,4 and Model-Based Material 

Decomposition (MBMD).5–9 Each technique requires datasets at multiple energies, 

traditionally acquired with either an energy discriminating detector or multiple X-ray 

Corresponding Author: J. Webster Stayman web.stayman@jhu.edu. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2018 April 09.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2018 March ; 10573: . doi:10.1117/12.2293776.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sources/spectra. Image domain decomposition first reconstructs each dataset independently, 

and then decomposes the reconstructed images into different material density images. 

Projection domain decomposition first estimates the ideal line integrals corresponding to 

each material type, and then independently reconstructs each material density image from 

these line integrals. Finally, MBMD performs the reconstruction and decomposition 

simultaneously by minimizing an objective function based on a multi-energy forward model. 

MBMD is the most versatile option, as it does not require (as in projection domain 

decomposition) matched projection data with coincident measurements for each energy and 

since it is able to implicitly model and remove beam hardening artifacts (unlike image 

domain decomposition).

Previously, we have developed a general Model-Based Iterative Reconstruction (MBIR) 

algorithm capable of modeling a variety of system properties, and used it to model 

scintillator blur, focal-spot blur, and noise correlations.10 In this work we show that the same 

algorithm can be used for MBMD. This new method differs from previous MBMD 

methods5–9 in that it does not require matched projection data (cf. Refs 6,8) and is based on a 

Gaussian noise model (cf. Refs 5–9). Because the projection data does not need to be 

matched, this method may be applied to novel acquisition protocols (e.g., kV switching or 

multiple X-ray sources with non-coincident rays) that can challenge traditional projection-

domain and many MBMD methods. Because it is derived from a general forward model, this 

method may be improved with models of other system effects, such as blur and noise 

correlation. In this work we apply this novel MBMD method to simulation and test bench 

data in multiple kV switching scenarios.

2. METHODS

2.1 Forward model and objective

The authors have previously presented a parallel algorithm10 for MBIR with the following 

forward/noise model:

ȳ = B exp −Mx y 𝓝 ȳ, KY , (1)

and corresponding penalized-likelihood objective function:

ψ = y − B exp Mμ TKY
−1 y − B exp Mμ + βR μ . (2)

This model is sufficiently general to accommodate a number of estimation problems 

including CT reconstruction with blurred projections.10 In this work we present a specific 

form of (1) suited to the material decomposition problem with multi-energy data. 

Specifically, we consider multiple materials (indexed by m) and K datasets (yk) with 

different X-ray spectra (se,k), with energies indexed by e, such that measurements are given 

by
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ȳk = ∑
e

se, k exp −∑
m

pe, m Akxm . (3)

For each material, the material density values (xm) are forward projected (Ak). The forward 

projections may be different for each dataset (e.g., non-coincident as in kV switching 

acquisitions). The projections are scaled by the material mass attenuation coefficient at each 

energy (pe,m). The energy-dependent line integrals are summed over all materials, 

exponentiated, and scaled by the X-ray spectrum associated with that dataset (se,k) before 

being summed over energy. Thus, in (1), the matrix M performs the projection, scaling by 

mass attenuation coefficients, and summing over materials; and B performs the scaling by 

X-ray spectra and the summation over energy. This formulation is consistent with (1), and 

therefore does not require changing the underlying optimization algorithm. (Note that the X-

ray spectrum includes the detector response as well as the energy dependent X-ray fluence. 

Thus, the different datasets can result either from scans with different X-ray tube settings/

filtration or a scan with an energy discriminating detector.)

2.2 Simulation study

A digital cylindrical water phantom with 0.125 mm × 0.125 mm voxels was created 

containing three calcium inserts, two with 600 mg mL−1 Ca and the other with 100 mg mL
−1. Data were generated from this phantom using (3) with a source-detector distance of 1200 

mm, a source-axis distance of 600 mm, and a detector with 0.097 mm pixels. Two X-ray 

spectra were used, 60 kVp and 120 kVp, with the latter containing additional filtration (4 

mm of aluminum and 0.254 mm of silver).11 Each energy response curve was normalized to 

sum to one, and then scaled by 2.5 × 105 photons pixel−1. Finally, we added Poisson noise to 

the data, binned it by a factor of four (resulting in a photon flux of 106 photons pixel−1), and 

added readout noise equivalent to 2.8 photons. Kilovolt switching was simulated by 

alternating the spectrum as a function of projection angle, resulting in 180 projections 

acquired with the 60 kVp spectrum and 180 with the 120 kVp spectrum, with consecutive 

projections separated by 1°. Two kV switching schemes were used: switching every other 

frame (KV1:1), and switching every 10 frames (KV10:10).

Data were reconstructed using three methods: projection domain decomposition, image 

domain decomposition, and MBMD. For the projection domain decomposition, (3) was used 

to generate a map from pairs of measurements to pairs of line integrals using interpolation.4 

This relationship was used to estimate ideal line-inegrals for each material (i.e., Axm in (3)). 

(Note that this requires measurements to be matched, e.g., A1 = A2). In order to obtain 

matched projection data, the 60 kVp data and the 120 kVp data were upsampled to 360 

projections each using linear interpolation. Because of the required interpolation, we only 

applied projection domain decomposition to the KV1:1 case. The decomposed line integrals 

were then used to generate ideal (i.e., monoenergetic) measurements, which were 

reconstructed using MBIR. The MBIR method minimized (2) with B = 106 photons and M = 

A. For the image domain decomposition, the two energy scans were first reconstructed 

separately using the same MBIR method as the projection domain decomposition. Each of 
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these reconstructions (μ1, μ2) was assumed to be a linear combination of the material density 

images:

μ1
T

μ2
T

=
f 11 f 12
f 21 f 22

x1
T

x2
T

(4)

where is the attenuation value of material i at the average energy of response curve j. This 

matrix was inverted and used to calculate the material density images.2 To ensure nearly 

converged reconstructions, all MBIR algorithms ran for 20 000 iterations using 10 subsets. 

Additionally, Nesterov momentum acceleration12,13 was used for the first 15 000 iterations. 

A Huber penalty14 was used with δ = 103. All reconstructions used the same optimization 

algorithm.10

2.3 Bench study

To apply the new MBMD approach in physical data, we created a phantom with known 

concentrations of potassium phosphate dibasic (K2HPO4), with concentrations ranging from 

50 mg mL−1 to 300 mg mL−1 to emulate a bone-water mixture. The phantom was scanned 

on a Cone-Beam CT (CBCT) test bench with a Varian Rad-94 (Varian, Salt Lake City UT) 

X-ray tube and a Varian 4030CB detector (Varian, Palo Alto CA). Data were acquired with 

two different X-ray spectra: 60kVp and 120kVp, with the later containing additional 

filtration (4 mm aluminum and 0.254 mm silver). The source-detector distance was 1214 

mm and the source-axis distance was 604.1 mm. Each scan composed of 360 projections in 

1° increments. Kilovolt switching was simulated by taking unique frames from the two data 

sets. In this preliminary study, MBMD was used to reconstruct KV1:1 and KV10:10 data. 

The X-ray spectra were calibrated from projections of Gammex calcium inserts with 

different concentrations. We obtained initial spectra from Spektr,11 modified it with 

additional filters (aluminum, copper, tungsten, CsI, glass) and used CMA-ES15 to find 

optimal thicknesses of these materials to match the calibration data.

3. RESULTS

Figure 1 summarizes decomposition performance. Projection domain decomposition and 

MBMD produced the best reconstructions in terms of concentration accuracy and artifact 

reduction. Because image domain decomposition does not model the full spectrum through 

the phantom, it was unable to remove beam hardening artifacts in the center insert (visible in 

the zoomed image of insert 2 for the image domain decomposition in Figure 1A). The 

average concentration values in each insert ROI are compared in Figure 1B. Projection 

domain decomposition and MBMD produced the most accurate concentration values, while 

image domain decomposition underestimated calcium concentration and overestimated 

water concentration, particularly for the 600 mg mL−1 inserts. MBMD also produced 

accurate concentration values in the challenging KV10:10 case.

Figure 2C shows MBMD bench data reconstructions of both KV1:1 and KV10:10 data. The 

reconstructions are nearly identical, indicating that MBMD is well suited to challenging 
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cases with unique sampling and measurement mismatch. The concentration values in the 

ROIs are also nearly identical (Figure 2D). However, the K2HPO4 concentrations are 

slightly greater than the ideal values, and the water concentrations are slightly lower. This is 

likely a result of inaccuracies in making the phantom or inaccuracies in our spectral 

estimation. Despite these inaccuracies, the relative K2HPO4 concentration values (as 

compared to the concentration in ROI 1) are fairly accurate (Figure 2D).

4. DISCUSSION

We have shown that a previously derived optimization algorithm10 can be applied to multi-

energy reconstruction, providing improved accuracy as compared to an image based 

decomposition method while being applicable to more scenarios than projection domain 

decomposition methods.

This method appears sensitive to an accurate spectral calibration, which is a potential cause 

for the mismatch in concentration values seen in the bench data results. However, once an 

accurate set of spectra are determined for a given scanner, the calibration will only need to 

be repeated occasionally. In future work we will evaluate more advanced calibration 

methods.16,17

The MBMD method presented here is a general solution to multi-energy reconstruction, 

capable of being applied to many systems and acquisition protocols. For example, this 

method may be applied to complicated kV switching schemes with three or more spectra, or 

systems with multiple axially oriented X-ray sources.18 By using an already established 

reconstruction method based on a general forward model, this method can incorporate 

models of physical effects unique to specific CT systems, such as application specific flat-

panel systems (e.g., scintillator blur and noise correlation). Accurately modeling these 

effects in an MBMD framework may improve resolution in addition to quantitative accuracy. 

Additionally, this method could incorporate spectral blurring and correlation between energy 

bins19 in energy-discriminating detectors. Ultimately, material separation and material 

density reconstruction enabled by accurate physical models has the potential to improve 

quantitative bone imaging for applications such as osteoarthritis/fracture healing diagnosis 

and study.
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Figure 1. 
Simulation study results. A: Reconstructions. The insert ROIS are numbered from top to 

bottom. The standard deviations of the calcium concentrations in insert 1 are 10.60 mg mL−1 

for the image domain decomposition, 12.41 mg mL−1 for the projection domain 

decomposition, 8.11 mg mL−1 for MBMD KV1:1, and 8.71 mg mL−1 for MBMD KV10:10. 

B: Average concentration in each insert for water (left) and calcium (right).
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Figure 2. 
A: K2HPO4 phantom. B: Schematic of phantom indicating ROI locations. C: MBMD bench 

data reconstructions. D: Concentrations of different vials (left column) and concentration 

ratios relative to ROI 1 (right column).
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