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The Kelch-like ECH-associated protein 1/nuclear factor erythroid-derived 2-like 2
(KEAP1-NRF2) system is a pivotal defense mechanism against oxidative and elec-
trophilic stress. Although transient NRF2 activation in response to stress is benefi-
cial for health, persistent NRF2 activation in cancer cells has deleterious effects on
cancer-bearing hosts by conferring therapeutic resistance and aggressive tumori-
genic activity on cancer cells. Because NRF2 increases the antioxidant and detoxifi-
cation capability of cancer cells, persistently high levels of NRF2 activity enhance
therapeutic resistance of cancer cells. NRF2 also drives metabolic reprogramming to
establish cellular metabolic processes that are advantageous for cell proliferation in
cooperation with other oncogenic pathways. As a result of these advantages, cancer
cells with persistent activation of NRF2 often develop “NRF2 addiction” and show
malignant phenotypes leading to poor prognoses in cancer patients. Inhibition of
NRF2 is a promising therapeutic approach for NRF2-addicted cancers and NRF2
inhibitors are being actively developed. However, giving systemic NRF2 inhibitors
might have undesirable effects on cancer-bearing hosts, considering the central roles
of NRF2 in cytoprotection. To avoid these side-effects, new therapeutic targets
besides NRF2 for NRF2-addicted cancers have been actively explored. This review
introduces recent studies describing the development and characterization of NRF2-
addicted cancers, as well as their potential therapeutic targets. Expected advances
in diagnostic and therapeutic interventions for NRF2-addicted cancers are also
discussed.
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1 | PHYSIOLOGICAL ROLES OF THE
KEAP1-NRF2 SYSTEM

Abbreviations: FH, fumarate hydratase; GEMM, genetically engineered mouse model; IHC,

immunohistochemistry; KEAP1, Kelch-like ECH-associated protein 1; MEF, mouse
embryonic fibroblast; MDSC, myeloid-derived suppressor cell; NRF2, nuclear factor
erythroid-derived 2-like 2; ROS, reactive oxygen species; SNP, single nucleotide

polymorphism; Tieg, regulatory T cell.

Living organisms are constantly interacting with their surrounding
environment. Appropriate environmental responses are relevant for

the maintenance of homeostasis and optimal health at cellular as
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well as organismal levels. Many environmental stimuli disturb redox
homeostasis and result in biomolecules undergoing chemical changes
such as protein carbonylation, lipid peroxidation and nucleic acid oxi-
dation, leading to functional alteration or impairment of biomole-
cules. The KEAP1-NRF2 system is an important defense mechanism
against redox disturbances.! NRF2 is a potent transcription activator
belonging to the Cap’n’Collar (CNC) transcription factor family, which
is characterized by a unique CNC motif followed by a well-con-
served basic region-leucine zipper (bZip) structure. Under normal
conditions, NRF2 is constantly poly-ubiquitinated by the CUL3-
KEAP1 E3 ubiquitin ligase complex and subjected to degradation by
proteasomes. When cells are exposed to oxidative and/or elec-
trophilic stress, highly reactive thiols in KEAP1 are directly modified,
resulting in inactivation of the CUL3-KEAP1 complex and stabiliza-
tion of NRF2. NRF2 then translocates to the nucleus and induces a
battery of cytoprotective genes by binding to the antioxidant
response element (ARE) by heterodimerization with small MAF pro-
teins (Figure 1, “Transient NRF2 activation”).!

Biochemical, biophysical and structural analyses showed that
KEAP1 forms a cherry bob-like homodimer and interacts with a
single NRF2 molecule at two binding sites, namely a DLG motif
and an ETGE motif in the N-terminal region of NRF2 (Figure 1,
“Transient NRF2 activation”).>* Appropriate interaction between
KEAP1 and NRF2 is considered critical for efficient ubiquitination
of NRF2, and modification of KEAP1 thiols by electrophiles is
likely to induce conformational alterations in the overall structure
of the CUL3-KEAP1-NRF2 complex and to suppress the ubiquiti-
nation of NRF2.

The physiological relevance of NRF2 has been shown by numer-
ous studies using Nrf2-deficient mice and human cohort studies of

SNP in the promoter region of the NRF2 gene. Nrf2-deficient mice
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are generally susceptible to redox disturbances and easily develop
drug toxicity.>® Oxidative tissue damage after ischemia and reperfu-
sion, including that resulting in noise-induced hearing loss, is effec-
tively suppressed by NRF2 activation through its antioxidant
function.” Further, NRF2 possesses potent anti-inflammatory activity
and alleviates a variety of inflammatory conditions, including autoim-
mune diseases.®?

In line with these protective roles of the KEAP1-NRF2 system,
NRF2 activation effectively prevents chemical carcinogenesis by
increasing antioxidant and detoxification capabilities.’®*®> NRF2 acti-
vation in cancer-bearing hosts is also beneficial as a result of the fact
that it potentiates anticancer immunity. NRF2 effectively inhibits the
activity of MDSC and prevents apoptotic Teg cell-mediated immuno-
suppression by protecting Teg cells from apoptosis.*** Thus, NRF2
activation in the host is beneficial as a result of its suppressive effect

on cancer initiation and its anticancer-cell activity.

2 | ABERRANT ACTIVATION OF NRF2 AS A
STRONG PROGNOSTIC FACTOR IN CANCER
PATIENTS

In contrast to the protective roles described above, persistent activa-
tion of NRF2 at high levels in normal cells has deleterious effects.
Keap1-deficient mice die after weaning as a result of obstructive
lesions in the upper digestive tract caused by epithelial hyperkerato-
sis.” Keap1 deficiency in the developing kidney causes polyuria with
low osmolality and bilateral hydronephrosis.'® Keap1 deficiency in
bone marrow results in the exhaustion of hematopoietic stem cells.'?
These deleterious effects are all canceled by Nrf2 disruption, indicat-

ing that excessive activation of NRF2 in normal cells is toxic and

i Persistent

i NRF2 activation

1 Somatic mutation of Exon s’!_(g:ping of Succination of N
i | KEAP1 or NRF2 gene Ni gene KEAP1 protein

(‘ﬁz?\l_@#ﬁ%j

Transcriptional dysregulation of \
KEAP1 or NRF2 gene

<3 DNA_ i@g:?
() methylation /

N Me .~ ¥
T 2

p62 accumulation

@ P

ytoprotective
genes




KITAMURA ano MOTOHASHI

LERWIESE Cancer Science

suggesting that appropriate regulation of NRF2 by KEAP1 is required
for organismal health.

However, this scenario is not applicable to cancer cells. NRF2
activation in cancer cells confers therapeutic resistance and aggres-
sive tumorigenic ability on cancer cells, driving their malignant pro-
gression. Many clinical studies have indeed shown strong
correlations between NRF2 activation in tumor tissues and poor clin-
ical outcomes of patients (Table 1). In many studies, NRF2 accumula-
tion was examined using immunohistochemistry, and high levels of
NRF2 accumulation were found to be commonly associated with
poor prognosis in various cancer types. Somatic mutations of NRF2,
KEAP1 and CUL3 are also prognostic markers of non-small cell lung
cancers, esophageal cancers and head and neck cancers.?”??3! Can-
cer tissue expression levels of NRF2 target genes, such as NQO1
and GCLC, and those of downstream effectors of NRF2, such as
PHGDH, PSAT1 and SHMT2, are also well associated with clinical
outcomes of cancer patients.?2327:3241 Thys, NRF2 and its down-
stream effectors are important prognostic factors in a wide range of

cancers.

3 | VARIOUS CAUSES OF ABERRANT
ACTIVATION OF NRF2

Multiple mechanisms that cause aberrant persistent activation of
NRF2 have been reported, including genetic changes, epigenetic
effects and altered protein-protein interactions (Figure 1, “Persistent
NRF2 activation”).

3.1 | Somatic mutations of KEAP1 and NRF2

Somatic mutations of KEAP1 and NRF2 genes are one of the main
causes of constitutive NRF2 activation. Mutations in KEAP1, which
are generally mutually exclusive with those in NRF2, are frequently
found in solid tumors, especially in the head and neck, lung and blad-
der.*¢ Although KEAP1 mutations are found in various positions in
the coding region, most NRF2 mutations are located in the DLG and
ETGE motifs, which are critical for binding with KEAP1. The func-
tional impacts of these mutations have been analyzed by co-crystalli-
zation of KEAP1 and the DLG/ETGE motifs of NRF2.78

3.2 | Exon skipping in NRF2

Aberrant NRF2 transcripts with recurrent loss of exon 2 have been
found in lung, head and neck squamous cell carcinoma and hepato-
cellular carcinoma.*” NRF2 mutants that are translated from mRNA
lacking exon 2 do not interact with KEAP1, resulting in persistent
localization in the nucleus.

3.3 | KEAP1 promoter methylation

Epigenetic alteration has been suggested as another cause of dysreg-
ulation of the KEAP1-NRF2 system. Inverse correlation between

DNA methylation levels and KEAP1 expression levels was reported

in renal cell carcinoma.>®

34 | p62 (SQSTM1) accumulation

p62 is one of the adaptor proteins that recognizes ubiquitinated sub-
strate proteins for selective autophagy. Phosphorylated p62 has a
higher affinity for KEAP1 than the non-phosphorylated form of pé2,
and competes with NRF2 for KEAP1 binding.>* Aberrant accumula-
tion of p62 is frequently observed in hepatocellular carcinoma, and

causes persistent activation of NRF2.5%°3

3.5 | Fumarate hydratase mutation

Fumarate hydratase is a Krebs cycle enzyme that catalyzes the con-
version from fumarate to malate. Fumarate, which accumulates in FH
deficiency, modifies KEAP1 thiols as a result of its electrophilic prop-
erty and stabilizes NRF2. Type |l papillary renal cell carcinoma, which
is accompanied by FH mutations, shows elevated expression of

NRF2 target genes and highly malignant phenotypes.>*>°

3.6 | Transcriptional activation of the NRF2 gene

Transcription levels of the NRF2 gene influence protein levels of
NRF2 in basal and induced conditions.>® RAS signal activation
induces the recruitment of MYC to the NRF2 promoter and upregu-
lates NRF2 transcription, which is suggested to enhance the tumori-

genesis induced by the oncogenic KRAS mutant.>”

4 | ESTABLISHMENT OF NRF2-ADDICTED
CANCER CELLS

Because NRF2 confers great advantages on cancer cells, including
therapeutic resistance, increased antioxidant capacity and aggressive
tumorigenic ability, cancer cells with NRF2 activation often develop
“NRF2 addiction”, which is one of the forms of non-oncogene addic-
tion. This state has been shown in human cancer cell lines and mouse
cancer models with abundant accumulation of NRF2 (Table 2).
Although persistent activation of NRF2 confers growth and survival
advantages on cancer cells, leading to NRF2 addiction, excessive acti-
vation of NRF2 in normal cells is rather toxic, as described in Sec-
tion 2. These results imply that certain prerequisites, which are not
fully understood, enable the establishment of NRF2-addicted cancers.

An important observation for understanding the dominant role of
NRF2 in driving aggressive cell proliferation is that nuclear accumula-
tion of NRF2 is greatly enhanced in the presence of proliferative sig-
nals.637>7¢ Whereas NRF2 is trapped by the CUL3-KEAP1 complex
in the cytoplasm and ubiquitinated for degradation, NRF2 is also
ubiquitinated by the CUL1-BTrCP complex after being phosphory-
lated by GSK3.”778 As GSK3 is phosphorylated by AKT and inacti-
vated, CUL1-BTrCP complex-mediated degradation of NRF2 is
inhibited in proliferating cells in which the PIBK-AKT pathway is
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(Continued)

TABLE 2

Cancer cell line/mouse

Observations (with suggested mecha-

nisms)

Method of modulating the
KEAP1-NRF2 pathway

cancer model with NRF2

activation

Reference no.

54
55

Reference

Experiment
GEMM

Tissue

Adam et al.,, 2011
Qoi et al., 2011

FH deficiency induces NRF2 activation by

FH re-expression

FH-deficient mouse

Kidney

KEAP1 inactivation.

FH-deficient UOK262

Dish culture

cells derived from

hereditary leiomyomatosis
and renal cell carcinoma

(HLRCC) patients
CCF-RC1 renal cell

73

Ge et al, 2017

NRF2 activation by iASPP accumulation

iASPP knockdown by siRNA

Xenograft

confers 5-FU resistance and promotes

proliferation and tumorigenesis.

carcinoma cell line

74

NRF2-addicted cancer Nrf2 knockdown by shRNA Constitutive NRF2 activation as a result of Kitamura et al., 2017

Allograft

MEF

Keap1 deletion enhances tumorigenesis

model cell

by IL11 upregulation under the influence

of the tumor microenvironment.

(MEF with SV40 and

HRASS12Y)

5-FU, fluorouracil; FH, fumarate hydratase; GEMM, genetically engineered mouse model; IHC, immunohistochemistry; KEAP1, Kelch-like ECH-associated protein 1; NRF2, nuclear factor erythroid-derived 2-

like 2; NSCLC, non-small cell lung cancer.
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active. For instance, PI3K-AKT activation caused by Pten deficiency
in combination with Keap1 deficiency in the mouse liver results in
massive accumulation of NRF2 and NRF2-dependent proliferation of
hepatocytes and cholangiocytes.®®”>7¢ Thus, quantitative increases
of the NRF2 protein under proliferative signals substantiates the
dominant role played by NRF2 in leading cancer cells to NRF2
addiction.

Consistent with this observation, oncogenic mutations inducing
proliferative signals are likely to convert the role of NRF2 from cellu-
lar guardian to cancer driver. Experimental results using genetically
engineered mouse models have shown that simple stabilization and
accumulation of NRF2 are not sufficient for making NRF2 a cancer
driver.*®1%7? Because Keap1-deficient mice are resistant to carcino-
genesis, establishment of NRF2-addicted cancer models by Keapl
mutation requires combining Keapl mutation with additional onco-
genic mutations, such as activating mutations of KRAS/HRAS and
loss-of-function of TP53.27:5%74 These results suggest that NRF2 is a
facultative cancer driver, able to confer malignant phenotypes on
cancer cells only in the presence of active oncogenic signaling.

Intriguingly, the frequency of NRF2-addicted cancers possessing
somatic mutations of KEAP1 or NRF2 is likely to vary from tissue to
tissue. In The Cancer Genome Atlas (TCGA) database, KEAP1 and
NRF2 genes are mutated in approximately 10%-30% of lung cancers,
in combination with oncogenic mutations such as KRAS and TP53,
whereas no mutations have been found in KEAP1 or NRF2 genes in
the case of pancreatic cancers. In good agreement with these clinical
observations, Kras:Tp53:Keap1 triple mutations in the lung cause
cancers showing aggressive proliferation,?” whereas these triple
mutations in the pancreas do not cause cancers but result in fibrosis

instead.&°

These observations suggest that tissue-specific factors are
likely to determine the prerequisites for NRF2-addicted cancer

development.

5 | CHARACTERISTICS OF NRF2-ADDICTED
CANCER CELLS

Although NRF2 inhibitors are expected to be promising therapeutic
drugs for NRF2-addicted malignant cancers, giving systemic NRF2
inhibitors might cause undesirable effects as a result of the impaired
protective functions of NRF2. Detailed characterization of NRF2-
addicted cancers has been conducted to identify effective therapeu-
tic targets besides NRF2 for NRF2-addicted cancers.

Several metabolic features of NRF2-addicted cancers have been
described (Figure 2, left side). In proliferating cancer cells, NRF2 sta-
bilization is enhanced and its transcriptional activation ability is aug-
mented, resulting in the transcriptional activation of a wider range of
NRF2 target genes (i.e., metabolic genes in addition to cytoprotec-
tive genes).® NRF2 activates genes encoding enzymes for NADPH
production and the pentose phosphate pathway, and subsequently
facilitates the metabolic flux of glucose into purine nucleotide syn-
thesis and that of glutamine into glutaminolysis and glutathione syn-
thesis. An NRF2-addicted lung cancer model generated by triple
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NRF2-addicted cancer

NQO1, TXNRD1,

i ! Hypoxia A
GCLC, SLC7AT1 ! vessels ‘
G6PD, TKT, PGD Stromal  '&2E )5 Immune
cell () 8 cells
SMAF (o] (e} —_— .
Cytoprotective genes - FIGURE 2 Transcriptional regulation by
ARE Metabolic genes Low nutrients  / nuclear factor erythroid-derived 2-like 2
Signals from (NRF2) and its impacts on NRF2-addicted

PHGDH, PSATT,

v@@

&” é

tumor microenvironment

—p L6111, PTGS2

cancer cells. Canonical (left) and non-
canonical (right) downstream genes of
NRF2 in NRF2-addicted cancer cells.

SHMT4
ATF4 T R
Serine biosynthesis
enzyme

Cytokines and

Factor X
Prostaglandin metabolism

Direct target genes of NRF2 are
upregulated by NRF2 irrespective of

< @

Oxidative stress response
Therapeutic resistance
Metabolic reprogramming

mutations of the Kras, Tp53 and Keapl genes in mice consistently
showed a heavy dependence on glutaminolysis, showing a robust
sensitivity to inhibition of SLC1A5, a glutamine transporter.?” NRF2
also promotes serine synthesis from glucose by indirectly inducing
genes in the serine synthesis pathway, namely PHDGH, PSAT1 and
SHMT4, through ATF4 activation.?®

Novel downstream effectors of NRF2 in NRF2-addicted cancer
models have been identified through the comparison of gene expres-
sion profiles in ordinary dish culture conditions and allograft tumor-
forming conditions.”* MEF obtained from wild-type and Keap1-null
embryos were transformed by SV40 T antigen and oncogenic HRAS
to establish WT-TR MEF and Keapl™~-TR MEF, respectively.
Although cell growth in the culture-dish condition was comparable
between WT- and Keapl™/~-TR MEF, tumorigenic activity of
Keap1~'~-TR MEF was dramatically enhanced compared with WT-
TR MEF, and the increased tumorigenic activity of Keapl™/~-TR
MEF was verified as NRF2 dependent. When gene expression pro-
files were compared between WT-TR MEF and Keap1~/~-TR MEF in
the culture-dish and tumor-forming conditions, canonical NRF2 tar-
get genes were all upregulated in Keap1~~-TR MEF in both condi-
tions, whereas non-canonical genes encoding cytokines and
prostaglandin-metabolizing enzymes were highly upregulated in
Keap1~’~-TR MEF in the tumor-forming condition only (Figure 2,
right side). Among the non-canonical genes, ll11 was found to be
critical for the aggressive tumorigenic activity of Keap1~/~-TR MEF,
which is consistent with a clinical observation that expression levels
of NRF2 and IL-11 are significantly correlated in breast cancer
cases.”*

Another intriguing difference in the gene expression profiles of
WT-TR MEF and Keap1~/~-TR MEF, unique to the tumor-forming
condition, was the significant downregulation of genes encoding

Agagressive tumorigenesis

signals from the microenvironment (left).
Non-canonical downstream genes are
upregulated downstream of NRF2 only in
the presence of signals from the
microenvironment (right). ARE, antioxidant
response element; IL, interleukin

MHC class | and antigen-presentation factors in the tumors gener-
ated from Keap1~/~-TR MEF. This result suggests that Keap1~/~-TR
MEF are likely to evade anticancer immunity, which might be an
alternative advantage supporting the aggressive tumorigenesis of
Keaplf/’-TR MEF. Thus, the tumor microenvironment has a sub-
stantial impact on the expression levels of downstream effectors of
NRF2 in NRF2-addicted cancer cells. Detailed mechanisms of the
NRF2 contribution to tumorigenesis under various tumor microenvi-

ronments need to be clarified in future studies.

6 | FUTURE PERSPECTIVES OF
DIAGNOSTIC AND THERAPEUTIC
STRATEGIES FOR NRF2-ADDICTED
CANCERS

Several NRF2 inhibitors have been reported for the treatment of
NRF2-addicted cancers.®>? For example, brusatol, which is a plant-
derived natural quassinoid, promotes poly-ubiquitination of NRF2,
which reduces the NRF2 protein level without changing the tran-
scription level of the NRF2 gene.®? Another NRF2 inhibitor, halofugi-
none, was found to exert a chemosensitizing effect on NRF2-
addicted cancer cells.®? Halofuginone represses prolyl-tRNA syn-
thetase activity leading to translational inhibition. NRF2 protein level
is effectively reduced by halofuginone, which is consistent with a
short half-life of the NRF2 protein.

New potential therapeutic targets of NRF2-addicted cancers are
being identified in addition to NRF2 inhibitors (Table 2). Some of
them, such as glutathione synthesis, serine synthesis, the pentose
phosphate pathway, and IL-11, are direct or indirect downstream
effectors of NRF2 for mediating malignant phenotypes. In contrast
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to these downstream effectors of NRF2, upstream regulators causing
NRF2 activation, including p62 accumulation, FH mutation, and
iASPP, are also possible therapeutic targets.

Recently, enhancement of anticancer immunity in cancer-bearing
hosts has been shown to be very effective for eradicating cancers.
Because NRF2 activation inhibits immunosuppressive events direc-
ted by MDSC and apoptotic Treg cells,***¢ giving NRF2 inducers to
cancer-bearing hosts is expected to be an immunostimulatory ther-
apy against cancer cells. A concern in treating cancer patients with
NRF2 inducers is possible malignant progression as a result of NRF2
activation in cancer cells. However, the effects of NRF2 inducers on
NRF2-addicted cancer cells are expected to be minimal, as NRF2 is
already maximally activated in NRF2-addicted cancer cells, although
intratumor heterogeneity must be carefully considered. Appropriate
animal models need to be developed to evaluate the indication for
NRF2 inducers for NRF2-addicted cancers.

Compared to active exploratory and mechanistic research on
therapeutic targets, diagnostic biomarkers and surrogate markers
have yet to be developed for NRF2-addicted cancers. Based on the
uniqgue metabolic activities of NRF2-addicted cancers, detailed
metabolite analysis might lead to the identification of useful diagnos-
tic markers. Diagnostic and therapeutic advances await further stud-

ies and technological improvements.
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