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Abstract 

Background:  Biodiesel is a valuable renewable fuel made from derivatized fatty acids produced in plants, animals, 
and oleaginous microbes. Of the latter, yeasts are of special interest due to their wide use in biotechnology, ability to 
synthesize fatty acids and store large amounts of triacylglycerols while utilizing non-food carbon sources. While yeast 
efficiently produce lipids, genetic modification and indeed, lipid pathway metabolic engineering, is usually required 
for cost-effective production. Traditionally, gas chromatography (GC) is used to measure fatty acid production and 
to track the success of a metabolic engineering strategy in a microbial culture; here we have employed vibrational 
spectroscopy approaches at population and single cell level of engineered yeast while simultaneously investigating 
metabolite levels in subcellular structures.

Results:  Firstly, a strong correlation (r2 > 0.99) was established between Fourier transform infrared (FTIR) lipid in intact 
cells and GC analysis of fatty acid methyl esters in the differently engineered strains. Confocal Raman spectroscopy 
of individual cells carrying genetic modifications to enhance fatty acid synthesis and lipid accumulation revealed 
changes to the lipid body (LB), the storage organelle for lipids in yeast, with their number increasing markedly (up 
to tenfold higher); LB size was almost double in the strain that also expressed a LB stabilizing gene but considerable 
variation was also noted between cells. Raman spectroscopy revealed a clear trend toward reduced unsaturated fatty 
acid content in lipids of cells carrying more complex metabolic engineering. Atomic force microscopy-infrared spec-
troscopy (AFM-IR) analysis of individual cells indicated large differences in subcellular constituents between strains: 
cells of the most highly engineered strain had elevated lipid and much reduced carbohydrate in their cytoplasm 
compared with unmodified cells.

Conclusions:  Vibrational spectroscopy analysis allowed the simultaneous measurement of strain variability in metab-
olite production and impact on cellular structures as a result of different gene introductions or knockouts, within a 
lipid metabolic engineering strategy and these inform the next steps in comprehensive lipid engineering. Addition-
ally, single cell spectroscopic analysis measures heterogeneity in metabolite production across microbial cultures 
under genetic modification, an emerging issue for efficient biotechnological production.
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Background
Biodiesel is a versatile renewable fuel composed of fatty 
acid methyl esters produced from animal and plant 

lipids-triacylglycerols (TAGs) [1, 2]. Microbial oils also 
have advantages as a source of TAG: microorganisms can 
be grown on non-food sugars, are minimally affected by 
seasons, generally robust and have short life cycles [1]. 
Many types of oleaginous eukaryotic species accumulate 
TAG in lipid bodies (LB), intracellular organelles con-
sidered primarily as storage vesicles for neutral lipids, 
in amounts up to 70% of total DCW biomass [1, 3, 4]. 
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However, for cost-effective and high yielding production 
of TAG in oleaginous organisms such as yeast, metabolic 
pathway engineering and maximizing yield across the 
cultures is necessary [1, 3, 5, 6].

The metabolic engineering strategies for improvement 
of lipid production include up and down regulation of 
genes involved in the main steps of yeast lipid produc-
tion: fatty acid (FA) biosynthesis, lipid accumulation 
and sequestration [1, 7]. Increased fatty acid production 
can be achieved by higher expression of aldehyde dehy-
drogenase (ALD), acetyl-CoA synthetase (ACS) [8] and 
acetyl-CoA carboxylase (ACC) [9, 10] and FA accumula-
tion in TAG is catalyzed by diacylglycerol acyltransferase 
(DGAT) [7] and other acyltransferases. Heterologous 
expression of highly active acyltransferases such as the 
DGAT1 from Arabidopsis thaliana has been shown to 
increase lipid yield in the yeast Saccharomyces cerevisiae 
[11] and similarly, LB stabilization proteins such as caleo-
sin (AtClo1) [12] have been shown to support LB forma-
tion. Down regulation of lipid mobilization enzymes such 
as the major TAG lipase, Tgl3, in S. cerevisiae, can also 
increase lipid content of cells [13].

Another factor affecting the productivity of microbi-
ally produced lipids is heterogeneity in individual cell 
performance across a culture [14]. Some of the variance 
is due to the stochastic nature of biological processes 
within gene regulation, transcription and translation, but 
response can be further distorted by variable responses 
to environmental conditions [15] including genetic engi-
neering. While heterogeneity in cellular processes among 
isogenic microbial cells in a population has been known 
for some time, recent developments in visualization tech-
nologies have allowed measurement and monitoring of 
metabolite production both of populations and single 
cells within.

The formation and growth of LBs in cells are most com-
monly analysed by fluorescence imaging or histochemi-
cal staining [16]; these enable the visualization of LBs 
in multiple cells at once, but without providing details 
of their chemical composition. Vibrational spectros-
copy-based techniques such as infrared (IR) and Raman 
spectroscopy (RS) are used in combination with digital 
imaging to enable rare insights into single cells of micro-
algae and yeast [17–20]. In particular, confocal Raman 
spectroscopy (CRS) has revealed intracellular structures 
such as LBs, due to its high spatial resolution falling in 
the range of few hundred nm depending on the excitation 
wavelength [21] and chemical composition information 
of selected intracellular structures [18, 19, 22]. The spa-
tial resolution of imaging with the use of conventional IR 
spectroscopy is restricted by wavelength diffraction spa-
tial resolution limit (~ 5.5 µm), making it less suitable for 
the study of intracellular structures of microorganisms. 

Recently, however, a novel technique has been developed, 
based on a combination of IR spectroscopy and Atomic 
Force Microscopy (AFM–IR). In AFM–IR, IR absorp-
tion spectrum is acquired indirectly, by measuring the 
resulting thermal expansion of the sample. This approach 
overcomes the limitation of conventional IR-based imag-
ing and achieves a spatial resolution of ~ 100  nm, thus 
enabling analysis of cellular constituents at the single cell 
level.

The aims of this research were to determine the effec-
tiveness of metabolic pathway engineering approaches 
for enhanced lipid content in yeast through an examina-
tion of subcellular structures including LBs and to exam-
ine the heterogeneity of response in S. cerevisiae yeast 
cultures via vibrational spectroscopic approaches. We 
measured the overall changes in lipid content and other 
metabolites at a population level in whole cells by ATR-
FTIR following the introduction of genetic modifications, 
then undertook detailed studies of subcellular structures 
and changes in their chemical composition in single cells 
using CRS and AFM–IR. These approaches provided 
detailed, single cell information on subcellular struc-
tures at high-resolution for the engineered strains and 
also allowed representative sampling of the population 
for these traits. The increase in the total lipid content of 
engineered cells demonstrated in bulk samples reflected 
either a greatly increased number or greatly increased 
size of LBs; the increased size was likely due to the influ-
ence of the LB stabilizing protein, caleosin, expressed in 
these cells. In engineered yeast, LB fatty acid composi-
tion shifted towards lower content of UFA relative to SFA 
in the highly lipidic strains and cytoplasmic carbohydrate 
stores were heavily reduced. Vibrational spectroscopy 
analysis of yeast cells revealed unprecedented informa-
tion on the effectiveness and effects of metabolic engi-
neering strategies for higher lipid content that will also 
guide future approaches to the field.

Methods
Yeast cell lines and culture conditions
Four engineered strains of S. cerevisiae were evaluated 
in the study and compared with a control strain (CON) 
BY4741 (MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) trans-
formed with three empty vectors. Genes selected for 
metabolic engineering are given in Table  1; the full 
description of the metabolic engineering strategy and 
selection and the combination of genes and expression 
plasmids are given in Ref. [23]. Expression of the intro-
duced genes AtDGAT1, SEACSL641P, ACC1S659A, S1157A, 
AtClo1 was regulated, respectively, by promoters GAL1, 
TEF1, PGK1 and GAL10.

Saccharomyces cerevisiae were maintained based on 
their auxotrophy using yeast synthetic complete (SC) 
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minimal medium, containing 6.7  g/L of yeast nitro-
gen base, 20 g/L glucose as well as a mixture containing 
appropriate nucleotide bases and amino acids for the var-
ious dropout options (SC-Leu, SC-His-Ura, SC-His-Leu-
Ura). All strains were stored in 15% glycerol at −  80  °C 
before being cultured in 5 mL yeast SC minimal medium 
and incubated at 30 °C, 250 rpm, overnight. The culture 
OD600 nm was diluted to approximately 0.4 into 50 mL 
of SC induction medium containing 2% (w/v) galactose 
and 1% (w/v) raffinose in 250 mL flasks. The flasks were 
capped with aluminum foil and incubated at 30  °C, 250 
rpm until cells were harvested at 72 h for the following 
analysis.

GC measurements of total fatty acid content
Harvested cells were pelleted by centrifugation at 3000 
rpm for 5  min, frozen at − 80  °C for ~ 1  h and subse-
quently freeze-dried overnight using a FreeZone® 4.5 
Liter Freeze Dry Systems (Labconco Corporation, USA) 
to obtain the dry cell weight (DCW) of each culture. Dry 
cells (~ 20 mg) were treated with 2 mL methanol/hydro-
chloric acid/chloroform (10:1:1, v/v/v) and heated at 
90 °C for 1 h in sealed test tubes to convert lipids to fatty 
acid methyl ester (FAME). FAME was washed with 0.9% 
NaCl solution (1  mL) and extracted with hexane after 
mixing. FAME samples (1 µL) were analyzed by Agilent 
7890A gas chromatography with flame ionization detec-
tion (GC-FID) as described previously [11].

Lipid body visualization using confocal fluorescence 
microscope
Imaging of lipid droplets after Nile red (Sigma-Aldrich, 
USA) staining of unfixed stationary phase yeast cells 
was undertaken 72 h after induction of gene expression 
[11, 24]. 1 mL of harvested cells were transferred into a 
1.5 mL reaction tube and washed twice with 1 mL sterile 
50 mM Tris–HCl (pH 7.5). 1 µL of Nile Red stock solu-
tion was added into the cell suspension to obtain the final 
concentration of 1  μg/mL, gently mixed, incubated for 
20  min at room temperature and centrifuged at 1000g 

for 2  min. 1 μL of dense cell suspension was mounted 
on a standard microscope slide and imaged by a Leica 
Microsystems SP5 confocal microscope coupled with 
HCX PL APO 63×/1.4 OIL CS oil-immersion objective 
in Monash Micro Imaging, Monash University and the 
data collected by Leica LAS X (Leica Microsystems, Inc.) 
microscope control software.

Sample preparation for vibrational spectroscopy‑based 
techniques
Yeast cells in phosphate buffered saline (PBS) were col-
lected by centrifugation (1000 rpm, 5 min) and the pellet 
resuspended in 500  µL of ultrapure water, gently mixed 
and again centrifuged. This step was repeated 3 times to 
ensure removal of any residual PBS. The final pellet was 
resuspended in 500 µL of ultrapure water. For each yeast 
strain, 100  µL of the suspension was placed on each of 
two CaF2 slides and air-dried to obtain a dispersed layer 
of single cells. From each set of two samples, one was 
subjected to Raman measurements and the other was 
mounted on a flat magnetic stainless-steel substrate and 
designated for AFM–IR measurements. The remaining 
suspension (300  µL) was centrifuged and the pellet was 
placed directly on the Attenuated Total Reflection (ATR) 
crystal.

ATR‑FTIR measurements
ATR-FTIR data were recorded using a Bruker Alpha 
FTIR (Ettlingen, Germany) spectrometer with an ATR 
sampling device containing a single bounce diamond 
internal reflection element and equipped with a globar 
source, KBr beam splitter and a deuterated triglycine 
sulfate detector. Spectra were recorded at a resolution 
of 6  cm−1 in the spectral range of 4000–900  cm−1. For 
each strain, 3  biological replicates were studied and for 
each of these, 3  technical replicates were recorded (nsin-

gle_strain = 9, ntotal = 45). Background spectra were col-
lected directly prior to each measurement (64 scans). 
After recording the background, 0.5  µL of yeast pellet 
was placed on the crystal and air-dried for approximately 
10 min. Each spectrum was recorded using 64 co-added 
interferograms.

Raman measurements
Raman measurements were collected using WITec con-
focal CRM alpha 300 Raman microscope (WITec, Ulm, 
Germany). The spectrometer was equipped with an 
air-cooled solid-state laser operating at 532  nm, a CCD 
detector, cooled to − 60  °C and 600 grooves/mm grat-
ing. The laser was coupled to the microscope via an 
optical fiber with a diameter of 50  µm. For data collec-
tion, a dry Olympus MPLAN (100×/0.90NA) objec-
tive was used. The monochromator of the spectrometer 

Table 1  Saccharomyces cerevisiae strain names and  intro-
duced genes

Δ indicates endogenous gene was knocked out
a  pSP-GM2, pIYC04, pESC-leu2d

Strain Genes expressed

CON Empty vectorsa

HBY03 AtDGAT1

HBY14 AtDGAT1 Tgl3Δ

HBY20 AtDGAT1 Tgl3Δ Ald6 SEACSL641P

HBY31 AtDGAT1 Tgl3Δ Ald6 SEACSL641P ACC1S659A, S1157A AtClo1
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was calibrated using Raman scattering line produced by 
a silicon plate (520.5 cm−1). For each strain, 3 biological 
replicates were studied and for each of these replicates, 
6  individual cells were mapped (nsingle_strain = 18, nto-

tal = 90). The size of mapped area was adapted individu-
ally, depending on the size of the cell. Data were collected 
in the spectral range of 3705–0  cm−1, with the spectral 
resolution of 3  cm−1. The integration time for a single 
spectrum was 0.1–0.3 s. Laser power was adjusted indi-
vidually for each sample, not exceeding the range of 5–7 
mW. Raman measurements and initial data analysis were 
performed using WITec software (WITec Plus, Ulm Ger-
many). Raman images were constructed by integration of 
selected marker bands without any preprocessing. Clus-
ter analysis was carried out after cosmic spike removal 
(CRR) and background subtraction (polynomial fit, 2nd 
order). The Raman data were analyzed with k-means 
Clustering (KMC) using the Manhattan distance and 
Ward’s algorithm.

AFM–IR measurements
AFM–IR measurements were performed with a NanoIR2 
system (Anasys Instruments Inc., Santa Barbara, USA). 
The IR source was an optical parametric oscillator 
(OPO) laser, producing a 10 ns pulse at a 1 kHz repeti-
tion rate. A silicon cantilever (AppNano, Mountain View, 
CA 94043, USA) was used with nominal radius of 10 nm 
and a  nominal spring constant of 0.5  N/m. The system 
was purged with N2 to control humidity. For each strain, 
3 biological replicates were studied, with 6 single cells 
investigated for each biological replicate (nsingle_strain = 18, 
ntotal = 90). All single spectra were collected in the range 
of 1800–900  cm−1 with a spectral resolution of 8  cm−1 
and IR maps at fixed wavenumber values, to investigate 
the distribution of selected components (specific wave-
number values are given in Results). Simultaneously to 
each IR map, the AFM height and deflection images were 
acquired. The maps were subsequently combined in Mat-
Lab (Mathworks, Natick, USA), PLS_toolbox (Eigenvec-
tor research, Manson, USA) and analyzed using k-means 
clustering to identify the presence and location of LBs. 
Following this analysis, single spectra were recorded 
from cytoplasm and LBs. All presented single spectra 
were normalized using the Standard Normal Variate 
(SNV) method and smoothed using the Savitzky-Golay 
algorithm with 13 smoothing points.

Statistical tests
Absorbance data obtained for the engineered and con-
trol yeast strains were assessed for statistical significance 
by one way analysis of variance (ANOVA) at p < 0.01, 
α = 0.05; where significant differences were indicated, 

Student’s t test was applied the post hoc to data for engi-
neered strains compared to control.

Results and discussion
Total fatty acid content: correlation between GC‑FAME 
and ATR‑FTIR spectroscopy
The cell lines were firstly characterized using gas chroma-
tography (GC) and ATR-FTIR spectroscopy, to provide 
an overview of the total fatty acid content (Fig. 1). As can 
be seen from the GC results (Fig. 1c), the total fatty acid 
content increased in all modified cell lines compared to 
control. The most significant increase was observed in 
the HBY31 cell line carrying alterations in 6 lipid-modify-
ing enzymes, and the increases in lipid were proportional 
to the number of introduced genes. The same trend was 
observed in the ATR-FTIR spectra, particularly using the 
spectral ranges between 1800 and 1500 (Fig.  1d, f ) and 
3050–2800 cm−1 (Fig. 1e, g).

The first region (1800–1500 cm−1) includes the band at 
1745 cm−1 (Fig. 1d, black arrow), attributed to stretching 
of C=O groups of lipids, whereas the second one (2800–
3050 cm−1) contains a variety of bands originating from 
stretching of CH2 and CH3 groups in lipid chains [25]. 
Increase in the intensity of the band at 1745 cm−1 as well 
as the bands in the high wavenumber region between dif-
ferent cell lines is clearly visible (Fig.  1d–g) and follows 
the same trend as an increase in the total fatty acid con-
tent assessed from GC (Fig.  1c). Calculation of the ratio 
of those bands to the amide I band (Fig. 1a, b) enabled the 
visualization of changes in the lipid to protein ratio [26] 
in the studied cell lines, as it represents the total fatty acid 
content in the dried mass of cells. A PLS regression model, 
built on the basis of 2nd derivatives of ATR-FTIR spectra 
in the high wavenumber region, enabled the prediction of 
total fatty acid content (as a percentage of dry cell weight). 
The correlation between predicted and assessed from GC 
total fatty acid content for the validation set, together with 
the parameters of the PLS regression model, is shown in 
Fig. 1h. This approach provides a fast and straightforward 
measure of the effectiveness of lipid metabolic engineer-
ing strategy. The 2nd derivatives of ATR-FTIR spectra 
revealed significant variation in the band at 1636  cm−1 
(Fig. 1f ) assigned to deformation vibration of water, most 
likely due to intracellular water [27]. No correlation was 
observed between this and any of the lipid-related bands.

Our initial analysis of metabolically engineered cells 
undertaken on populations of whole cells addressed the 
basic question of lipid production between strains and 
demonstrated the power and rapid analysis of vibra-
tional spectroscopy similar to that previously reported 
for naturally occurring yeasts by Ami et al. [28]. However, 
to enable us to address questions relating to subcellular 
structures and their chemical components and in regard 
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Fig. 1  Results of the assessment of total fatty acid content obtained via (a, b, d–h) ATR-FTIR and (c) GC for all studies cell lines (CON, HBY03, HBY14, 
HBY20 and HBY31). (a, b) The ratio of lipid to protein obtained on the basis of ATR-FTIR spectra calculated as the ratio of: a the band at 1745 cm−1 to 
the amide I band and b the bands in high wavenumber region to the amide I band. c The total fatty acid content obtained for all cell lines through 
GC. Detailed fatty acid quantification from GC is presented in Additional file 1: Table S1. All bar charts (a–c) show the results obtained together with 
their standard deviation (SD). d, e Average ATR-FTIR spectra (with SD) of all cell lines and g, h their 2nd derivatives (with SD) used for calculation of 
ratios presented in (a) and (b) are shown in the range (d, f) 1550–1800 cm−1 and (e, g) 2800–3050 cm−1. Average ATR-FTIR spectra in the whole 
measured range (3600–600 cm−1) are presented in Additional file 1: Fig. S1, S2. h Results of prediction of the total fatty acid content for the valida-
tion set by the PLS regression model (2800–3050 cm−1) on the basis of 2nd derivatives of ATR-FTIR spectra. ***p < 0.01 vs control and **p < 0.05 vs 
control
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to cell-to-cell variability within metabolic engineered 
cells required spectroscopic approaches with greater spa-
tial resolution power.

High‑resolution CRS visualization and chemical analysis 
reveals subcellular structures and the impact of metabolic 
engineering
To confirm the presence of lipid bodies and estimate their 
amount, fluorescence imaging of the Nile Red stained 
cell lines was performed (Fig.  2). The results confirm 
the presence of LBs in all studied cell lines, with a clear 
increase in number in the engineered lines compared to 
control. In addition, amongst the highest engineered line 
(HBY31), numerous LBs of significantly larger diameter 
were observed (Fig.  2) but without providing any infor-
mation about the composition of LBs or other intracel-
lular structures. By comparison high spatial CRS imaging 
of HBY31 cells visualized LBs via lipid-related bands at 
1444 cm−1 (bending mode of CH2), 1656 cm−1 (stretch-
ing mode of C=C) or 1740 cm−1 (stretching mode C=O) 
and chemical content through spectra to reveal the pres-
ence of saturated (SFA, 1444  cm−1), unsaturated fatty 
acids (UFA, 1656  cm−1) as well as triglycerides (TAG, 
1740 cm−1) (Fig. 3). These confocal spectra ensured the 
collection of data only from a  selected plane of given 
thickness and thus provide information exclusively about 
LBs, without interference of lipids from the cytoplasm 
and cell wall. Cell-to-cell variability in the presence of 
key metabolites within HBY31 cells is evident within the 
sample as shown in Fig. 3.

By imaging the cell in different planes, a three-dimen-
sional chemical profile was mapped with the lipid-related 
bands, attributed to LBs, clearly visible within the cell 
(Fig.  4a). Via selection of the appropriate plane inside 
the cell covering a thickness of ~ 300 to 400 nm and spa-
tial identification of LBs within this plane, spectra were 
obtained from LBs only. Simultaneously, all other cel-
lular structures were studied by integration of marker 
bands related to their chemical components (Fig.  4b–f) 
and cluster analysis performed (Fig.  4g) from all spa-
tially localised and averaged spectra obtained from sub-
cellular structures (Fig.  4h). As can be seen, the LBs 
(Fig.  4b, g, h: red) contained bands attributed to SFAs 
(1444, 1304  cm−1), UFAs (1656, 1268  cm−1), TAGs 
(1742  cm−1) and phospholipids (1085  cm−1). The CRS 
spectrum of cell walls (Fig.  4g, h: dark blue) had a  sig-
nificantly different profile, characteristic of carbohydrates 
(e.g., 901, 1075  cm−1) with some protein contributions 
(1662  cm−1). Cytoplasm (Fig.  4d, g, h: green) consisted 
mainly of protein (1662, 1342, 1314  cm−1), includ-
ing, e.g., phenylalanine (1007  cm−1) and heme. Within 
the cytoplasm, areas of high heme content (1590, 1132, 
753 cm−1) can be identified (Fig. 4e, g, h: brown). Heme 

(iron protoporphyrin IX) is an essential molecule for 
yeast; it serves as a prosthetic group in enzymes and pro-
teins especially those involved in transporting oxygen or 
in oxidation reactions in addition to its many roles in cell 
signaling, etc. Furthermore, cluster analysis revealed the 
presence of a large structure (Fig. 4f–h: light blue), char-
acterised by marker bands at 1160 and 693 cm−1, attrib-
uted to inorganic polyphosphate (PolyP) [22]. PolyP has 
been reported to accumulate in a  variety of organisms 
including yeast at up to 20% of dry cell weight [29] and 
while some biological functions of PolyP are known, its 
exact physiological role remains unclear. Here, PolyP 
accumulations were observed only in the most highly 
engineered cell line (HBY31).

Lipid body characteristics and fatty acid composition 
of individual engineered yeast cells
To investigate the variability in presence of LBs, their size 
and composition within the same metabolic engineered 
line and between the cell lines, CRS imaging was applied 
to a total of 90 cells drawn equally from all strains. The 
distribution of selected components (organic matter, 
lipids and heme) from a subgroup of these cells is shown 
in Fig. 5 together with the total number of observed LBs 
in each cell line and their average diameters. In the case 
of the control, HBY03 and HBY14 strains show single 
LBs (per cell) with a diameter of ~ 1 µm, or lacking obvi-
ous LBs, with a minor increase in the number of LBs in 
the engineered lines compared to control. A significant 
increase in the number of LBs in cells of HBY20 and 
HBY31 was observed, with HBY20 having the highest 
among all strains and with LBs present in every cell.

Interestingly, LBs in HBY20 were only slightly increased 
in size (diameter 1.21 ± 0.40  µm) compared to control 
(diameter 0.87 ± 0.23  µm) (Fig.  5). For HBY31 strain, 
LBs were observed in all cells, however, in two types of 
arrangements. Some cells, similarly to HBY20, contained 
multiple LBs with a diameter of approximately 1 µm, but 
others contained a single large LB which filled the cell 
almost entirely (Fig.  5, HBY31 Panel G). This resulted 
in fewer but overall significantly larger LBs in HBY31 
(2.14 ± 1.08  µm) compared to any other strain. HBY31 
was the only strain assessed in this study that expressed 
caleosin (Table 1), a lipid droplet stabilizing protein origi-
nating from plants which may account for the larger LBs 
observed here.

For a detailed investigation of LB composition, aver-
age spectra of each LB from each cell line (calculated 
from spectra of single LBs) were generated and variability 
measured (Fig.  6). Spectra of LBs contain several bands 
in the fingerprint region that are attributed to UFAs 
(1656, 1268 cm−1) and SFAs (1444, 1304 cm−1) with the 
ratio of intensities of I1656/I1444 being among the best 
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Fig. 2  Images showing: (a, d, g, j, m) fluorescence results, (b, e, h, k, n) visible image in transmission and (c, f, i, l, o) overlay of visible and fluores-
cence image obtained for the: (a–c) CON, (d–f) HBY03, (g–i) HBY14, (j–l) HBY20 and (m–o) HBY31 yeast cell line at 72 h culturing. The scale bar is 
presented at the bottom right corner of each image
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indicators of fatty acid unsaturation [30]. An alternative 
approach for measuring fatty acid unsaturation by com-
paring intensities at 3012 and 2855  cm−1 is much less 
sensitive to unsaturation changes. No significant differ-
ence was found in the degree of unsaturation in LBs from 
HBY03 and HBY14 strains compared to control, but a 
significant decrease in unsaturation of LBs was observed 
for HBY31 (0.32 ± 0.05), and to a lesser extent HBY20 
(Fig. 6). The observed decrease in fatty acid unsaturation 
was unlikely to be due to the larger size of LBs in HBY31 
as the reduction was also observed in HBY20 for which 
no change in LB size was noted. This result indicated a 
shift to higher saturated fatty acid content in LBs in the 
more engineered strains measured via spectroscopy and 
the result was supported by GC analysis of fatty acid 
composition (Additional file  1: Table S1). It should be 
noted that CRS analysis was specifically measured in LB 
whereas GC analysis encompassed the whole cell fatty 
acid composition.

The shift to higher saturated fatty acid content in the 
most highly engineered strains was not only due to the 
specificity of the introduced acyltransferase, DGAT1, for 
saturated fatty acids as the AtDGAT1 gene was expressed 
in all strains but maybe also due to limited quantities of 
unsaturated fatty acids available for conversion to tria-
cylglycerol. ∆9-Unsaturated fatty acids are essential com-
ponents of plasma membranes of yeast [31] and may 
be preferentially directed to these locations potentially 
resulting in more saturated fatty acids directed to triacyl-
glycerol production through the enhanced expression of 
diacylglycerol acyltransferases.

Comprehensive mapping of cellular constituents by AFM–
IR
To obtain a comprehensive measure of biochemical 
changes in cells resulting from induced genetic modifica-
tions, further analysis of the composition of cytoplasm 
and, in particular, carbohydrate content was required. 
The ability to simultaneously study the composition 
of intracellular structures without the need to isolate 
them is an advantage of high spatial imaging via vibra-
tional spectroscopy. However, as described earlier, the 
cytoplasm of engineered yeast contains significant and 
varying amounts of heme in the form of clusters and 
dispersed within the cytoplasm (Fig.  4e, g, h-Brown). 
The raised and variable Raman background due to heme 
content effectively conceals less intense signals such 
as carbohydrate-related bands excited at lower wave-
lengths and therefore, IR-based spectroscopy is more 
useful to investigate carbohydrate components at high 
spatial resolution. However, as the spatial resolution of 
conventional IR imaging does not exceed ~ 5 µm, a more 
sophisticated approach based on AFM–IR imaging was 
applied in our case. In AFM–IR the phenomenon of IR 
absorption is not measured directly, but by measur-
ing the thermal expansion of the sample resulting from 
application. Therefore, the spatial resolution of imaging 
with the use of AFM–IR is no longer limited to ~ 5 µm, 
but can be significantly smaller (~ 100 nm), enabling the 
measurement of spectra representing explicitly the com-
position of subcellular structures. AFM–IR mapping 
with selected bands corresponding to proteins, lipids 
and carbohydrates was performed on 6 replicate cells 
for each strain and the images were combined and ana-
lysed via cluster analysis to confirm presence (or absence) 
of LBs and determine their precise location within the 
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Lipid bodies
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TAG
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a b c d e

Fig. 3  Distribution of selected components in HBY31 cells obtained by confocal imaging via Raman spectroscopy. The cell area was visualized 
through the integration of: a all bands in the fingerprint region (‘Organic matter’, 1800–400 cm−1) and b integration of the band corresponding to 
νs(CH2) of proteins (‘Proteins’, 2925 cm−1). LBs can be visualised by integration of lipid-related bands corresponding to: c δ(CH2) in saturated fatty 
acids (‘SFA’, 1444 cm−1), d ν(C=C) in unsaturated fatty acids (‘UFA’, 1656 cm−1) and e ν(C=O) in triglycerides (‘TAG’, 1740 cm−1). The obtained results 
enable not only to visualise LBs, but also to demonstrate the presence of SFA, UFA and TAG specifically within those structures, as well as show 
homogenous distribution of proteins in the cytoplasm. Size of the imaged area: 12.86 × 12.36 µm
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cell. Subsequently, single spectra (5–10) were collected 
from areas corresponding to LBs and cytoplasm. A high 
prevalence of LBs in the HBY31 and HBY20 strains were 
observed, in agreement with results shown previously by 
other techniques applied in this study.

Focussing on HBY31 strain, Fig. 7a–d shows the AFM 
height profile recorded simultaneously with each AFM–
IR map and the relatively even thickness of the cell 
(approximately 3 µm). The presence of LBs was revealed 
through imaging of the absorbance at 1740  cm−1 
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the distribution of selected components. The depth profiling was done with a step size of 300 nm. The distribution of Organic matter is demon-
strated on the basis of integration of bands in the range 3050–2800 cm−1 and visualises the cell. The integration of the band at 1444 cm−1 enables 
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1444 cm−1 (‘Lipids’), (d) 2925 cm−1 (‘Proteins’), (e) 753 cm−1 (‘heme’), (e) 1160 cm−1 (‘Polyphosphate’). g, h Cluster analysis results obtained for the cell 
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(stretching of C=O from lipids) (Fig. 7f ) and 1264 cm−1 
(deformation of CH2 of lipids) (Fig.  7g). The protein 
(Fig.  7e) and carbohydrate (Fig.  7h) distribution in the 
cells were homogenous, as these signals originate from 
both cytoplasm and cell wall, with the latter being of even 
thickness across the cell. A comparison between AFM–
IR spectra of LB (Fig.  7i, red) and cytoplasm (Fig.  7i, 
black) of the same HBY31 cell showed large differences, 
the LB spectrum was dominated by lipid-related signals 
(1740, 1464, 1080  cm−1) and an intense phospholipid 
band (1080  cm−1, stretching of PO2) originating from 
the LB membrane. The spectra of the HBY31 cytoplasm 
(Fig.  7i, black) has higher protein (1656  cm−1) to lipid 
(1740 cm−1) ratio compared with the LB spectra (Fig. 7i, 
red). A comparison of 2nd derivatives of AFM–IR spec-
tra of cytoplasm from both HBY31 (Fig.  7j, black) and 
control (Fig.  7j, blue) showed interesting differences: 
although the HBY31 cytoplasm shows lower inten-
sity due to lipids than LB from the same cell, it reveals 
a higher lipid content in the cytoplasm, compared to the 
control cell (Fig.  7j, blue). In terms of metabolic engi-
neering, the measurement of significant quantities of 
lipid in the cytoplasm suggests the lipid accumulation 
and sequestration strategies for HBY31 cells are out of 

balance with production, and lipid storage capacity of 
LBs in this strain has been overwhelmed. In addition, a 
band of significant intensity at 1044 cm−1 in control cells 
(Fig.  7j, blue) attributed to carbohydrate, was absent in 
the cytoplasm of HBY31 (Fig.  7j, black), suggesting an 
acute reduction of the carbohydrates in favour of enrich-
ment of lipids in the cytoplasm of HBY31.

AFM–IR reveals cell‑to‑cell variability in concentrations 
of key metabolites
The AFM–IR spectra obtained from individual cells in 
all strains were analysed with respect to the relationship 
between carbohydrate and lipid content, and variance 
between samples. The average spectra for cytoplasm for 
each strain are shown in Fig.  8 together with the vari-
ance within the strain. The lipid content in the cytoplasm 
(e.g., 1740  cm−1) undoubtedly increases, from low lev-
els in control cells, through higher amounts for HBY03 
and HBY14, to very high concentrations for HBY20 and 
HBY31 cell lines (Fig. 8a, c marked with a star), and the 
intra-strain variability in cytoplasm lipid increases. Con-
current with the increase of the intensity of lipid-related 
bands with more engineered strains, was a decrease 
in intensity of the bands in the range 1100–900  cm−1 
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(Fig. 8b). A detailed comparison of 2nd derivative spectra 
revealed the contribution of different components in this 
region: for control, HBY03 and HBY14, the carbohydrate-
related band at 1044  cm−1 was clearly present (Fig.  8c, 
black arrows) and of significant intensity. For cytoplasm 
of HBY20, the carbohydrate band was just visible but sub-
stantially lower and the emergence of the phospholipid 
band at 1080  cm−1 was evident (Fig.  8b). As discussed 
previously, the cytoplasm of HBY31 cells had almost no 
intensity at 1044  cm−1 whereas the band at 1080  cm−1 
became more prominent (Fig. 8b). Altogether, the AFM–
IR results demonstrate the increase in lipid content and a 

simultaneous decrease in the carbohydrate content in the 
cytoplasm, from high carbohydrate and low lipid in con-
trol cells to the reversed ratio in the HBY31 strain.

Vibrational spectroscopy analysis has previously been 
shown to be highly informative for measurement and 
location of target metabolites such as lipids in cultured 
cells of wild-type microalgae and yeast [17, 19, 32–40] 
and in selected studies that include heterologous expres-
sion of lipid stabilizing proteins [41]. Our study is the 
first to our knowledge where the effects of the sequen-
tial introduction of a complex metabolic engineering 
pathway into an organism have been measured using 
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vibrational spectroscopy techniques and have revealed 
valuable insights into areas for further improvement.

Conclusions
Here, we have used vibrational spectroscopy techniques to 
measure the impact of metabolic engineering approaches 
for high lipid production in yeast at both the single cell 
level and averaged and detailed information about the 
chemical composition of subcellular structures. The ratio of 
lipid-related bands (e.g., 1740 cm−1) to amide I was dem-
onstrated to be useful as a quick marker of the total lipid 
content. An established PLS regression model allowed 
the successful prediction of total fatty acid content from 
the ATR-FTIR spectrum, demonstrating the ability of this 
technique to provide the same information as GC, but 
within few minutes and without the need for complex sam-
ple preparation. Fluorescence imaging enabled us to visual-
ise LBs, confirming their highest prevalence and size in the 
HBY31 strain. Furthermore, two high spatial imaging tech-
niques based on vibrational spectroscopies were applied 
(CRS, AFM–IR) and demonstrated substantial changes in 
intracellular composition with more complex metabolic 
engineering. CRS imaging provided an insight into LBs 
composition, revealing a significant decrease in the degree 
of unsaturation of lipids in the most highly engineered 
strain—HBY31. In addition, CRS imaging demonstrated 
significantly increased LB number in HBY20 and HBY31 
strains together with a dramatic increase in LB size for 
HBY31 that expressed the LB stabilizing protein, caleosin. 
Finally, the AFM–IR imaging demonstrated large changes 
in the composition of cytoplasm between strains. A 
decrease in carbohydrate content with concurrent increase 
in lipid content of cytoplasm was observed, progressing 
from control through to HBY31 strains. The high concen-
tration of lipid in the cytoplasm of HBY31, in particular, 
suggests lipid production rate in these engineered yeast is 
exceeding the rate of lipid sequestration in LBs which could 
lead to lipotoxicity. Additionally, the shift towards higher 
saturated fatty acids levels in stored lipids suggests a reduc-
tion in the availability of unsaturated fatty acids for TAG 
formation in the cells. Altogether, our results have demon-
strated an increase in the total lipid content resulting from 
genetic modifications, with the multigene modification 
approach (Ald6, SEACSL641P, ACC1S659A, S1157A, AtDGAT1, 
AtClo1 and Tgl3△) in the HBY31 cell line being most effec-
tive. The vibrational spectroscopy approach allowed the 
simultaneous measurement of intra-strain variability in 
metabolite production and impact on cellular structures 
from metabolic engineering.

Additional file

Additional file 1. Supplementary Information.

Abbreviations
ACC: acetyl-CoA carboxylase; ACS: acetyl-CoA synthetase; AFM–IR: atomic 
force microscopy–infrared spectroscopy; ALD: aldehyde dehydrogenase; 
AtClo1: caleosin from Arabidopsis thaliana; ATR-FTIR: attenuated total 
reflection-Fourier transform infrared spectroscopy; CRS: confocal Raman 
spectroscopy; DCW: dry cell weight; DGAT1: diacylglycerol acyltransferase; FA: 
fatty acid; FAME: fatty acid methyl ester; GC: gas chromatography; GC-FID: gas 
chromatography with flame ionization detector; IR: infrared (spectroscopy); 
LB: lipid body; PBS: phosphate buffer solution; PLS: partial least square; PolyP: 
inorganic polyphosphate; RS: Raman spectroscopy; SFA: saturated fatty acid; 
SNV: standard normal variate; TAG: triacylglycerol; Tgl3: triacylglycerol lipase 3; 
UFA: unsaturated fatty acid.

Authors’ contributions
KK collected ATR, Raman, AFM–IR, performed the data analysis, prepared the 
figures and drafted the manuscript. HP cultured the yeast cell lines, collected 
and analysed GC and fluorescence data and contributed to writing and cor-
recting the manuscript. BR contributed to the experimental planning and cor-
rected the manuscript. VH contributed to the design of the experiment, data 
interpretation and contributed to the writing of the manuscript. All authors 
read and approved the final manuscript.

Author details
1 Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton 
Campus, Clayton, VIC 3800, Australia. 2 Department of Chemical Engineering, 
Monash University, Clayton Campus, Clayton, VIC 3800, Australia. 

Acknowledgements
We thank Mr. Finlay Shanks for technical support of the instrumentals and are 
grateful to Ms. Yanqin Xu and Prof. Hongyuan Yang for the gift of the strains 
BY4741 and BY4741 Tgl3∆.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets used and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
We acknowledge the financial support from ARC linkage Project 
(LE160100185) and Monash University for the graduate and international 
postgraduate research scholarships awarded to HP. B.R.W. is supported by an 
Australian Research Council (ARC) Future Fellowship Grant FT120100926.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 19 February 2018   Accepted: 4 April 2018

References
	1.	 Liang MH, Jiang JG. Advancing oleaginous microorganisms to 

produce lipid via metabolic engineering technology. Prog Lipid Res. 
2013;52(4):395–408.

	2.	 Lennen RM, Pfleger BF. Microbial production of fatty acid-derived fuels 
and chemicals. Curr Opin Biotechnol. 2013;24(6):1044–53.

	3.	 Lamers D, van Biezen N, Martens D, Peters L, van de Zilver E, Jacobs-van 
Dreumel N, Wijffels RH, Lokman C. Selection of oleaginous yeasts for fatty 
acid production. BMC Biotechnol. 2016;16(1):45.

https://doi.org/10.1186/s13068-018-1108-x


Page 15 of 15Kochan et al. Biotechnol Biofuels  (2018) 11:106 

	4.	 Liu Y, Zhang C, Shen X, Zhang X, Cichello S, Guan H, Liu P. Microorganism 
lipid droplets and biofuel development. BMB Rep. 2013;46(12):575–81.

	5.	 Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J. Production of fatty 
acid-derived oleochemicals and biofuels by synthetic yeast cell factories. 
Nat Commun. 2016;7:11709.

	6.	 Sitepu IR, Garay LA, Sestric R, Levin D, Block DE, German JB, Boundy-Mills 
KL. Oleaginous yeasts for biodiesel: current and future trends in biology 
and production. Biotechnol Adv. 2014;32(7):1336–60.

	7.	 Friedlander J, Tsakraklides V, Kamineni A, Greenhagen EH, Consiglio AL, 
MacEwen K, Crabtree DV, Afshar J, Nugent RL, Hamilton MA, et al. Engi-
neering of a high lipid producing Yarrowia lipolytica strain. Biotechnol 
Biofuels. 2016;9(1):77.

	8.	 Chen Y, Daviet L, Schalk M, Siewers V, Nielsen J. Establishing a platform 
cell factory through engineering of yeast acetyl-CoA metabolism. Metab 
Eng. 2013;15(Supplement C):48–54.

	9.	 Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-
CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in 
Hansenula polymorpha. Mol Biotechnol. 2009;42(3):327–32.

	10.	 Tai M, Stephanopoulos G. Engineering the push and pull of lipid bio-
synthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. 
Metab Eng. 2013;15(Supplement C):1–9.

	11.	 Peng H, Moghaddam L, Brinin A, Williams B, Mundree S, Haritos VS. Func-
tional assessment of plant and microalgal lipid pathway genes in yeast 
to enhance microbial industrial oil production. Biotechnol Appl Biochem 
2017:1–7. https://doi.org/10.1002/bab.1573.

	12.	 Froissard M, D’Andrea S, Boulard C, Chardot T. Heterologous expression 
of AtClo1, a plant oil body protein, induces lipid accumulation in yeast. 
FEMS Yeast Res. 2009;9(3):428–38.

	13.	 Dulermo T, Nicaud J-M. Involvement of the G3P shuttle and β-oxidation 
pathway in the control of TAG synthesis and lipid accumulation in Yar-
rowia lipolytica. Metab Eng. 2011;13(5):482–91.

	14.	 Martins BM, Locke JC. Microbial individuality: how single-cell het-
erogeneity enables population level strategies. Curr Opin Microbiol. 
2015;24:104–12.

	15.	 Fritzsch FS, Dusny C, Frick O, Schmid A. Single-cell analysis in biotech-
nology, systems biology, and biocatalysis. Ann Rev Chem Biomol Eng. 
2012;3:129–55.

	16.	 Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H, 
Kohlwein SD. The emergence of lipid droplets in yeast: current status and 
experimental approaches. Curr Genet. 2013;59(4):231–42.

	17.	 Smith R, Wright KL, Ashton L. Raman spectroscopy: an evolving tech-
nique for live cell studies. Analyst. 2016;141(12):3590–600.

	18.	 Heraud P, Marzec KM, Zhang QH, Yuen WS, Carroll J, Wood BR. Label-
free in vivo Raman microspectroscopic imaging of the macromolecular 
architecture of oocytes. Sci Rep. 2017;7(1):8945.

	19.	 Kochan K, Kus E, Filipek A, Szafranska K, Chlopicki S, Baranska M. Label-
free spectroscopic characterization of live liver sinusoidal endothelial 
cells (LSECs) isolated from the murine liver. Analyst. 2017;142(8):1308–19.

	20.	 Perez-Guaita D, Kochan K, Martin M, Andrew DW, Heraud P, Richards 
JS, Wood BR. Multimodal vibrational imaging of cells. Vib Spectrosc. 
2017;91(Supplement C):46–58.

	21.	 Shao Y, Fang H, Zhou H, Wang Q, Zhu Y, He Y. Detection and imaging of 
lipids of Scenedesmus obliquus based on confocal Raman microspectros-
copy. Biotechnol Biofuels. 2017;10:300.

	22.	 Noothalapati H, Sasaki T, Kaino T, Kawamukai M, Ando M, Hamaguchi 
HO, Yamamoto T. Label-free chemical imaging of fungal spore walls by 
Raman microscopy and multivariate curve resolution analysis. Sci Rep. 
2016;6:27789.

	23.	 Peng; H, He; L, Haritos VS: Impact of yeast lipid pathway engineering 
and bioprocess strategy on cellular physiology and lipid content. J Ind 
Microbiol Biotechnol. 2018 (under review).

	24.	 Wolinski H, Kohlwein SD. Microscopic and spectroscopic techniques to 
investigate lipid droplet formation and turnover in yeast. Membrane Traf-
ficking: Second Edition; 2015. p. 289–305.

	25.	 Cavagna M, Dell’Anna R, Monti F, Rossi F, Torriani S. Use of ATR-FTIR micro-
spectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a 
base wine. J Agric Food Chem. 2010;58(1):39–45.

	26.	 Kochan K, Maslak E, Chlopicki S, Baranska M. FT-IR imaging for quantita-
tive determination of liver fat content in non-alcoholic fatty liver. Analyst. 
2015;140(15):4997–5002.

	27.	 Mojet BL, Ebbesen SD, Lefferts L. Light at the interface: the potential 
of attenuated total reflection infrared spectroscopy for understanding 
heterogeneous catalysis in water. Chem Soc Rev. 2010;39(12):4643–55.

	28.	 Ami D, Posteri R, Mereghetti P, Porro D, Doglia SM, Branduardi P. Fourier 
transform infrared spectroscopy as a method to study lipid accumulation 
in oleaginous yeasts. Biotechnol Biofuels. 2014;7(1):12.

	29.	 McGrath JW, Quinn JP. Intracellular accumulation of polyphosphate by 
the yeast Candida humicola G-1 in response to acid pH. Appl Environ 
Microbiol. 2000;66(9):4068–73.

	30.	 Kochan K, Maslak E, Krafft C, Kostogrys R, Chlopicki S, Baranska M. Raman 
spectroscopy analysis of lipid droplets content, distribution and satura-
tion level in non-alcoholic fatty liver disease in mice. J Biophotonics. 
2015;8(7):597–609.

	31.	 Stukey JE, McDonough VM, Martin CE. The OLE1 gene of Saccharomyces 
cerevisiae encodes the delta 9 fatty acid desaturase and can be function-
ally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem. 
1990;265(33):20144–9.

	32.	 Shao YN, Fang H, Zhou H, Wang Q, Zhu YM, He Y. Detection and imaging 
of lipids of Scenedesmus obliquus based on confocal Raman microspec-
troscopy. Biotechnol Biofuels. 2017;10:300.

	33.	 Wang TT, Ji YT, Wang Y, Jia J, Li J, Huang S, Han DX, Hu Q, Huang WE, Xu 
J. Quantitative dynamics of triacylglycerol accumulation in microalgae 
populations at single-cell resolution revealed by Raman microspectros-
copy. Biotechnol Biofuels. 2014;7:58.

	34.	 Chiu LD, Ho SH, Shimada R, Ren NQ, Ozawa T. Rapid in vivo lipid/carbohy-
drate quantification of single microalgal cell by Raman spectral imaging 
to reveal salinity-induced starch-to-lipid shift. Biotechnol Biofuels. 
2017;10:9.

	35.	 He YH, Zhang P, Huang S, Wang TT, Ji YT, Xu J. Label-free, simultaneous 
quantification of starch, protein and triacylglycerol in single microalgal 
cells. Biotechnol Biofuels. 2017;10:275.

	36.	 Noothalapati H, Sasaki T, Kaino T, Kawamukai M, Ando M, Hamaguchi 
H, Yamamoto T. Label-free chemical imaging of fungal spore walls by 
Raman microscopy and multivariate curve resolution analysis. Sci Rep. 
2016;6:27789.

	37.	 Huang CK, Hamaguchi H, Shigeto S. In vivo multimode Raman imaging 
reveals concerted molecular composition and distribution changes dur-
ing yeast cell cycle. Chem Commun. 2011;47(33):9423–5.

	38.	 Heraud P, Marzec KM, Zhang QH, Yuen WS, Carroll J, Wood BR. Label-
free in vivo Raman microspectroscopic imaging of the macromolecular 
architecture of oocytes. Sci Rep. 2017;7:8945.

	39.	 Perez-Guaita D, Kochan K, Martin M, Andrew DW, Heraud P, Richards 
JS, Wood SR. Multimodal vibrational imaging of cells. Vib Spectrosc. 
2017;91:46–58.

	40.	 Deniset-Besseau A, Prater CB, Virolle MJ, Dazzi A. Monitoring triacylglycer-
ols accumulation by atomic force microscopy based infrared spectros-
copy in Streptomyces species for biodiesel applications. J Phys Chem Lett. 
2014;5(4):654–8.

	41.	 Jamme F, Vindigni J-D, Méchin V, Cherifi T, Chardot T, Froissard M. 
Single cell synchrotron FT-IR microspectroscopy reveals a link between 
neutral lipid and storage carbohydrate fluxes in S. cerevisiae. PLoS ONE. 
2013;8(9):e74421.

https://doi.org/10.1002/bab.1573

	Single cell assessment of yeast metabolic engineering for enhanced lipid production using Raman and AFM-IR imaging
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Yeast cell lines and culture conditions
	GC measurements of total fatty acid content
	Lipid body visualization using confocal fluorescence microscope
	Sample preparation for vibrational spectroscopy-based techniques
	ATR-FTIR measurements
	Raman measurements
	AFM–IR measurements
	Statistical tests

	Results and discussion
	Total fatty acid content: correlation between GC-FAME and ATR-FTIR spectroscopy
	High-resolution CRS visualization and chemical analysis reveals subcellular structures and the impact of metabolic engineering
	Lipid body characteristics and fatty acid composition of individual engineered yeast cells
	Comprehensive mapping of cellular constituents by AFM–IR
	AFM–IR reveals cell-to-cell variability in concentrations of key metabolites

	Conclusions
	Authors’ contributions
	References




