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Abstract

Transcription factors regulate gene expression, but how these proteins recognize and specifically 

bind to their DNA targets is still debated. Machine learning models are effective means to reveal 

interaction mechanisms. Here we studied the ability of a quantum machine learning approach to 

predict binding specificity. Using simplified datasets of a small number of DNA sequences derived 

from actual binding affinity experiments, we trained a commercially available quantum annealer to 

classify and rank transcription factor binding. The results were compared to state-of-the-art 

classical approaches for the same simplified datasets, including simulated annealing, simulated 

quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite 

technological limitations, we find a slight advantage in classification performance and nearly equal 

ranking performance using the quantum annealer for these fairly small training data sets. Thus, we 

propose that quantum annealing might be an effective method to implement machine learning for 

certain computational biology problems.
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INTRODUCTION

Quantum computation has been the subject of intense scientific scrutiny for its potential to 

solve certain fundamental problems, such as factoring of integers [1] or simulation of 

quantum systems [2, 3], more efficiently than classical algorithms, by using unique quantum 

phenomena including entanglement and tunneling. More recently, there has been much 

interest in the potential of quantum machine learning to outperform its classical counterparts 

[4–18]. Although different implementations and models of quantum computing are still in 

development, promising theoretical and experimental research indicates that quantum 

annealing (QA) [19], or adiabatic quantum optimization [20], may be capable of providing 

advantages in solving classically-hard problems that are of practical interest (for a review 

see Ref. [21]). QA is the only paradigm of quantum computation that currently offers 

physical implementations of a non-trivial size, namely the D-Wave processors [22–24].

The adiabatic theorem of quantum mechanics, which underlies QA, implies that a physical 

system will remain in the ground state if a given perturbation acts slowly enough and if there 

is a gap between the ground state and the rest of the system’s energy spectrum [25] (Fig. 1a). 

To use the adiabatic theorem to solve optimization problems, we can specify an initial 

Hamiltonian, HB, whose ground state is easy to find (typically a transverse field), and a 

problem Hamiltonian, HP, that does not commute with HB and whose ground state encodes 

the solution to the problem we are seeking to optimize [26]. We then interpolate from HB to 

HP by defining the combined Hamiltonian H(s) = A(s)HB + B(s)HP, with 0 ≤ s = t/tf ≤ 1, 

where A(s) and B(s) are, respectively, decreasing and increasing smoothly and 

monotonically, t is time, and tf is the total evolution, or annealing time. The adiabatic 

theorem ensures that the ground state of the system at t = tf will give the desired solution to 

the problem, provided the interpolation is sufficiently slow, i.e., tf is large compared to the 

timescale set by the inverse of the smallest ground state gap of H(s) and by dH(s)/ds [27] 

(Fig. 1a). When QA is implemented in a physical device, temperature and other noise effects 

play an important role; thermal excitation and relaxation cannot be neglected and affect 

performance [28–30].

Quantum annealing algorithms were implemented on the D-Wave Two X (DW2X) processor 

installed at the Information Sciences Institute of the University of Southern California. The 

problem Hamiltonians that are used for D-Wave (DW) can be described as Ising spin models 

with tunable parameters [31]. The Ising model assumes a graph G = (V, E) composed of a 

set of vertices, V, and edges, E. Each of the N spins is a binary variable located at a unique 

vertex. For the DW2X, N = 1098, the spins are represented by superconducting flux qubits, 

and G is the so-called Chimera graph (see Supplementary Material, Fig. S1). The problem, 

or Ising, Hamiltonian for this system can be written as

HP = ∑
i ∈ V

hiσi
z + ∑

(i, j) ∈ E
Jijσi

zσ j
z, (1)

where the local fields {hi} and couplings {Jij} define a problem instance, and are 

programmable on the DW2X to within a few percent Gaussian distributed error. The σi
z
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represent both binary variables taking on values ±1, and the Pauli z-matrices. Given a spin 

configuration {σi
z}, HP is the total energy of the system. The initial Hamiltonian is a 

transverse magnetic field: HB = ∑iσi
x, where σi

x is the Pauli x-matrix acting on qubit i. The 

Ising Hamiltonian can be easily transformed into a quadratic unconstrained binary 

optimization (QUBO) problem by applying the following transformation: 

wi =
σi

z + 1
2 ∈ {0, 1}. Problems submitted to DW are automatically scaled so that all hi and Jij 

values lie between −1 and 1, and DW returns a set of spin values {σi
z = ± 1} that attempts to 

minimize the energy given by Eq. (1) (a lower energy indicates better optimization). Much 

attention has been paid to whether the DW devices are capable of delivering quantum 

speedups [32–36]. Here we sidestep this question and instead use the DW2X as a physical 

device that implements quantum annealing for the purpose of solving a problem in machine 

learning, while focusing on performance measures other than speedup.

In order to probe the potential of a machine learning approach that is based on quantum 

annealing, we have used the DW2X processor to solve the simplified formulation of a 

biologically relevant problem: transcription factor (TF)-DNA binding (see Fig. 1b). TFs are 

a key component in the regulation of gene expression, yet the mechanisms by which they 

recognize their functional binding sites in a cell and thereby activate or repress transcription 

of target genes are incompletely understood. Nucleotide sequence, flexibility of both TFs 

and binding sites, the presence of cofactors, cooperativity, and chromatin accessibility are all 

hallmarks that affect the binding specificity of TFs in vivo [37, 38]. As a first step to gaining 

insight into TF binding, it is valuable to understand the intrinsic binding specificity of the 

TFs for DNA, which is optimally gained from in vitro data. Widely used methods to gain 

such an understanding and represent the DNA sequence preferences of TFs are based on 

position weight matrices (PWM) or PWM-like models [39]. In the simplest of these models, 

the binding preference of a TF for each of the four nucleotides of the DNA alphabet {A, C, 

G, T} of a sequence of length L is represented as a 4 × L matrix. Such models implicitly 

treat each position in the DNA sequence as being independent, so that each element of the 

matrix can be thought of as the contribution of a nucleotide at the corresponding position to 

the overall binding affinity. Since the independence of the nucleotide positions is in many 

cases a valid approximation and also because of current restrictions on the size of the DW 

processors, in this work we have used a model consisting of single-nucleotide sequence 

features to show a proof of principle of the use of machine learning via quantum annealing 

in biology. Despite technological limitations of emerging quantum technology, we 

concurrently demonstrate cases in which this form of machine learning using quantum 

annealing outperforms classical machine learning when training with small datasets. This is 

among the very first successful applications of quantum hardware to a realistic, though 

simplified problem in computational biology.

RESULTS

Experimental datasets on TF-DNA binding for a specific TF consist of N sequences of fixed 

length L and N values that express a measure of the binding affinity of the chosen TF to each 
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sequence: {( x n, yn)}
n = 1
N . In other words, the nth sequence is represented by the vector x⃗n = 

(xn,1, xn,2, …, xn,L) with xn,j ∈ {A,C,G,T}, for j = 1, …, L, and yn is the corresponding 

measure of binding affinity. For instance, x⃗n may be ACAACTAA, with yn = 4.95. In this 

work we used binding from three genomic-context protein binding microarray (gcPBM) 

experiments, which use fluorescence intensity as a measure of binding affinity, [40] and two 

high-throughput systematic evolution of ligands by exponential enrichment (HT-SELEX) 

[41–43] experiments, which report relative binding affinity. After preprocessing, the three 

gcPBM datasets consisted of N ≈ 1600 sequences of L = 10 base-pairs. The two HT-SELEX 

datasets consisted of N ≈ 3200 and 1800 sequences of length L = 12 after preprocessing (see 

Methods for a brief descrption of the preprocessing procedure). We used the following one-

hot encoding to represent the sequence as a vector of binary variables: A = 1000, C = 0100, 

G = 0010, T = 0001, and thus transformed x⃗n into a feature vector ϕ⃗n ≡ (ϕn,1, …, ϕn,4L)⊤. 

This encoding scheme [44] was used so that all combinations of inclusion and exclusion of 

the four nucleotides may be identified. Similar to previous studies [44–47] the goal of the 

present work is to identify patterns within the data to qualitatively assess whether the 

strength of a TF binding to a particular unseen sequence is above a certain threshold 

(classification) or to rank sequences in terms of binding affinity (ranking).

To identify conditions in which machine learning with existing quantum annealing devices 

may be of use for studying a simplified biological problem, we report results obtained by 

solving a learning protocol with six different strategies: (i) an adiabatic quantum machine 

learning approach formulated in Refs. [4, 5] (DW), (ii) simulated annealing [48] (SA) (using 

the implementation given in Ref. [49]), (iii) simulated quantum annealing [50] (SQA), a 

classical algorithm that can represent the potential of a noiseless thermal quantum annealer, 

(iv) L2 regularized multiple linear regression (MLR), (v) Lasso [51] and (vi) a scalable 

machine learning tool known as XGBoost (XGB) [52]. DW, SA and SQA are probabilistic 

approaches. SQA is a (classical) path integral Monte Carlo method that has performed very 

similarly to quantum annealing and captures some of its main advantages [53]. MLR is a 

deterministic method with a closed-form solution that returns the weights that best minimize 

the objective function (defined below). Lasso is a method for linear regression that uses an 

L1 norm (see description of objective function below for more details). XGB uses boosted 

trees and has been applied to a variety of machine learning tasks in physics, natural language 

processing and ad-click prediction (e.g., Ref. [54]).

Given a transformed feature vector ϕ⃗n that represents a DNA sequence, the goal of each 

method is to compute a predicted binding score f(ϕ⃗n) that best matches the actual binding 

score. To carry out the task, an objective function must be optimized. The objective function 

consists of two parts: a training loss function and a regularization term that helps avoid 

overfitting. We may write the objective function as

Obj(w ) = R(w ) + Ω(w ), (2)

where R is the training loss, Ω is the regularization term, and w⃗ is the set of feature weights 

to be determined by the six learning algorithms: DW, SA, SQA, MLR, Lasso and XGB. The 
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mean squared error was used as the loss function for all six methods; namely, R(w⃗) = Σn(yn 

− fw⃗(ϕ⃗n))2, where yn is the actual binding score of the nth sequence, and fw⃗(ϕ⃗n) is the 

predicted binding score. The regularization term was Ω(w⃗) = λ‖w⃗‖1 for DW, SA, SQA and 

Lasso, Ω(w ) = λ‖w ‖2
2 for MLR, and Ω(w ) = γS + 1

2 λ∑ j = 1
S w j

2 for XGB, where the ‖·‖1 norm 

is the number of 1’s (Hamming weight), the ‖ · ‖2
2 norm is the square of the Euclidean norm, 

and S is the number of leaves [52]. The calibration of the hyper-parameters λ, γ and S is 

discussed below. The loss function should be minimized and the regularization term 

generally controls model complexity by penalizing complicated models; the strength of the 

regularization was determined using a 100-fold Monte Carlo cross-validation. All six 

methods assume a linear model for the predicted binding affinity, i.e., fw⃗(ϕ⃗n) = w⃗⊤ϕ⃗n = Σj 

wjϕn,j. DW, SA and SQA return binary weights and are probabilistic methods, that is, they 

return a distribution of weights with different energies [values of the Hamiltonian in Eq. (1)]. 

In order to utilize the distribution of weights returned, while not sacrificing the discrete 

nature of the QUBO approach, up to twenty of the best weights were averaged (see 

Supplementary Material, Sec. SID for a description of how excited-state solutions were 

included and Fig. S2 for an example of the decrease in the objective function).

Our computational procedure consisted of three main phases: (1) calibration of hyper-

parameters, (2) training, and (3) testing (Fig. 2). About 10% of the data were held out for 

testing during the testing phase (“test data” or TEST); this test data was not seen during 

calibration and training stages. Calibration and training were carried out using the remaining 

90% of the data (“training data” or TRAIN). Due to the discrete nature of the weights 

returned in the QUBO approach, as well as technological limitations of the DW2X device, 

calibration of hyper-parameter λ was carried out by repeatedly sampling a small number of 

sequences, about 2% and 10% of TRAIN, corresponding to about 30 and 150 sequences, 

respectively. In particular, in the calibration phase we determined the hyper-parameters by 

using 100-fold Monte Carlo (or split and shuffle) cross-validation with training splits of 2% 

and 10% of the training data, varying λ from 2−3 to 26. Monte Carlo cross-validation was 

used so that hyper-parameters would be tuned on a similar number of sequences as used in 

the training phase (in contrast, n-fold cross-validation trains on n − 1
n × 100% of the data). The 

same calibration procedure was applied to tune λ for SA, SQA, MLR and Lasso: the 

resulting values of λ are listed in the Supplementary Material, Tables S1 and S2. In order to 

demonstrate good performance for XGB, γ, S, and several additional parameters needed to 

be tuned (see Methods). In the training phase we used a bagging (bootstrap aggregating) 

procedure [55], randomly sampling with replacement 2% and 10% of the training data, 

namely about 30 and 150 sequences. Each subset of about 30 or 150 sequences formed a 

training “instance”, and the mapping of a subset of data to the hi and Jij seen by DW and SA 

is given in the Methods. Each learning approach (DW, SA, SQA, MLR, Lasso and XGB) 

was trained on the same set of instances. To collect statistics, 50 instances were randomly 

selected with replacement, for each training size. In the testing phase, the predictive power 

was assessed in terms of classification performance (the mean area under the precision-recall 

curve or AUPRC) and ranking performance (the median Kendall’s τ) on the test data unseen 

during calibration and training phases. AUPRC is a measure of classification performance 

that may help discern between similar algorithms when there is a high degree of class 
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imbalance; i.e., when the data set contains many more false labels than true labels [56]. 

Kendall’s τ is a rank correlation coefficient that counts all mismatches equally [57]. 

Additional methodological details are given in Methods and in the Supplementary Material, 

Sec. SI.

Performance on gcPBM Data

To quantify the relative performance of the algorithms in capturing DNA-protein binding 

preferences, we first present results for high-quality gcPBM [40] data of three TFs from the 

basic helix-loop-helix (bHLH) family: the Mad1/Max heterodimer (‘Mad’), the Max 

homodimer (‘Max’), and the c-Myc/Max heterodimer (‘Myc’) [44]. bHLH proteins typically 

recognize and bind as dimers to the enhancer box (E-box), which is of the form CANNTG, 

where N denotes any of the 4 nucleotides (A, C, G, or T). Mad, Max, and Myc are part of a 

gene network that controls transcription in cells; a mutation of Myc has been associated with 

many forms of cancer [58]. For the work here, these three datasets were modified to consist 

of about 1600 sequences of 10 base pairs (bp) in length with the E-box located at the central 

6 bp.

In Fig. 3 we present the AUPRC and Kendall’s τ obtained with the different algorithms 

when training with about 30 (2%) and 150 (10%) sequences. To compute the AUPRC, a 

threshold of the data was introduced: for a threshold at the pth percentile of the data, p% of 

the total number of sequences have binding affinities below the threshold and were set as 

negatives (“false”), and the (1 − p)% of the sequences that have binding affinities above the 

threshold were set as positive (“true”); see Supplementary Material, Sec. SID for a more 

detailed explanation of the procedure to threshold the data and to generate and calculate the 

AUPRC. During the calibration phase, we tuned hyper-parameters with a single threshold at 

the 80th percentile of the data, and during the testing phase we evaluated performance 

between the 70th and the 99th percentiles of the data. Kendall’s τ was evaluated between the 

predicted and measured binding affinity. A higher AUPRC indicates a better ability to 

correctly classify sequences that would be strongly bound by a TF, and a higher τ indicates a 

better ability to accurately rank the binding affinities for different sequences.

For the AUPRC, when training on instances with 2% of the data (left column in Fig. 3a), 

DW, SA and SQA perform very similarly, with DW slightly outperforming SA on the Myc 

data, and are somewhat better than MLR at the 70th and 80th percentiles. MLR tends to do 

better at the higher thresholds: this behavior could be affected by the fact that, during the 

calibration phase, we selected the λ that gave the best performance at the 80th percentile. 

Lasso, which uses the same L1 norm as DW, SA, and SQA, performs better than XGB but 

worse than the other methods. XGB, which has been successfully applied to a growing 

number of learning tasks, does poorly with small training sizes. When training with 10% of 

the data (right column in Fig. 3a), the trends of relative classification performance are quite 

different. XGB and MLR perform very similarly, though XGB does slightly better for the 

Max dataset. DW tends to perform better than SA and SQA, especially at higher thresholds. 

DW’s mean AUPRC is normally worse than MLR and XGB’s, though there is overlap 

between the error bars. SA and SQA generally perform worse than the other methods, but 

not conspicuously so. A more thorough analysis of DW’s classification performance in 
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comparison to SA and SQA with the same problem parameters is reported in the 

Supplementary Material, Figs. S3–S6 and related text in Sec. SII A. Lasso’s performance is 

in general comparable to DW, SA, and SQA and generally seems to perform the worst with 

10% of training data.

For Kendall’s τ (Fig. 3b), Lasso and XGB’s performance are the least favorable when 

training with 2% of the data. SQA generally performs the best over the three TFs, though 

MLR’s median τ is marginally greater than SQA’s for Mad. SA’s performance is very close 

to SQA’s and DW’s performance is slightly worse than the other two annealing schemes, 

though generally better than the typical machine learning algorithms. With 10% of the data, 

DW performs the worst; SA and SQA perform very similarly, with SQA being slightly better 

on two of the three datasets; MLR and Lasso perform very similarly, though MLR looks 

slightly better; and XGB performs the best.

The fact that for Mad and Max with 2% of the training data there is very little variation in 

Kendall’s τ for SA and SQA (and to a lesser extent, DW), is a consequence of the choice of 

hyper-parameters. The specific values of the hyper-parameters that gave optimal value of 

Kendall’s τ during the calibration phase are shown in Supplementary Material, Table S2, but 

we note here that the value of λ is quite high. λ controls the model complexity and is 

closely related to the bias-variance tradeoff, which states that it is impossible to 

simultaneously minimize errors from both bias and variance. A large value of λ introduces a 

large bias [59]; consequently, for the cases where there is no or little variance, SA and SQA 

are essentially extracting the same pattern from all the training data. For the ranking tasks 

shown here with training on about 30 sequences, this gives the best performance for SA and 

SQA. It may be unsurprising, however, that a large value of λ be appropriate for small 

datasets; over-fitting may be a greater concern with smaller amounts of data.

The results presented in Fig. 3 suggest a precise case where current quantum technology 

may offer slight performance advantages relative to classical computational approaches; that 

is, when there is only a small amount of experimental training data available (about 30 

sequences in our specific cases). In both classification and ranking tasks, DW performs 

comparably to SA and SQA and better than Lasso and XGB. MLR performs comparably 

with the annealing methods, but its error bars are much larger, indicating that its 

performance is less stable and more dependent on the training data. Moreover, the similarity 

between DW and SQA suggests that for small training sizes DW is functioning very nearly 

like a noiseless quantum annealer as captured by quantum Monte Carlo simulations. On a 

larger size of the training data DW’s performance decreases relative to the classical 

approaches for all three TFs, though results are still competitive. The decrease in the 

performance of all annealing methods (DW, SA, and SQA) seems to indicate a limitation on 

using methods with discrete weights, which enforce simpler models. Such models may be 

more advantageous with a small number of training samples because they prevent 

overfitting. However, with larger amounts of training data, a simpler model may not 

adequately learn the variation within the data and hence suffer worse performance. 

Nevertheless, the fact that Lasso uses the same L1 norm as the annealing methods (i.e., DW, 

SA and SQA), yet does not perform as well, indicates an advantage of such annealing 
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methods when training with a small number of sequences. This is consistent with the finding 

reported in Ref. [18].

Weight Logos from Feature Weights

Since the one-hot encoding was used with a linear model to represent DNA sequence, the 

weights returned by DW, SA, and MLR reflect the relative importance of the corresponding 

nucleotide at a position in the sequence for the binding score. The magnitude of these 

feature weights for DW, SA, and MLR can be visualized as a “weight logo” and are 

presented in Fig. 4 for the Mad, Max, and Myc gcPBM datasets. XGB, which finds an 

ensemble of trees, does not assign weights to individual nucleotides and hence does not 

easily lend itself to visualization. Similar plots for SQA and Lasso are shown in the 

Supplementary Material Sec. SIIB and Fig. S7. The weight logos show the contribution of 

nucleotides at particular positions to the strength of binding. The contribution of a nucleotide 

at a particular position in the sequence is represented by its height; nucleotides with the 

smallest weights are at the bottom and those with the largest weights are at the top. These 

weight logos in Fig. 4 were obtained by averaging the weights from the 50 training instances 

of the same number of sequences with the AUPRC as the objective. In other words, the logo 

represents the average of the weights that give the AUPRCs shown in Fig. 3a. DW, SA, and 

MLR all perform very similarly and give weight logos that are in good agreement with the 

expected consensus sequence, CANNTG. This demonstrates that all methods are able to 

capture biologically relevant information.

Performance on HT-SELEX Data

HT-SELEX [41, 43] is a method for investigating the relative binding affinity of a TF for a 

particular sequence of DNA, an in vitro technique complementary to PBM. We present 

results for the Max homodimer and TCF4, another member of the bHLH family with 

consensus sequence CANNTG, using data from HT-SELEX experiments [47]. The Max 

dataset consisted of 3200 sequences of 12 bp in length, and the TCF4 dataset was modified 

to contain 1800 sequences of 12 bp in length.

The procedure for splitting each dataset into test and training data was similar to that 

described earlier for the gcPBM datasets (see Fig. 2). There was no overlap between training 

and testing data. The quantitative results for classification and ranking performance of the 

six different machine learning approaches are summarized in Figs. 5a and 5b, and the weight 

logos for DW, SA, and MLR in Fig. 5c. As with the gcPBM data, when training with about 

30 sequences (1% of training data for Max and 2% of the training data for TCF4), DW, SA 

and SQA exhibit the best performance on the test dataset. MLR matches the annealing 

protocols with a threshold at the 70th and 80th percentile of the data, but does worse at the 

higher percentiles of the data (left column in Figs. 5a and 5b). Lasso and XGB have the 

poorest performance. When training with about 150 (5% of training data for Max and 10% 

of the training data for TCF4) sequences, XGB performs very well, as on the gcPBM 

datasets with more training data, and MLR does well on the Max dataset but rather poorly 

on the TCF4 dataset; Lasso is comparable to MLR. DW’s performance is worse than the 

best performing method (XGB), but comparable to the other methods (right column in Fig. 
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5a and 5b). XGB’s performance on the TCF4 dataset is much better than the other methods, 

except when thresholding at the 99th percentile.

In terms of Kendall’s τ (Fig. 5a and 5b, bottom), all methods have similar performance 

when training with about 30 sequences, with the exception of XGB which does not do as 

well on the Max dataset. When training with about 150 sequences, XGB gives the best 

ranking performance, as it did with the gcPBM data, and the other methods all perform 

similarly. Finally, the weight logos in Fig. 5c indicate that DW, SA, and MLR capture 

patterns in the data that give good agreement with the expected consensus sequence. The 

weight logos for the Max and TCF4 HT-SELEX datasets from SQA and Lasso are reported 

in Supplementary Material Fig. S8.

DISCUSSION

In this work we have explored the possibility of using a machine learning algorithm based 

on quantum annealing to solve a simplified but actual biological problem, the classification 

and ranking of TF-DNA binding events. This is the first application of quantum annealing to 

real biological data.

We have shown that DW performs comparably or slightly better than classical counterparts 

for classification when the training size is small, and competitively for ranking tasks. This 

trend is consistent with results on older sets of gcPBM and HT-SELEX data for various TFs, 

which are reported in Supplementary Material, Sec. SIII, Figs. S9–S14. Moreover, these 

results are consistent with a similar approach for the Higgs particle classification problem 

[18], where DW and SA both outperformed XGB with small training sizes, with a slight 

occasional advantage for DWover SA. This robustness across completely different 

application domains suggests that these findings represent real present-day advantages of 

annealing approaches over traditional machine learning in the setting of small-size training 

data. In areas of research where datasets with a small number of relevant samples may be 

more common, a QUBO approach such as quantum annealing realized via DW may be the 

algorithm of choice. On the other hand, when data is plentiful, some of the other state-of-

the-art classical algorithms may be a better choice.

We have also demonstrated that the feature weights obtained by DW reflect biological data; 

the weight logos for the TF-DNA binding data from gcPBM and HT-SELEX are consistent 

with the consensus binding site. This gives some confidence that quantum annealing is 

learning relevant biological patterns from the data. Yet, the approach is not without 

limitations. One limitation comes from the use of a single-nucleotide model to encode the 

DNA binding sites. In fact, we implicitly used a simple model that assumes independence 

between positions in the sequence. This is not always a valid approximation; higher-order 

“k-mer” features or other “shape” features that account for interdependencies between 

nucleotide positions may enhance model precision [44, 45, 47, 60, 61]. We are limited to this 

simple model because of major technological constraints on the number of available qubits, 

which limits the number of features that can be used and thus the length of sequences that 

can be examined. The DW2X processor used for this study has 1098 functional qubits, but 

because of a sparse connectivity between qubits, only 40 or so features can actually be 
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implemented on the device and in our study (see Supplementary Material, Sec. SIA for more 

details). Another serious limitation is the use of discrete weights. Discrete weights seem to 

be advantageous with a small number of training samples, as they enforce simpler models 

and are less prone to overfitting. However, as the amount of training data increases, these 

simpler models do not fare as well as some of the classical methods, which allow for greater 

numerical precision in the weights.

Despite these limitations, it is encouraging to see competitive performance for the simplified 

problem we have studied here. Although the performance advantage from annealing-type 

optimizers makes it difficult to solely attribute the performance to quantumness, this work 

may inspire future investigations into the power of quantum annealing devices. As quantum 

technology continues to develop and advance, it is possible that some of the practical 

limitations will be addressed and the range of problems that can be explored will be 

expanded.

METHODS

QUBO mapping of TF-DNA binding problem

After processing the experimental datasets of N sequences of fixed length L and a measure 

of the binding affinity, we obtained the restricted datasets to which we applied six different 

machine learning strategies. Datasets were formulated as {(ϕ n, yn)}
n = 1
N

, where ϕ⃗n ≡ (ϕn,1, 

…, ϕn,4L)⊤ is the transformed feature vector, and yn is the binding affinity. Solving for the 

simplest model is equivalent to finding a vector of binary weights w⃗ = (w1, …, w4L), where 

wi ∈ {0, 1}, such that the quantity

δ = ∑
n = 1

N
yn − w ⊤ϕ n

2
(3)

is minimized. The problem can then be specified as finding a w⃗opt such that

w opt = arg min
w

∑
n = 1

N
yn − w ⊤ϕ n

2
+ λ‖w ‖1, (4)

where λ is a regularization (penalty) term included to prevent overfitting and ‖w⃗‖1 = Σm wm 

is the number of non-zero weights. To represent the above as an Ising problem, note that we 

can rewrite Eq. (4) as follows:

w opt = arg min
w

∑
n = 1

N
yn − w ⊤ϕ n

2
+ λ ∑

m = 1

4L
wm

= arg min
w

∑
n

yn
2 − 2ynw ⊤ϕ n + w ⊤ϕ nϕ n

⊤
w + λ ∑

m = 1

4L
wm = arg min

w
w ⊤Qw + w ⊤k,

(5)
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where

Q = ∑
n

ϕ nϕ n
⊤

; Qi, j = ∑
n

ϕn, iϕn, j (6)

k = λ1 − 2∑
n

ynϕ n; ki = λ − 2∑
n

ynϕn, i .

Constants that do not affect the optimization are dropped in the latter step. This procedure 

demonstrates that the problem of TF-DNA binding can be formulated as a QUBO problem, 

which in turn can easily be transformed into an Ising Hamiltonian of the form in Eq. (1) and 

passed to D-Wave. The data normalization procedure is described in Supplementary 

Material, Sec. SI C.

Technical details of algorithms

In order to solve practical problems of interest on DW, an embedding procedure must be 

used (see Supplementary Material, Sec. I A). Some additional preprocessing was also 

performed for DW and SA to ensure that all response values were feasible (see 

Supplementary Material, Sec. SI C). DW, SA, SQA, MLR, Lasso and XGB were run on the 

same set of instances for assessment of the quantum annealer on the chosen problem. The 

experimental quantum processor, DW2X, was designed and built by D-Wave Systems, Inc. 

For each instance a total of 10000 anneals (“runs”) were collected from the processor, run 

with an annealing time of 20µs. SA and SQA are classical analogues of quantum annealing 

that perform annealing on a classical and path integral Monte Carlo simulation of the Ising 

spin glass, respectively. SA and SQA were run with 10000 sweeps (each sweep is an update 

of all spins) per repetition (or “anneals”) with an initial inverse temperature of 0.1 and a final 

inverse temperature of 3, for a total of 10000 repetitions. The SA code was adapted from 

Ref. [49], and an in-house version of SQA was used. MLR is a widely used technique to 

minimize the loss function shown in Eq. (4), with the convex penalty term λ‖w ‖2
2 instead of 

the linear penalty term. Lasso has the linear penalty term [51]; XGB uses boosteed trees 

[52]. The weights w⃗ returned by MLR, Lasso and XGB are real-valued, whereas the weights 

returned by DW, SA and SQA (which solve a QUBO/Ising problem) are binary. In addition, 

DW, SA and SQA are probabilistic, meaning that a distribution of weights with different 

energies [the value of HP in Eq. (1)] are returned. Up to 20 of the lowest energy weights 

were included for both DW, SA and SQA (see Supplementary Material, Sec. SID for more 

details). The lower the energy, the better the particular solution is at minimizing Eq. (4). In 

contrast, MLR, Lasso and XGB are deterministic and return a single solution.

In the calibration phase, only one hyper-parameter, λ was tuned for DW, SA, SQA, MLR 

and Lasso. All five methods were tuned separately for both classification and ranking tasks, 

resulting in different optimal λ for each method (see Supplementary Material Tables S2 and 

S3 for final values of λ). With an older dataset we varied both the number of sweeps for SA 

and the value of λ but results were not significantly different; hence, here we only vary λ for 
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SA. SA also has various other parameters that are related to the algorithm itself, including 

number of runs, initial and final temperature, and the cooling schedule, all of which affect 

the optimization performance. These parameters were not tuned. Similar additional 

parameters for DW, including annealing time and number of runs, were also not tuned. 

XGB’s performance depends on several hyper-parameters, and more careful tuning was 

necessary in order to give competitive performance. XGB parameters [52] that were 

considered include γ, the max depth, and min child weight (all of which control model 

complexity), subsample, colsample bytree, (which add randomness to make training robust 

to noise), as well as learning rate, eta. Rather than doing a full grid search over all these 

parameters, parameters were tuned sequentially; i.e., one value of η was fixed, then the best 

value of max depth and min child weight were found. The optimal γ for those values was 

then found; and finally subsample and colsample bytree tuned. η was then varied and the 

process repeated. η was varied from 0.05 to 0.3, max depth from 3 to 20, min child weight 

from 1 to 20, γ from 0 to 1, and subsample and colsample bytree both from 0.6 to 1.

In the testing phase, we evaluated performance based on two metrics: the AUPRC for 

classification performance and Kendall’s τ for ranking performance. For the AUPRC, we 

reported mean values with standard deviations as error bars, whereas for Kendall’s τ the 

median value was presented.

Data processing and availability

Original probes for the gcPBM [40] data contained 16000–18000 sequences of 36 bp in 

length with the fluorescence intensity as a measure of binding affinity. The same data is used 

in [44] and may be downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) under 

accession number GSE59845. Because of current limitations of the architecture of the DW 

device that limit the number of features that may be used, the data was truncated to the 

central 10 bp. For each sequence of 10 bp, we calculated its average gcPBM signal. In other 

words, all sequences in the datasets were unique. The final Mad, Max, and Myc datasets 

consisted of 1655, 1642, and 1584 sequences, respectively, of length 10 bp, and the 

logarithm base 2 with fluorescence intensities was used. The HT-SELEX data came from 

mammalian TFs [42] that was re-sequenced with on average 10-fold increase in sequencing 

depth [47]. The sequencing data is available at the European Nucleotide Archive (ENA - 

https://www.ebi.ac.uk/ena; study identifier PRJEB14744) and was pre-processed following 

the protocol in [47]. After this first step of pre-processing, the Max and TCF4 datasets 

consisted of 3209 and 15556 sequences of length 12 bp and 14 bp, respectively. The Max 

dataset did not require further truncation, but one bp on the left and right flanks were 

trimmed for the TCF4 dataset, giving a modified dataset of 1826 sequences of length 12 bp. 

As with the gcPBM data, the average relative affinity was averaged for each truncated 

sequence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Illustration of the principles and purpose of this work. (a) Top: Quantum versus classical 

adiabatic annealing processes. With quantum annealing there is the possibility for the system 

state (red) to tunnel through a changing barrier (black) and arrive at the ground state; for 

classical annealing, the system must rely on thermal fluctuations (temperature T > 0) to 

overcome any energy barriers. Bottom: Typical spectrum of instantaneous energy 

eigenvalues during adiabatic quantum optimization. The ground state energy at s = 0 has a 

significant gap to the next energy level. The speed at which the optimization can take place 

depends on the size of the minimum gap. (b) Using simplified datasets of a small number of 

sequences derived from actual binding affinity experiments, we use D-Wave, a commercially 

available quantum annealer, to classify and rank binding affinity preferences of a TF to 

DNA.
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FIG. 2. 
Schematic overview of the data handling procedure. About 10% of the data were held out 

for testing ( TEST) and was unseen during the calibration and training phases. The 

remaining 90% of the data were used as calibration and training ( TRAIN). For DW, SA, and 

MLR, in the calibration step, hyper-parameter λ was tuned using a 100-fold Monte Carlo 

cross-validation. For XGB, several other hyper-parameters were tuned (see Methods for a 

list). During the training step, a procedure similar to bagging (bootstrap aggregating) was 

used by randomly sampling a 2% and 10% replacement of the data 50 times to give 50 

training instances. In the testing step, the area under the precision-recall curve (AUPRC) of 

the best performing weights for each of the 50 training instances was evaluated on TEST, 

which was unseen during training and calibration, to evaluate generalization of classification 

performance. The calibration, training, and testing procedure was identical for ranking tasks, 

with the exception that Kendall’s τ was used as the metric of performance instead of the 

AUPRC.
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FIG. 3. 
Quantitative performance on held-out experimental test dataset of two different types of 

tasks for three high quality gcPBM datasets. (a) The mean AUPRC for Mad, Max, and Myc 

plotted versus threshold at certain threshold percentiles of the data, when training with 2% 

of the data (left) and 10% of the data (right). In both cases 50 instances were randomly 

selected for training and performance of the 50 trained weights is evaluated on the same 

held-out test set. Error bars are the standard deviation. (b) Boxplot of Kendall’s τ on held-

out test dataset. Red ‘+’ indicate outliers, gray line represents the median. The bottom and 

top edges of the box represent the 25th and 75th percentiles, respectively.
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FIG. 4. 
Comparison of feature weights visualized as weight logos for DW, SA, and MLR. Weights 

represent the relative importance of a nucleotide at each position for the binding affinity. 

These weight logos were obtained using the Mad, Max, and Myc gcPBM datasets when 

training with the AUPRC as the objective.
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FIG. 5. 
Summary of results for HT-SELEX data. (a) Comparison of the AUPRC (top) and Kendall’s 

τ (bottom) when training with 1% of the data (left) and 5% of the data (right) for Max. Error 

bars are standard deviation over 50 instances. (b) Comparison of the AUPRC (top) and 

Kendall’s τ (bottom) when training with 2% of the data (left) and 5% of the data (right) for 

TCF4. (c) Weight logos for Max and TCF4 from training with the AUPRC as the objective.
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