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Abstract

Bayesian model selection procedures based on nonlocal alternative prior densities are extended to 

ultrahigh dimensional settings and compared to other variable selection procedures using 

precision-recall curves. Variable selection procedures included in these comparisons include 

methods based on g-priors, reciprocal lasso, adaptive lasso, scad, and minimax concave penalty 

criteria. The use of precision-recall curves eliminates the sensitivity of our conclusions to the 

choice of tuning parameters. We find that Bayesian variable selection procedures based on 

nonlocal priors are competitive to all other procedures in a range of simulation scenarios, and we 

subsequently explain this favorable performance through a theoretical examination of their 

consistency properties. When certain regularity conditions apply, we demonstrate that the nonlocal 

procedures are consistent for linear models even when the number of covariates p increases sub-

exponentially with the sample size n. A model selection procedure based on Zellner’s g-prior is 

also found to be competitive with penalized likelihood methods in identifying the true model, but 

the posterior distribution on the model space induced by this method is much more dispersed than 

the posterior distribution induced on the model space by the nonlocal prior methods. We 

investigate the asymptotic form of the marginal likelihood based on the nonlocal priors and show 

that it attains a unique term that cannot be derived from the other Bayesian model selection 

procedures. We also propose a scalable and efficient algorithm called Simplified Shotgun 

Stochastic Search with Screening (S5) to explore the enormous model space, and we show that S5 

dramatically reduces the computing time without losing the capacity to search the interesting 

region in the model space, at least in the simulation settings considered. The S5 algorithm is 

available in an R package BayesS5 on CRAN.
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1 Introduction

In the context of hypothesis testing, Johnson and Rossell (2010) defined nonlocal 

(alternative) priors as densities that are exactly zero whenever a model parameter equals its 

null value. Nonlocal priors were extended to model selection problems in Johnson and 

Rossell (2012), where product moment (pMoM) prior and product inverse moment (piMoM) 

prior densities were introduced as priors on a vector of regression coefficients. In p ≤ n 
settings, model selection procedures based on these priors were demonstrated to have a 

strong model selection property: the posterior probability of the true model converges to 1 as 

the sample size n increases. More recently, Rossell et al. (2013) and Rossell and Telesca 

(2017) proposed product exponential moment (peMoM) prior densities that have similar 

behavior to piMoM densities near the origin. However, the behavior of nonlocal priors in p 
≫ n settings remains understudied to date (particularly in comparison to other commonly 

used variables selection procedures), which serves as the motivation for this article.

We undertook a detailed simulation study to compare the performance of nonlocal priors in 

p ≫ n settings under sparsity with a host of penalization methods including the least 

absolute shrinkage and selection operator (lasso; Tibshirani (1996)), smoothly clipped 

absolute deviation (scad; Fan and Li (2001)), adaptive lasso (Zou, 2006), minimum convex 

penalty (mcp; Zhang (2010)), and the reciprocal lasso (rlasso), recently been proposed by 

Song and Liang (2015). The penalty function of the rlasso is equivalent to the negative log-

kernel of nonlocal prior densities; further connections are described in Section 5. As a 

natural Bayesian competitor, we also considered the widely used g-prior (Zellner, 1986; 

Liang et al., 2008), which is a local prior in the sense of Johnson and Rossell (2010). We 

used precision-recall curves (Davis and Goadrich, 2006) as a basis for comparison between 

methods. These curves eliminate the effect of the choice of tuning parameters for each 

method so that the comparison across different methods can be transparent. It has been 

argued (Davis and Goadrich, 2006) that in cases where only a tiny proportion of variables 

are significant, precision-recall curves are more appropriate tools for comparison than are 

the more widely used receiver operating characteristic curves. While the ROC curves present 

a trade-off between the type I error and the power of a decision procedure, precision-recall 

curves examine the trade-off between the power and the false discovery rate.

Our studies indicate that Bayesian procedures based on nonlocal priors and the g-prior 

perform better than penalized likelihood approaches in a sense that they achieve a lower 

false discovery rate, while maintaining the same power of the decision procedure. Posterior 

distributions on the model space based on nonlocal priors were found to be more tightly 

concentrated around the maximum a posteriori model than the posterior based on g-priors, 

implying that they had a faster rate of posterior concentration. We also identified the oracle 

hyperparameter that maximizes the posterior probability of the true model for the Bayesian 

procedures. The growth-rate of these oracle hyperparameters with p also offers an interesting 

contrast between nonlocal and local priors. In the case of g-priors, the oracle value of g 
varied between 7.83 × 108 and 4.29 × 1013 as p ranged between 1000 and 20000. For the 

same range of p, the oracle value of τ varied between 1.97 and 3.60, where τ is the tuning 

parameter for nonlocal priors described in Section 2. George and Foster (2000) argued from 

a minimax perspective that the g parameter should satisfy g ≍ p2, which explains the large 
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values of the optimal g. However, using asymptotic arguments to obtain default 

hyperparameters is difficult because the constant of proportionality is typically unknown. 

Moreover, when g is very large, the g-prior assigns negligible prior mass at the origin, 

essentially resulting in a nonlocal like prior. A similar point can be made about the recently 

proposed Bayesian shrinking and diffusing (BASAD) priors (Narisetty and He, 2014). On 

the other hand, the optimal hyperparameter value for the nonlocal priors is stable with 

increasing p, growing at a very slow rate.

Motivated by this empirical finding, we studied properties of two classes of nonlocal priors 

allowing the hyperparameter τ to scale with p. Using a fixed value of τ, it seems that strong 

model selection consistency is possible only when p ≤ n (Johnson and Rossell, 2012). In this 

article, we establish that nonlocal priors can achieve strong model selection consistency even 

when the number of variables p increases sub-exponentially in the sample size n, provided 

that the hyperparameter τ is asymptotically larger than log p. This theoretical result is 

consistent with our empirical finding.

2 Nonlocal prior densities for regression coefficients

We consider the standard setup of a Gaussian linear regression model with a univariate 

response and p candidate predictors. Let y = (y1, …, yn)T denote a vector of responses for n 
individuals and X an n × p matrix of covariates. We denote a model by k = {k1, …, k|k|}, 

with 1 ≤ k1 < …< k|k| ≤ p. Given a model k, let Xk denote the design matrix formed from the 

columns of Xn corresponding to model k and βk = (βk,1, …, βk,|k|)T the regression 

coefficient for model k. Under each model k, the linear regression model for the data is

y = Xkβk + ε, (1)

where ε ∼ Nn(0, σ2In). Let t denote the true, or data-generating model and let βt
0 be the true 

regression coefficient under model t. We assume that the true model is fixed but unknown.

Given a model k, the product exponential moment (peMoM) prior density (Rossell et al., 

2013; Rossell and Telesca, 2017) for the vector of regression coefficients βk is defined as

π(βk |σ2, τ, k) = C− k ∏
j = 1

k
exp{ − βk, j

2 /(2σ2τ) − τ /βk, j
2 } . (2)

The normalizing constant C can be explicitly calculated as

C = ∫
−∞

∞
exp{ − t2/(2σ2τ) − τ /t2}dt = (2πσ2τ)1/2exp{ − (2/σ2)1/2}, (3)

since ∫ exp{−μ/t2 – ζt2}dt = (π/ζ)1/2 exp {−2(μζ)1/2}.
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Second, for a fixed positive integer r, the product inverse-moment (piMoM) prior density 

(Johnson and Rossell, 2012) for βk is given by

π(βk |σ2, τ, k) = C ∗ − k ∏
j = 1

k
[(βk, j)

−2rexp{ − τ /βk, j
2 }], (4)

where C∗ = τ−r+1/2Γ(r − 1/2) for r > 1/2, where Γ(·) is the gamma function.

The piMoM and peMoM prior densities are nonlocal in the sense that the density value at 

the origin is exactly zero. This feature of the densities for a single regression coefficient is 

illustrated in Figure 1. Since the piMoM prior densities and the peMoM prior densities have 

the same term exp{−τ/β2} that controls the behavior of the density function around the 

origin, they attain almost the same shape of the density function at the origin, which yields 

the same theoretical results in an asymptotic sense. Further details regarding this point are 

discussed in Section 4.

We focus on these two classes of nonlocal priors in the sequel. Note that in both (2) and (4), 

π(βk) = 0 when βk = 0; a defining feature of nonlocal priors. The distinction between the 

peMoM and the piMoM priors mainly involves their tail behavior. Whereas peMoM priors 

possess Gaussian tails, the piMoM prior densities have inverse polynomial tails. For 

example, piMoM densities with r = 1 have Cauchy-like tails, which has implications for 

their finite sample consistency and asymptotic bias in posterior mean estimates of regression 

coefficients. Since similar conditions are later imposed on the hyperparameter τ appearing in 

(2) and (4), at the risk of some ambiguity we use the same notation for the two 

hyperparameters in these equations.

In addition to imposing priors on the regression parameters given a model, we need to place 

a prior on the space of models to complete the prior specification. We consider a uniform 

prior on the model space restricted to models having size less than or equal to qn, with qn < 
n, i.e.,

π(k) ∝ I( k ≤ qn), (5)

where I(·) denotes the indicator function and with a slight abuse of notation, we denote the 

prior on the space of models by π as well. Similar priors have been considered in the 

literature by Jiang (2007) and Liang et al. (2013). Since the peMoM and piMoM priors 

already induce a strong penalty on the size of the model space (see Section 4), we do not 

need to additionally penalize larger models using, for example, model space priors of the 

type discussed in Scott and Berger (2010).

Under a peMoM prior (2) on the regression coefficients, the marginal likelihood mk(y) under 

model k given σ2 can be obtained by integrating out βk, resulting in 

mk(y) = (2πσ2)
− n

2C− k Qkexp{ − R∼k/(2σ2)}, where
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R∼k = yT(In − P∼k)y, P∼k = Xk(Xk
TXk + 1/τIk)−1Xk

T,

Qk = ∫ exp{ − (βk − β
∼

k)T∑
∼

k
−1

(βk − β
∼

k)/(2σ2) − ∑
j = 1

k
τ /βk, j

2 }dβk,

β
∼

k = (Xk
TXk + 1/τIk)−1Xk

Ty, ∑
∼

k = (Xk
TXk + 1/τIk)−1 .

(6)

Similarly, the marginal likelihood using the piMoM prior densities (4) can be expressed as 

mk(y) = (2πσ2)
− n

2C ∗ − k Qk
∗exp{ − Rk

∗/(2σ2)}, where

Rk
∗ = yT(In − Pk)y, Pk = Xk(Xk

TXk)−1Xk
T,

Qk
∗ = ∫ ∏

j = 1

k
βk, j

−2rexp{ − (βk − βk)T∑k
∗ − 1(βk − βk)/(2σ2) − ∑

j = 1

k
τ /βk, j

2 }dβk,

βk = (Xk
TXk)−1Xk

Ty, ∑k
∗ = (Xk

TXk)−1 .

(7)

The integrals for Qk and Qk
∗ cannot be obtained in closed forms, so for computational 

purposes we make Laplace approximations to mk(y). The expressions for the marginal 

likelihood derived here is nevertheless important for our theoretical study in Section 4.

3 Numerical results

3.1 Simulation studies using precision-recall curves

To illustrate the performance of nonlocal priors in ultrahigh-dimensional settings and to 

compare their performance with other methods, we calculated precision-recall curves (Davis 

and Goadrich, 2006) for all selection procedures. A precision-recall curve plots the precision 

= TP/(TP + FP), versus recall (or sensitivity) = TP/(TP + FN), where TP, FP and FN 

respectively denote the number of true positives, false positives, and false negatives, as the 

tuning parameter is varied. The efficacy of a procedure can be measured by the area under 

the precision-recall curve; the greater the area, the more accurate the method. Since both 

precision and recall take values in [0, 1], the area under the curve for an ideal precision-

recall curve is 1. We used two (n, p) combinations, namely (n, p) = (400, 10000) and (n, p) = 

(400, 20000), and plotted the average of the precision-recall curves obtained from 100 

independent replicates of each procedure.

We compared the performance of peMoM and piMoM priors to a number of frequentist 

penalized likelihood methods: lasso (Tibshirani, 1996), adaptive lasso (Zou, 2006), scad 

(Fan and Li, 2001), and minimax concave penalty (Zhang, 2010). We used the R package 

ncvreg to fit these penalized likelihood methods. We also included reciprocal lasso in our 

simulation studies. However, due to computational constraints involved in implementing the 

full rlasso procedure, we followed the recommendation in Song and Liang (2015) and 
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instead implemented the reduced rlasso. The reduced rlasso procedure is a simplified version 

of rlasso that uses the least square estimators of β when minimizing the rlasso objective 

function.

We considered Zellner’s g-prior (Zellner, 1986; Liang et al., 2008) as a competing Bayesian 

method, with βk | k, σ2 N(0, gσ2(Xk
TXk)−1) and g is the tuning parameter. With the prior π(σ2) 

∝ 1/σ2, the marginal likelihood mk(y) ∝ (1 + g)− k /2{1 + g(1 − Dk
2)}−(n − 1)/2

 can be obtained 

in a closed form; see for example, Liang et al. (2008, pp 412), where Dk
2 is the ordinary 

coefficient of determination for the model k.

A uniform model prior (5) was considered for all Bayesian procedures. This prior was 

chosen for several reasons. First, construction of the PR curves requires maximization over 

model hyper-parameters, which is most easily achieved if there is only one unknown 

hyperparameter. We also wished to avoid providing an advantage to the Bayesian methods 

by introducing additional tuning parameters into these methods that were not present in the 

penalized likelihood methods. Furthermore, the use of non-uniform priors on the model 

space introduces (at least) one more degree of freedom into the comparisons between 

methods, and our intent was to compare the effects of the penalties imposed on regression 

coefficients by both penalized likelihood and Bayesian methods. At first blush, this might 

appear to put Bayesian methods like those based on the g-prior at a disadvantage, since such 

methods do not yield consistent variable selection even in p < n settings without prior 

sparsity penalties on the model space (when g is held fixed as n increases). However, in the 

construction of our PR curves, we allowed prior hyperparameters to increase with n, which 

effectively allowed the Bayesian methods to impose additional sparseness penalties through 

the introduction of large hyperparameter values.

We arbitrarily fixed r = 1 for the piMoM prior (4) and used an inverse-gamma prior on σ2 

with parameters (0.1, 0.1) for the peMoM, piMoM priors, and g-priors. Posterior 

computations for the peMoM, piMoM and g-priors were implemented using the Simplified 

Shotgun Stochastic Search with Screening (S5) algorithm described in Section 7. The 

maximum a posteriori model was used in each case to summarize the model selection 

performance. The precision-recall curves are drawn by varying the hyperparameters (τ for 

the nonlocal priors and g for the g-priors), so the comparison between the model selection 

based on the nonlocal priors and the g-prior is free of the choice of hyperparameters. 

Because of their high computational burden, we could not include BASAD (Narisetty and 

He, 2014) in the comparisons.

For each simulation setting, we simulated data according to a Gaussian linear model as in 

(1) with the fixed true model t = {1, 2, 3, 4, 5} with the true regression coefficient 

βt
0 = (0.50, 0.75, 1.00, 1.25, 1.50)T and σ = 1.5. Also, the signs of the true regression 

coefficients were randomly determined with probability one-half. Each row of X was 

independently generated from a N(0, Σ) distribution with one of the following covariance 

structures:
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Case (1): compound symmetry design; ∑ j j′ = 0.5, if j ≠ j′ and Σjj = 1, 1 ≤ j, j′ ≤ p.

Case (2): autoregressive correlated design; ∑ j j′ = 0.5 j − j′ , 1 ≤ j, j′ ≤ p.

Case (3): isotropic design; Σ = Ip.

Figure 2 plots the precision-recall curves averaged over 100 simulation replicates for the 

different methods across the two (n,p) pairs and the three covariate designs. From Figure 2, 

it is evident that the precision-recall curves for the peMoM and piMoM priors have an 

overall better performance than the penalized likelihood methods lasso, adaptive lasso, scad, 

and mcp. For decision procedures having the same power, this implies that the nonlocal 

priors achieve lower false discovery rates. As discussed in Section 5, since the reduced 

rlasso shares the same nonlocal kernel as the nonlocal priors, it has a similar selection 

performance. The figure also shows that Zellner’s g-prior attains comparable performance 

with the nonlocal priors in terms of the precision-recall curves.

3.2 Further comparison with Zellner’s g-prior

The similarity of the performances of the g-prior and the nonlocal priors in terms of 

precision-recall curves begs for closer comparisons of these procedures. For this reason, we 

also investigated the concentration of the posterior densities around their maximum models. 

To this end, we fixed p = 20, 000 and varied n from 150 to 400; the data generating 

mechanism was exactly the same as in Section 3.1. The left column of Figure 3 displays the 

posterior probability of the true model under the peMoM, piMoM and g-prior models versus 

n for the three covariate designs in Section 3.1. The plot shows that the posterior probability 

of the true model increases with n for all three methods, with the peMoM and piMoM priors 

almost uniformly dominating the g-prior, implying a higher concentration of the posterior 

around the true model for the nonlocal priors.

This tendency is confirmed in the right panel of Figure 3, where we plot the number of 

models k which achieve a posterior odds ratio π(k y)/π(k y) > 0.001, where k is the 

maximum a posteriori model. This plot clearly shows that the posterior distribution on the 

model space from the g-priors is more diffuse than those obtained using the nonlocal prior 

methods. These comparisons were based on fitting the hyperparameters g and τ at their 

oracle value, i.e., the value which maximized the posterior probability of the true model for a 

given value of n.

The magnitudes of the oracle hyperparameters under each model also present an interesting 

contrast between the local and nonlocal priors. We observed that the oracle value of g 
increased rapidly with p, whereas the oracle value of τ was much more stable. This 

phenomenon is illustrated in Table 1 that shows the oracle hyperparameter value averaged 

over 100 replicates for the three different covariate designs in Section 3.1. For this 

comparison, we fixed n = 400 and varied p between 1000 and 20, 000; five representative 

values are displayed. The oracle values for g are on a completely different scale from the 

oracle values τ, and they vary more with p. This table confirms the recommendations in 

George and Foster (2000) for setting g = p2 based on minimax arguments. However, the 

finite sample behavior of the optimal choice of g is unclear, which means that the large 
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variance of the optimal hyperparameter value is likely to hinder the selection of g in real 

applications. Finally, we note that such large values of g effectively convert the local g-priors 

into nonlocal priors by effectively collapsing the g-prior density to 0 at the origin.

4 Model selection consistency

The empirical performance of the peMoM and piMoM priors suggests that the 

hyperparameter τ should be increased slowly with p. While Johnson and Rossell (2012) 

were able to show strong selection consistency with a fixed value of τ, it is not clear whether 

their proof can be extended to p ≫ n cases. Motivated by the empirical findings of the last 

section, we next investigated the strong consistency properties of peMoM and piMoM priors 

when τ was allowed to grow at a logarithmic rate in p. We found that in such cases, both 

peMoM and piMoM priors achieve strong model selection consistency under standard 

regularity assumptions when p increases sub-exponentially with n, i.e., log p = O(nα) for α 
∈ (0, 1).

Henceforth, we use τn,p instead of τ to denote the hyperparameter in the peMoM and 

piMoM priors in (2) and (4) respectively. The normalizing constants for these priors is now 

denoted by Cn,p and Cn, p
∗  respectively. Before providing our theoretical results, we first state 

a number of regularity conditions. Let νj(A) denote the j-th largest nonzero eigenvalue of an 

arbitrary matrix A, and let

νk ∗ = min
1 ≤ j ≤ min(n, k )

ν j(Xk
TXk/n), νk

∗ = max
1 ≤ j ≤ min(n, k )

ν j(Xk
TXk/n) . (8)

For sequences an and bn, an ⪰ bn indicates bn = O(an), and an ≻ bn indicates bn = o(an). With 

this notation, we assume that the following regularity conditions apply.

Assumption 1

There exists α ∈ (0, 1) such that log p = O(nα).

Assumption 2

log p ≺ τn,p ≺ n.

Assumption 3

|k| ≤ qn, where qn ≺
τn, p
log p .

Assumption 4

min
k: |k | ≤ qn

νk ∗ ≻
τn, p

n .
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Assumption 5

C1 < νt ∗ ≤ νt
∗ < C2 for some positive constants C1 and C2.

Several comments regarding these conditions are worth making. Assumption 1 allows p to 

grow sub-exponentially with n. Our theoretical results continue to hold when p grows 

polynomially in n, i.e., at the rate O(nγ) for some γ > 1. Assumption 2 reflects our empirical 

findings about the oracle τ ≡ τn,p in Section 3.1, which was observed to grow slowly with p. 

We need the bound on qn in Assumption 3 to ensure that the least square estimator of a 

model is consistent when a model contains the true model. In the p ≤ n setting, Johnson and 

Rossell (2012) assumed that all eigenvalues of the Gram matrix (Xk
TXk)/n are bounded above 

and below by global constants for all k. However, this assumption is no longer viable when p 
≫ n and we replace that by Assumption 4, where the minimum of the minimum eigenvalue 

of (Xk
TXk)/n over all submodels k with |k| ≤ qn is allowed to decrease with increasing n and 

p. Assumption 4 is called the sparse Riesz condition and is also used in Chen and Chen 

(2008) and Kim et al. (2012). Narisetty and He (2014) showed that Assumption 4 holds with 

overwhelmingly large probability when the rows of the design matrix are independent with 

an isotropic sub-Gaussian distribution. Even though the assumption of sub-Gaussian tails on 

the covariates is difficult to verify, the results in Narisetty and He (2014) show that 

Assumption 4 can be satisfied for some sequence of design matrices.

We now state a Theorem that demonstrates that model selection procedures based on the pe-

MoM and piMoM nonlocal prior densities achieve strong consistency under the proposed 

regularity conditions. A proof of the Theorem is provided in the Supplemental Materials.

Theorem 1—Suppose σ2 is known and that Assumptions 1 – 5 hold. Let π(t | y) denote the 

posterior probability of the true model obtained under a peMoM prior (2). Also, assume a 

uniform prior on all models of size less than or equal to qn, i.e., π(k) ∝ I(|k| ≤ qn). Then, π(t 
| y) converges to one in probability as n goes to ∞.

Corollary 2—Assume the conditions of the preceding Theorem apply. Let π(t | y) denote 

the posterior probability of the true model obtained under a piMoM prior density (4). Then, 
π(t | y) converges to one in probability as n goes to ∞.

We note that these results apply also if a beta-Bernoulli prior is imposed on the model space 

as in Scott and Berger (2010), because the effect of that prior is asymptotically negligible 

when |k| ≤ qn ≺ n.

In most applications, σ2 is unknown, and it is thus necessary to specify a prior density on it. 

By imposing a proper inverse gamma prior density on σ2, we can obtain the strong model 

consistency result stated in the Theorem below. The proof is again deferred to the 

Supplemental Materials.

Theorem 3—Suppose σ2 is unknown and a proper inverse gamma density with parameters 

(a0, b0) is assumed for σ2. Also, let π(t | y) denote the posterior probability of the true model 
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evaluated using peMoM priors. Then if Assumptions 1 – 5 are satisfied, π(t | y) converges to 

one in probability as n goes to ∞.

Corollary 4—Suppose the conditions of the preceding Theorem apply, but that π(t | y) now 

denotes the posterior probability of the true model obtained under a piMoM prior density. 

Then π(t | y) converges to one in probability as n goes to ∞.

5 Connections between nonlocal priors and reciprocal lasso

In this section, we highlight the connection between the rlasso of Song and Liang (2015) and 

Bayesian variable selection procedures based on our nonlocal priors. We begin by noting 

that the objective function g(βk; k) of rlasso on a model k can be expressed as follows:

g(βk; k) = ∥ y − Xkβk ∥2
2 + ∑

j = 1

|k|
τn, p/ | βk, j| . (9)

The optimal model is selected by minimizing this objective function with respect to βk and 

k. It is clear that the penalty function ∑ j = 1
k τn, p/ βk, j  in (9) is similar to the negative log-

density of piMoM nonlocal priors as proposed in Johnson and Rossell (2012, pp 659) and 

Johnson and Rossell (2010, pp 149). The main difference between the nonlocal prior version 

of rlasso and the piMoM-type prior densities proposed in the previous section is the power 

of β in the exponential kernels. For the rlasso penalty this power is 1, while for piMoM-type 

prior densities it is 2. The implications of this difference are apparent from the following 

proposition.

Proposition 5

For a given model k, suppose that β
∼

k
∗ is the minimizer of the objective function (9), and 

again let βk denote the least square estimator of β under model k. Assume that τn,p ≺ n, and 

there exist strictly positive contants CL and CU such that CL < νk ∗ ≤ νk
∗ < CU. Then, for any 

εn
∗ ≻ (τn, p/n)1/3,

P β
∼

k
∗ ∉ R βk; εn

∗ 0,

where R(u; ε) = {x ∈ ℝ|k| : |xj − uj| ≤ ε, j = 1,…, |k|}.

The proposition shows that under standard conditions on the eigenvalues of the Gram matrix 

Xk
TXk/n, the estimator derived from (9) is asymptotically within (τn,p/n)1/3 distance of the 

least squares estimator βk. On the other hand, results cited in the previous section show that 

maximum a posteriori estimators obtained from the piMoM-type prior densities reside at an 

asymptotic distance of (τn,p/n)1/4 from the least squares estimator. Variable selection 
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procedures based on both forms of piMoM priors thus achieve adaptive penalties on the 

regression coefficients in the sense described in Song and Liang (2015).

Although rlasso is proposed as a penalized likelihood approach, the computational 

procedure to optimize its objective function is quite different from the other penalized 

likelihood methods. The resulting computational complexity of this optimization procedure, 

which contains a discontinuous penalty function, is NP-hard. This suggests that the 

formulation of this nonlocal penalty in a penalized likelihood framework is unlikely to 

provide significant computational advantages over related Bayesian model selection 

procedures, even though the inferential advantages of the Bayesian framework are lost.

6 Asymptotic behavior of marginal likelihoods based on non-local priors

From Lemma 1 in the Supplemental Materials, it follows that the asymptotic log-marginal 

likelihood of a model k based on a peMoM or piMoM prior density can be expressed as

logπ(k | y) = l(βk) + logQk − |k | logCn, p

≈ l(βk) − ∑
j = 1

|k|
pτn, p

(βk, j) + C,

for some constant C, βk is the maximum likelihood estimator under the model k, i.e. 

βk = (Xk
TXk)−1

Xk
Ty, and

pτn, p
(βk, j) ≈

(nτn, puk)1/2, if|βk, j | < c
nuk
τn, p

−1/4

τn, p/βk, j
2 , if|βk, j | ≥ c

nuk
τn, p

−1/4
,

(10)

for some constant c and some arbitrary sequence uk with νk∗ ≤ uk ≤ νk
∗. We note that the 

strength of the correlation between the variables in the model k affects the behavior of uk, 

and (nuk/τn,p)−1/4 converges to zero as n tends to infinity due to Assumption 4 described in 

Section 4.

On the other hand, the penalty term in the other Bayesian model selection approaches is 

quite different from that of the nonlocal priors as in (10). The marginal likelihood based on 

the g-prior when σ2 is known can be expressed as

l(βk) − k log(1 + g)/2.

Narisetty and He(2014) demonstrated that BASAD achieves the strong model selection 

consistency. This consistency follows from that the fact that the BASAD “penalty” is 

asymptotically equivalent to
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l(βk) − c k log(p), (11)

where c is some constant. Yang et al. (2016) and Castillo et al. (2012) also considered a 

similar penalty term on the model space, which implies that the posterior probability for 

their procedures can be expressed in the same form as (11). When g = p2c, the marginal 

likelihood based on a g-prior is asymptotically equivalent to (11).

The asymptotic term of the marginal likelihoods is quite different from that of the nonlocal 

priors, since the penalty terms in the other Bayesian approaches only focus on the model 

size without considering the different weights on variables in the model. The marginal 

likelihoods based on nonlocal priors, however, impose different penalties on each predictor 

in the given model. When the MLE of the regression coefficient in the model is 

asymptotically close to zero ( | βk, j | < c(nuk/n, p)−1/4), the model that contains the 

corresponding variable would be strongly penalized by (nτn,puk)1/2. In contrast, when the 

MLE is asymptotically significant ( | βk, j | ≥ c(nuk/n, p)−1/4), the penalty attains a different 

weight based on the MLE (pτn, p
(βk, j) ≈ τn, p/βk, j

2 ).

This analysis highlights the fact that the nonlocal priors are able to adapt their penalty for 

the inclusion of covariates based on the observed data, whereas the local priors must instead 

rely on a prior penalty on non-sparse models.

7 Computational strategy

In p ≫ n settings, full posterior sampling using existing Markov chain Monte Carlo 

(MCMC) algorithms is highly inefficient and often not feasible from a practical perspective. 

To overcome this problem, we propose a scalable stochastic search algorithm aimed at 

rapidly identifying regions of high posterior probability and finding the maximum a 

posteriori (MAP) model. Our main innovation is to develop a stochastic search algorithm 

combining isis-like screening techniques (Fan and Lv, 2008) and temperature control that is 

commonly used in global optimization algorithms such as simulated annealing (Kirkpatrick 

and Vecchi, 1983).

To describe our proposed algorithm, consider the MAP model k that can be expressed as

k = argmax
k ∈ Γ ∗

{π(k | y)}, (12)

where Γ* is the set of all models assigned non-zero prior probability.

7.1 Shotgun stochastic search algorithm

Hans et al. (2007) proposed the shotgun stochastic search (SSS) algorithm in an attempt to 

efficiently navigate through very large model spaces and identify global maxima. Letting 
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nbd(k) = {Γ+, Γ−, Γ0}, where Γ+ = {k∪{j}: j ∈ kc}, Γ− = {k\{j} : j ∈ k}, and Γ0 = [k\{j}]∪
{l} : l ∈ kc, j ∈ k}, the SSS procedure is described in Algorithm 1.

Algorithm 1

Shotgun Stochastic Search (SSS)

Choose an initial model k(1)

For i = 1 to i = N – 1

 Compute π(k | y) for all k ∈ nbd(k(i))

 Sample k+, k−, and k0, from Γ+, Γ−, and Γ0, with probabilities proportional to π(k | y)

 Sample k(i+1) from {k+, k−, k0}, with probability proportional to {π(k+ | y), π(k− | y), π(k0 | y)}

The MAP model can be identified by the model that achieves the largest (unnormalized) 

posterior probability among those models searched by SSS.

7.2 Simplified shotgun stochastic search algorithm with screening (S5)

SSS is effective in exploring regions of high posterior model probability, but its 

computational cost is still expensive because it requires the evaluation of marginal 

probabilities for models in Γ+, Γ−, and Γ0 at each iteration. The largest computational burden 

occurs for the evaluation of marginal likelihood for models in Γ0, since |Γ0| = |k|(p − |k|). To 

improve the computational efficiency of SSS, we propose a modified version which only 

examines models in Γ+ and Γ−, which have cardinality p − |k| and |k|, respectively. However, 

by ignoring Γ0 in the sampling updates we make the algorithm less likely to explore 

“interesting” regions of high posterior model probability, and therefore more likely to get 

stuck in local maxima. To counter this problem, we introduce a “temperature parameter” 

analogous to simulated annealing which allows our algorithm to explore a broader spectrum 

of models.

Even though ignoring models in Γ0 reduces the computational burden of the SSS algorithm, 

the calculation of p posterior model probabilities in every iteration is still computationally 

prohibitive when p is very large. To further reduce the computational burden, we borrow 

ideas from the Iterative Sure Independence Screening (isis; Fan and Lv (2008)) and consider 

only those variables which have a large correlation with the residuals of the current model. 

More precisely, we examine the products rk
TX j , where rk is the residual of the model k, for j 

= 1, …, p, after every iteration of the modified shotgun stochastic search algorithm, and then 

restrict attention to variables for which rk
TX j : j = 1, …, p  is large (we assume that the 

columns of X have been standardized). This yields a scalable algorithm even when the 

number of variables p is large.

With these ingredients, we propose a new stochastic model search algorithm called 

Simplified Shotgun Stochastic Search with Screening (S5), which is described in Algorithm 

2.
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In S5, Sk is the union of variables in k and the top Mn variables, obtained by screening using 

the residuals from the model k. The screened neighborhood of the model k can be defined as 

nbdscr(k) = Γscr
+ , Γ− , where Γscr

+ = k ∪ j : j ∈ kc ∩ Sk .

Algorithm 2

Simplified Shotgun Stochastic Search with Screening (S5)

Set a temperature schedule t1 > t2 > …> tL > 0

Choose an initial model k(1,1) and a set of variables after screening Sk
(1,1) based on k(1,1)

For l = 1 in l = L

 For i in 1, …, J − 1

  Compute all π(k | y) for all k ∈ nbdscr(k(i,l))

  Sample k+ and k−, from Γscr
+  and Γ−, with probabilities proportional to π(k y)

1/tl

  Sample k(i+1,l) from {k+, k−}, with probability proportional to {π(k+ y)
1/tl

, π(k− y)
1/tl}

  Update the set of considered variables S
k(i + 1, l) to be the union of variables in k(i+1,l) and the top Mn variables 

according to { |r
k(i + 1, l)
T X j | : j = 1, …, p}

Even though this algorithm is designed to identify the MAP model, it also provides an 

approximation to the posterior model probability of each model. The uncertainty of the 

model space can be measured by approximating the normalizing constant from the 

(unnormalized) posterior probabilities of the models explored by the algorithm.

Denoting the computational complexity of the evaluation of the unnormalized posterior 

model probability of the largest model among searched models by En, the computational 

complexity of the SSS algorithm can be expressed as the product of the number of explored 

models by the algorithm and En, which is [O{N p} + O{Nqn
} + O{N(p − qn)qn}] × En, where qn 

is the maximum size of model among searched models and qn < n ≪ p.

On the other hand, the S5 only considers Mn variables after the screening step in each 

iteration, which dramatically reduces the number of models to be considered in constructing 

the neighborhood, O{JL(Mn − qn)} + O(JLMn). Therefore, the resulting computational 

complexity is

[O{JL(Mn − qn)} + O(JLMn)] × En + O(JLnp),

where qn < Mn. When the computational complexity for screening steps, O(JLnp), is 

dominated by the other terms, the computational complexity is almost independent of p. As 

a result, the proposed algorithm is scalable in the sense that the resulting computational 

complexity is typically robust to the size of p.
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7.3 Performance comparisons between S5 and SSS

We examined the computational performance of S5 to SSS in identifying the MAP model 

under a piMOM prior with τn,p = log n log p and r = 1. We generated data according to Case 

(1) in Section 3, with a fixed sample size (n = 200), and a varying number of covariates p. 

We set Mn = 20, L = 20, and J = 20 for S5. To match the total number of iterations between 

S5 and SSS, we set N = 400 for SSS. All computations were implemented in R.

Figure 4 shows the average computation time and the number of models searched before 

hitting the MAP model for the first time for the S5 and SSS algorithms. All averages were 

based on 100 simulated datasets, and both algorithms obtained the same MAP model for all 

data sets. Panel (a) shows that the computation time of SSS increases roughly at a p2 rate, 

but that the computation time for S5 was nearly independent of the number of covariates p 
(about 4 seconds). For example when p = 2, 000, SSS first found the MAP model in an 

average of 1,360 seconds (about 23 minutes), whereas S5 hit the MAP model after about 

only 4 seconds. Interestingly, panel (b) of Figure 4 also illustrates that the S5 algorithms 

explored only 181 models on average to hit the MAP model, whereas SSS typically visited 

slightly more than 38,000 models. Thus, not only is S5 much faster than SSS in identifying 

the MAP model, but it also visited far fewer models before visiting the MAP model.

8 Real data analysis

8.1 Analysis of polymerase chain reaction (PCR) data

Lan et al. (2006) studied coordinated regulation of gene expression levels on 31 female and 

29 male mice (n = 60). A number of psychological phenotypes, including numbers of 

stearoyl-CoA desaturase 1 (SCD1), glycerol-3-phosphate acyltransferase (GPAT) and phos- 

phoenopyruvate carboxykinase (PEPCK), were measured by quantitative real-time RT-PCR, 

along with 22,575 gene expression values. The resulting data set is publicly available at 

http://www.ncbi.nlm.nih.gov/geo (accession number GSE3330).

Zhang et al. (2009) used penalized orthogonal components regression to predict the three 

phenotypes mentioned above based on the high-dimensional gene expression data. Bondell 

and Reich (2012) also used the same data set to examine their model selection procedure 

based on penalizing regression coefficients within a (marginal or joint) credible interval 

obtained from a ridge-type prior. For brevity, we restrict attention here to SCD1 as the 

response variable.

Since the ground truth regarding the true significant variables is not known for this data, we 

compared our approach with a host of competitors on predictive accuracy and parsimony of 

the selected model.

Prior to analyses, we standardized the covariates and randomly split the data set into 5 test 

samples and 55 training samples to evaluate the out-of-sample mean square prediction error 

(MSPE)
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MSPE = ∑
i ∈ Ttest

(yi − Xi
Tβk

tr)2/ |Ttest|,

where Ttest is the index set of the test samples and βk
tr is the least square estimator under the 

estimated model k based on the training samples. To avoid sensitivity to a particular split, we 

considered 100 replications of the training and test sample generation. To measure the 

stability of model selection, we considered the number of variables that were (i) selected at 

least 95 times, and (ii) at least once, out of the 100 replicates.

Due to the high-computational burden of the penalized credible interval (Bondell and Reich, 

2012) approach, we followed the pre-processing step suggested in their article to marginally 

screen variables to reduce to 2000 variables (1999 genes and gender). For all the other 

approaches, all 22,575 genes were used. For the nonlocal priors, we considered both the 

MAP estimator and the least squares (LS) estimator from the MAP model. For the g-prior, 

we set g = p2 as recommended in George and Foster (2000). For the penalized likelihood 

procedures, we used ten-fold cross validation to choose the tuning parameter.

To choose the hyperparameter τn,p for the nonlocal priors, we used a procedure proposed by 

Nikooienejad et al. (2016). That procedure sets the hyperparameter so that the L1 distance 

between the posterior distribution on the regression parameters under the null distribution 

(i.e., β = 0) and the nonlocal prior distributions on these parameters is constrained to be less 

than a specified value (e.g., p−1/2). The average value of the hyperparameter values chosen 

by this procedure were τn,p = 1.12 and τn,p = 1.16 for piMoM and peMoM priors, 

respectively.

To make the comparison between the nonlocal priors and the g-prior more transparent, we 

used the same beta-binomial prior on the model space in both models, rather than the 

uniform prior on the model space described previously. The form of the beta-binomial prior 

was given by

π(k) ∝ ρ k (1 − ρ)p − k I( |k | ≤ qn), (13)

with a uniform prior on ρ and qn = 40. We note that this prior does not strongly induce 

sparsity as does, for example, the prior obtained by imposing a Beta(1, pu), u > 1 prior on ρ, 

as suggested in Castillo et al. (2015).

Table 2 summarizes the results from the analysis of the gene expression data set. On 

average, the nonlocal priors simultaneously produced the lowest MSPE and the most 

parsimonious model. The other model selection methods selected a wide array of different 

variables for different splits of the data set. In particular, lasso and the penalized credible 

region approach selected more than 180 different variables from 100 repeated splits, while 

the average size of the selected model was less than 20 and the number of frequently 
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selected variables was only zero or one, indicating a potentially large number of false 

positives picked up by these methods.

8.2 A simulation study based on the Boston housing data

We next examined the Boston housing data set that contains the median value of owner-

occupied homes in the Boston area, together with several variables that might be associated 

with their median value. There were n = 506 median values in the data set, and we 

considered 10 continuous variables as the predictor variables: crim, indus, nox, rm, 

age, dis, tax, ptratio, b, and lstat. This data set has been used to validate a 

variety of approaches; some recent examples relevant to variable selection include 

Radchenko et al. (2011), Yuan and Lin (2005), and Rockova and George (2014).

To examine the model selection performance in high-dimensional settings, we added 1,000 

noise variables that were generated independently from a standard Gaussian distribution (p = 

1,010). The same competitors from the previous subsection were used with the 

aforementioned choice of hyperparameters. For nonlocal priors, the hyperparameter was 

chosen by the aforementioned procedure (Nikooienejad et al., 2016); the average of the 

chosen hyperparameter values were τn,p = 2.01 and τn,p = 0.47 for piMoM and peMoM 

priors, respectively. Prior to analyses, we standardized the covariates and considered a 

simulation test size of 100 samples.

The results of are analysis are summarized in Table 3. The conclusions are similar to those 

reported in Section 8.1; the nonlocal priors consistently choose more parsimonious models 

and had better predictive performance. The model selection procedure resulting from the 

nonlocal prior selects almost the same variables across the 100 repetitions. The average 

number of the original variables selected more than 95 times over 100 repetitions is 5, which 

is close to the average model size. It is also reliable in the sense that the average number of 

the original variables that are selected at least once across the repetitions is only 6. This 

means that model selection based on the nonlocal prior selects the same model in most data 

splits. On the other hand, penalized likelihood methods such as lasso and scad tend to select 

a large number of noise variables.

9 Conclusion

This article describes theoretical properties of peMoM and piMoM priors for variable 

selection in ultrahigh-dimensional linear model settings. In terms of identifying a “true” 

model, selection procedures based on peMoM priors are asymptotically equivalent to 

piMoM priors in Johnson and Rossell (2012) because they share the same kernel, 

exp{−τn,p/β2}. We demonstrated that model selection procedures based on peMoM priors 

and piMoM priors achieve strong model selection consistency in p ≫ n settings.

In Section 3.1, precision-recall curves were used to show that the model selection procedure 

based on a g-prior can achieve nearly the same performance in identifying the MAP model 

as nonlocal priors when an optimal value for the hyperparameter g is chosen. However, as 

shown in Section 3.2, the value of the hyperparameter that maximizes the posterior 

probability of the true model is very large and has high variability, which may limit the 
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practical application of this method. To overcome this problem, one can consider mixtures of 

g-prior as in Liang et al. (2008), but the asymptotic behavior of Bayes factor and model 

selection consistency in ultrahigh-dimensional settings have not been examined for hyper-g 
priors, and they are difficult to implement computationally.

In Section 7, we proposed an efficient and scalable model selection algorithm called S5. By 

incorporating the SSS with a screening idea and a temperature control, S5 was able to 

accelerate the computation speed without losing the capacity to explore the interesting 

region in the model space. Under some simulation settings, it outperformed the SSS in a 

sense that not only did S5 search the MAP model much faster than the SSS, but it also found 

exactly the same MAP model that was searched by the SSS.

Because the explicit form of the marginal likelihood of the nonlocal priors is not available, 

we used the Laplace approximation throughout the paper, and Barber et al. (2016) studied 

the accuracy of the approximation in Bayesian high-dimensional variable selection, 

especially when the dimension of the approximation (which is qn) and n are both increasing. 

However, their results do not apply to the case of the nonlocal priors, since the nonlocal 

priors violate their regularity condition (nonzero density at the origin). While empirical 

results in this paper and Johnson and Rossell (2012) suggest that the use of the Laplace 

approximation is reasonable, in future work it is still worth paying attention to the 

approximation error of the Laplace approximation to the marginal likelihood of the nonlocal 

priors.

The close connection between our methods and the reduced rlasso procedures provides a 

useful contrast between Bayesian and penalized likelihood methods for variable selection 

procedures. According to the evaluation criteria proposed in Section 5, the two classes of 

methods appear to perform quite similarly. A potential advantage of the reduced rlasso 

procedure, and to the lesser extent the rlasso procedure, is reduced computation cost. This 

advantage accrues primarily because the reduced rlasso can be computed from the least 

squares estimate of each model’s regression parameter, whereas the Bayesian procedures 

require numerical optimization to obtain the maximum a posteriori estimate used in the 

evaluation of the Laplace approximation to the marginal density of each model visited. 

However, the procedures used to search the model space, given the value of a marginal 

density or objective function, are approximately equally complex for both classes of 

procedures. There are also potential advantages of the Bayesian methods. For example, it is 

possible to approximate the normalizing constant of the posterior model probability from the 

models visited by S5 algorithm, and to use this normalizing constant to obtain an 

approximation to the posterior probability assigned to each model. In so doing, the Bayesian 

procedures provide a natural estimate of uncertainty associated with model selection. These 

posterior model probabilities can also be used in Bayesian modeling averaging procedures, 

which have been demonstrated to improve prediction accuracy (e.g., Raftery et al. (1997)) 

over prediction procedures based on maximum a posteriori estimates. Finally, the 

availability of prior densities may prove useful in setting model hyperparameters (i.e., τn,p) 

in actual applications, where scientific knowledge is typically available to guide the 

definition of the magnitude of substantively important regression parameters.
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We also developed an R package BayesS5 that provides all computational functions used in 

this paper, including a support of parallel computing environments. It is available on the 

author’s website and on CRAN.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Nonlocal prior density functions for a single regression coefficient with τ = 5; for the 

piMoM prior, r = 1.
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Figure 2. 
Plot of the mean precision-precision curves over 100 datasets with (n, p) = (400, 10000)(first 

column) and (n, p) = (400, 20000)(second column). Top: case (1); middle: case (2); bottom: 

case (3).
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Figure 3. 
Averaged posterior true model probability and the number of models which attain the 

posterior odds ratio, with respect to the maximum a posteriori model, larger than 0.001 with 

the fixed p = 20000 and varying n. Top: case (1); middle: case (2); bottom: case (3).
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Figure 4. 
(a) the average computation time to first hit the MAP model; (b) the average number of 

models searched before hitting the MAP model. The left y-axis is in a logarithmic scale and 

the right y-axis is in the raw scale.
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Table 2

Analysis of the PCR data. Marginal and Joint refer to the variable selection procedures (Bondell and Reich, 

2012) based on Bayesian marginal credible set and Bayesian joint credible set, respectively. MS is the average 

size of the selected model. FS is the number of frequently selected variables, i.e., that were selected at least 95 

times in 100 repetitions. TS refers to the total number of variables selected at least once from 100 repetitions. 

Standard errors are provided in parenthesis.

Method MSPE MS FS TS

piMoM(MAP) 0.283 (0.17) 1.00 (0.00) 1 1

piMoM(LS) 0.282 (0.17) 1.00 (0.00) 1 1

peMoM(MAP) 0.291 (0.18) 1.02 (0.14) 1 2

peMoM(LS) 0.287 (0.17) 1.02 (0.14) 1 2

g-prior 0.368 (0.20) 4.07 (0.56) 1 133

lasso 0.542 (0.39) 17.97 (8.62) 1 211

scad 0.308 (0.23) 12.66 (7.62) 2 163

mcp 0.308 (0.21) 2.20 (0.94) 0 29

Marginal(p = 2000) 0.456 (0.40) 17.47 (11.16) 0 273

Joint(p = 2000) 0.440 (0.40) 16.42 (11.06) 1 185
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