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Abstract

Background: Intracellular Na* (K")/H" antiporters (NHXs) have pivotal functions in regulating plant growth,
development, and resistance to a range of stresses. To gain insight into the molecular events underlying their
actions in switchgrass (Panicum virgatum L), we analyzed transcriptomic changes between PvNHX1-
overexpression transgenic lines and wild-type (WT) plants using RNA sequencing (RNA-seq) technology.

Results: The comparison of transcriptomic data from the WT and transgenic plants revealed a large number
of differentially expressed genes (DEGs) in the latter. Gene ontology (GO) and KEGG pathway analyses showed
that these DEGs were associated with a wide range of functions, and participated in many biological processes. For
example, we found that PvNHX1 had an important role in plant growth through its regulation of photosynthetic activity
and cell expansion. In addition, PYNHX1 regulated K™ homeostasis, cell expansion and pollen development, indicating
that it has unique and specific roles in flower development. We also found that transgenic switchgrass exhibited a higher
level of transcription of defense-related genes, especially those involved in disease resistance.

Conclusion: We showed that PYNHXT had an important role in plant growth and development through its regulation of
photosynthetic activity, cell expansion, K™ homeostasis, and pollen development. Additionally, PvNHXT overexpression
activated a complex signal transduction network in response to various biotic and abiotic stresses. In relation to plant
growth, development, and defense responses, PYNHXT also had a vital regulatory role in the formation of a series of plant
hormones and transcription factors (TFs). The reliability of the RNA-seq data was confirmed by quantitative real-time PCR.

Our data provide a valuable foundation for further research into the molecular mechanisms and physiological roles of

NHXs in plants.
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Background

Cells depend on the homeostatic maintenance of pH
within specific cellular compartments to ensure optimal
conditions for metabolic and enzymatic processes as well
as for protein structure and function. Among the many
molecular players, Na"(K")/ H" exchangers (NHXs)
appear to be particularly important for the establishment
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and maintenance of optimal ion and pH gradients,
which are essential for cell function and development
[1]. In plants, NHX antiporters appeared early in
evolution and belong to the CPA1 protein family, which
contains many monovalent cation/ H" antiporters that
contribute to cellular pH, and Na* and K* homeostasis
[2]. NHXs catalyze the electroneutral exchange of Na*
or K" for H" using the electrochemical H" gradient to
direct inward movement of Na* or K" in exchange for
luminal H* [3].

NHXs are ubiquitous in plants and are believed to
have pivotal functions in regulating responses to salt
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stress [4], cold tolerance [5], drought tolerance [6], and
disease resistance [7]. Recently, novel functions of NHX-
type Na"/H" antiporters were identified, including roles
in cell expansion, cell volume regulation, flower
development, stomatal conductance, protein processing,
and vesicular trafficking [8—10]. However, the molecular
mechanisms underlying these functions remain poorly
understood. The recent advances in next-generation
sequencing have enabled genome-wide scale and
transcriptome-level computational analyses. RNA-seq
technology is a powerful method to analyze the expres-
sion of genes at the transcriptome level and will provide
a better understanding of the mechanisms underlying
NHX function.

Switchgrass (Panicum virgatum L.) is a member of the
Poaceae family and is a warm-season C4 perennial grass
native to the U.S. It has been increasingly exploited as a
dedicated bioenergy crop because of its valuable charac-
teristics [11]. However, because it is an outcrossing and
polyploid species, conventional breeding strategies to
improve commercial varieties are severely restricted
[12]. Fortunately, production of transgenic lines with
modification of functional genes related to growth and
resistance have been found to enable production of im-
proved varieties [13-16]. For example, the successful
expression of the enzyme gene PvNHXI was shown to
promote plant growth and increase resistance to salt
stress in switchgrass [16].

In this study, we performed an RNA-seq analysis to
compare the transcriptomes of wild-type (WT) and
transgenic plants overexpressing the PvNHXI gene in
order to gain more insight into the function of NHXs in
plants. This study has produced more information on
the changes in the transcriptome in response to the
overexpression of an NHX gene and sheds light on mo-
lecular mechanisms underlying the functions of NHXs
in switchgrass. Our data provide valuable information
on the potential roles of NHXs in plants.

Methods

Plant material and RNA extraction

Switchgrass (P. virgatum ‘Alamo’) was used in this study.
This cultivar was originally collected in Texas (25°50°
N-36°30" N), and we purchased seeds from Ernst
Conservation Seeds (Meadville, Pennsylvania) in 2010.
Switchgrass callus generated from mature seeds was
transformed with a Ubil301 binary vector (provided by
the Sinogene Scientific Company) harboring a PvNHX1
overexpression cassette using the Agrobacterium-medi-
ated transformation method described previously [16].
Wild-type (WT) and transgenic switchgrass plants were
grown in plastic pots containing a mixture of soil:
vermiculite: humus [1:1:1 (v/v/v)] under the same green-
house environment (16 h/8 h light/dark cycle) in Beijing.
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RNA-seq analysis was carried out using three independ-
ent transgenic lines (L1, L3, L8) and three WT plants
(WT1, WT2, WT3).

When the plants reached the reproductive 1 (R1) stage
(the emergence of the inflorescence from the boot stage)
[17], the mature leaves of internode 3 (I3) from six inde-
pendent plants were pooled for RNA extraction and fro-
zen in liquid nitrogen for later qRT-PCR analysis.

Total RNAs were extracted from switchgrass leaves
using the TRIzol reagent method (Invitrogen, Carlsbad,
CA, USA). A NanoPhotometer® (IMPLEN, CA, USA)
and a Bioanalyzer 2100 system (Agilent Technologies,
CA, USA) were used to quantify and check the quality
of the RNA samples.

Library construction and sequencing

A total of 3 ug RNA per sample was used for sequencing
library construction. Libraries were generated using
NEBNext® Ultra™ RNA Library Prep Kit for Illumina®
(NEB, USA) following the manufacturer’s instructions.
Briefly, poly (A)-containing mRNA was purified from
total RNA using poly-T oligo-attached magnetic beads
(Illumina, San Diego, CA, USA). Then, the mRNA was
broken into short fragments by a fragmentation buffer
(Ambion, Austin, TX, USA); the fragments were used as
templates for cDNA synthesis. First-strand cDNA was
synthesized using random hexamer-primers and M-
MuLV reverse transcriptase (RNase H). Second strand
cDNA synthesis was performed using DNA Polymerase
I (New England Biolabs) and RNase H (Invitrogen).
Poly(A) sequences were added to the 3" ends of cDNA
fragments and sequencing adaptors with hairpin loop
structure were ligated to the cDNA ends. Suitable frag-
ments (150-200 bp) were selected by agarose gel purifi-
cation and enriched by PCR amplification. Finally, the
PCR amplicons were purified using magnetic beads
(Ilumina) and dissolved in EB solution to generate the
sequencing libraries. Library quality was assessed on
the Agilent 2100 Bioanalyzer.

Quality control and sequence assembly

Raw reads obtained from sequencing were filtered to
remove adaptor sequences, empty reads, and low
quality sequences with ‘N’ percentage over 10%. We
then calculated the Q20, Q30, GC-content, and se-
quence duplication levels of the clean data. All the
downstream analyses were based on clean reads with
high quality. The retained high-quality reads were
mapped to the switchgrass reference genome se-
quence, P. virgatum v1.1 (http://www.phytozome.net/
panicumvirgatum; accessed 30 November 2015) using
TopHat v2.0.12 [18]. This step generates a database
of splice junctions based on the gene model annota-
tion file and gives a better mapping result than other
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non-splice mapping tools. An index of the reference
genome was built using Bowtie v2.2.3 [19].

Differential gene expression analysis

To quantify the abundance of transcripts, all reads
from samples were mapped onto the reference tran-
scriptome by HTSeq v0.6.1 [20]. We used the FPKM
(fragments per kilobase of transcript sequence per
million base pairs sequenced) algorithm to normalize
gene expression abundances in each library. A differ-
ential expression analysis was performed using the
DESeq R package (1.18.0) using pairwise comparisons
[21]. The resulting P-values were adjusted using Ben-
jamini and Hochberg’s method for controlling false
discovery rates [22]. Genes with an adjusted P-value
< 0.05 were categorized as differentially expressed.

Gene ontology enrichment and pathway analysis

To identify putative functions of differentially expressed
genes (DEGs), we performed functional annotation using
a BLASTx search of two databases: Gene Ontology (GO)
, and Kyoto Encyclopedia of Genes and Genomes
(KEGG). GO and KEGG enrichment analyses provide all
GO terms or pathways significantly enriched in DEGs in
comparison to the transcriptome background. GO en-
richment was performed using GOseq R package [23],
and the P-values were calculated using Benjamini and
Hochberg’s method [22]. We considered a corrected P-
value < 0.05 as a significantly enriched GO term.

In the KEGG enrichment analysis, the cellular metab-
olism, biochemical pathway, and potential biological be-
havior of DEGs were examined. KOBAS 2.0 (KEGG
Orthology Based Annotation System, v2.0) software was
used to test the statistical enrichment of DEGs in KEGG
pathways [24]. We selected a corrected P-value < 0.05 as
a threshold to determine significant enrichment of the
gene sets.

Novel transcript prediction

The assembled transcripts were compared with the
annotated genomic transcripts from the reference se-
quences to identify novel transcribed regions. The
coding potential calculator (CPC: http://cpc.cbi.pku.
edu.cn/) was used to assess the protein-coding poten-
tial [25].

qRT-PCR assays

Validation of RNA-seq results was carried out using
quantitative real-time PCR (qRT-PCR) analysis. Primers
specific to selected transcripts were designed using
Premier 5.0 software (Premier Biosoft Int., Palo Alto,
CA, USA). Switchgrass wubiquitin-1 gene (PvUBQI)
(GenBank accession number: FL.899020) was used as the
internal control and was amplified using primers
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PvUBQI-F and PvUBQI-R. The qRT-PCR was per-
formed using three biological replicates and three inde-
pendent technical replicates for each sample. Gene
expression levels were calculated using the 2744
method [26]. The normalized values of relative
expression and FPKM values were calculated by log,,
respectively, and the values were used to analyze the
correlation between qPCR and RNA-seq results. The
primer sequences used for qRT-PCR are listed in
Additional file 1.

Results

Morphological characterization of transgenic plants
Transgenic switchgrass overexpressing PYNHX1 showed
better growth and development performance than WT
plants under the same greenhouse environment (Fig. 1).
The transgenic plants had longer shoots, larger stem di-
ameters, and longer leaf blade lengths and widths [16].
Based on the measurement of fresh and dry weights, the
three transgenic lines showed a significantly higher bio-
mass than the WT plants (P < 0.01). As shown in Fig. 1c
and d, root fresh weight and shoot dry weight in the
transgenic lines were 1.55-fold and 1.46-fold, respect-
ively, greater than in the corresponding tissues of WT
plants. These greenhouse phenotypes may vary under
field experiments; field evaluations of yield and related
traits will be performed in a future study.

lllumina sequencing and assembly
In total, 6.60 million raw reads were generated from
control samples and 6.89 million raw reads were gener-
ated from transgenic samples. The average Q20 and Q30
levels and GC-rich contents of the six samples were 97.
46%, 93.52%, and 56.66%, respectively (Table 1). We ob-
tained approximately 40.48 million total reads, of which
approximately 39.66 million passed the Illumina quality
filtering threshold, yielding a quality rate of over 97.98%.
This result indicated that the throughput sequencing
was sufficiently accurate to allow further analysis.
Reference-based transcriptome assemblies of RNA-seq
data were performed using the reference switchgrass
genome sequence. A total of 74.2% for WT plants and
73.9% for transgenic plants were mapped to the refer-
ence genome. Thus, there was no significant difference
between transgenic and WT plants in the proportion
of reads mapped to the reference genome (p<0.01).
A summary of the assembly statistics is provided in
Additional file 2. These reads were then used for ref-
erence guided assembly and differential expression
analysis.

Differentially expressed genes (DEGs) analysis
The aligned reads were used to measure the relative
abundances of the transcripts. A total of 10,995
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Fig. 1 Phenotypes of transgenic PYNHX1 switchgrass compared with WT plants. a Phenotypes of whole plants. b Leaf lengths and leaf widths in
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differentially expressed genes (DEGs) were identified
from comparison of transgenic and WT transcriptomes:
5605 transcripts showed upregulation and 5390 tran-
scripts showed downregulation (Fig. 2a). The abundance
of the different DEGs is shown in Fig. 2b. Expression of
3173 DEGs showed a large change (absolute value of
log, ratio > 5): 1590 of these DEGs were upregulated and
1583 were downregulated.

We identified many upregulated DEGs related to

biosynthesis (Pavir.J25629), chloroplast development
(Pavir.J24058), photosynthetic electron transport (Pavir.
J30556), light-signal transduction (Pavir.Eb03789), car-
bon dioxide fixation (Pavir.J18292), and NAD/NADP
binding (Pavir.Ia04122) were significantly upregulated
(Table 2). Some transcripts with significant upregulation
in transgenic plants were involved in cell division and
cell elongation processes (Additional file 3). Genes in-
volved in plant responses and adaptation to stress, such

photosynthesis. ~ Genes involved in chlorophyll as heat (Pavir.Aa00547, Pavir.J01404), salt (Pavir.
Table 1 Summary statistics of lllumina transcriptome sequencing

wild-type (WT) transgenic line (TG)

WT1 WT2 WT3 L1 L3 L8
Raw Reads 74371174 62,686,086 61,045,884 60,601,736 68,477,486 77,588,252
Clean Reads 72,863,350 61,435,034 59,755,422 59,183,690 67,221,546 76,144,362
Clean Bases 1093 G 922G 896 G 888 G 10.08 G 1142 G
Error (%) 0.01 0.01 0.01 0.02 0.01 0.01
Q20 (%) 976 97.72 97.74 9.4 97.66 97.65
Q30 (%) 93.85 94.12 94.14 91.02 93.99 93.97
GC (%) 57.03 58.21 5717 5447 55.94 57.16
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Fig. 2 Identification of DEGs between transgenic and WT plants. a Volcano plot of the DEGs. b Statistics of genes from different expression levels.
DEGs wetre filtered using adjusted P-value < 0.05 as the threshold. Red spots represent up-regulated DEGs, and green spots indicate down-regulated

Ha00186, Pavir.Ea00535), drought (Pavir.J16055), oxidative
(Pavir.J40048, Pavir.Ba01869), heavy metal (Pavir.Ba00376,
Pavir.Ha00320), and certain herbicides (Pavir.Ea01215,
Pavir.[a04853), were significantly upregulated in transgenic
plants compared to WT plants (Additional file 4). The ex-
pression of ion transport genes (Pavir.Eb03651, Pavir.

J05404, and Pavir.Aa03191), small molecule transport genes
(Pavir.Fa02242, Pavir.Eb02833, and Pavir.]a02157.), and
metal transport genes (Pavir.J06378, Pavir.la01399, and
Pavir.J38980) were also up-regulated (Additional file 5).
These results suggested that PvNHX1I plays diverse roles in

regulating plant development and stress tolerance.

Table 2 Significantly upregulated genes involved in photosynthesis

Gene ID log,Ratio (TG vs.WT) Q value Annotation

Chlorophyll biosynthesis and chloroplast development

Pavir. J25629 Inf 355 E-55 Involved in the chlorophyll biosynthesis
Pavir. J38707 9.5381 6.72 E-37 Involved in chlorophyll b degradation

Pavir. Ea00096 8.8125 141 E-26 Required for proper chloroplast degradation
Pavir. J16419 56144 4.95 E-03 Involved in the formation of chlorophyll
Pavir. J24058 8.5303 861 E-30 Regulate gene encoding chloroplast

Pavir. Ba03510 64468 6.14 E-05 Essential for chloroplast development

Pavir. Eb03460 4.8864 294 E-17 Light-induced chloroplast development
Pavir. J40341 3.8929 5.78 E-05 Regulate chloroplast photosynthetic capacity
Photosynthetic electron transporter and light-signal transduction

Pavir. J30556 Inf 1.59 E-17 Functions as an electron carrier in photosystem |
Pavir. 134572 Inf 1.14 E-40 Functions as an electron transporter

Pavir. 123449 3.0941 7.74 E-03 Electron transfer activity

Pavir. J24058 85303 861 E-30 Positive regulator of photomorphogenesis
Pavir. Eb03789 5.7887 807 E-12 Involved in light-signal transduction

Pavir. 1a02931 5.0042 851 E-04 Involved in light-signal transduction

Carbon dioxide fixation and NAD/NADP binding

Pavir. J05582 50109 2.59 E-04 Eliminate the photorespiratory loss of CO,
Pavir. Ca00150 3.5885 339 E-03 Involved in reversible hydration of CO,

Pavir. J18292 34094 9.05 E-26 Involved in carbon dioxide fixation

Pavir. J30434 Inf 5.72 E-06 Glycerol-3-phosphate dehydrogenase activity
Pavir. 1204122 3.1439 7.00 E-03 Alcohol dehydrogenase (NAD) activity

Pavir. 1204122 3.0679 379 E-03 D-3-phosphoglycerate dehydrogenase
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Functional classification by gene ontology analysis

To evaluate the potential functions of unigenes with
significant transcriptional changes between transgenic
and WT plants, we performed a GO enrichment ana-
lysis. In total, 63 GO terms were functionally classi-
fied into three GO categories, namely molecular
function (35 members), biological processes (23 mem-
bers) and cellular components (5 members). For mo-
lecular function, the overrepresented GO terms were
small molecule binding (GO:0036094), anion binding
(GO:0043168), and transferase activity (GO:0016740).
In the category of biological processes, two GO terms
‘macromolecule  modification (GO:0043412) and
‘phosphorus metabolic process (GO:0006793) were
significantly enriched. The thylakoid term (GO:
0009579; 38.2%) was the largest in the cellular com-
ponents category (Fig. 3).

We further analyzed the overrepresented GO func-
tions within each ontology. The enriched GO terms
of molecular function were classified into two
branches: binding and catalytic activity. This was con-
sistent with the previous functional definition of
PvNHX1. Classification of GO terms enriched in bio-
logical processes showed these were mainly related to
protein phosphorylation and pollen-pistil interactions
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(Additional file 6). All GO terms identified in the cel-
lular components were found to be related to plant
photosynthesis.

Pathway enrichment analysis of DEGs

The metabolic pathways affected by PvNHXI overex-
pression were evaluated by mapping the DEGs to refer-
ence canonical pathways in the KEGG database. A total
of 10,995 DEGs were mapped to 121 KEGG pathways,
and 11 pathways were significantly enriched (P-value <
0.05). Among the significantly enriched pathways were
‘plant-pathogen interaction (KO: sita04626); ‘purine me-
tabolism (KO: sita00230); ‘Peroxisome (KO: sita04146)’
and ‘Porphyrin and chlorophyll metabolism (KO:
sita00860)" (Fig. 4, Additional file 7). Ninety DEGs were
categorized in the ‘plant-pathogen interaction’ pathway.
These included signal transduction components (Ca**
signaling, protein kinase, and phosphatidylinositol signal
molecules), defense response proteins (calcium binding
protein, serine/threonine-protein kinase, and glycerol
kinase), and defense proteins against fungi or bacteria
(Fig. 5). We also identified many genes encoding disease
resistance proteins, such as RPM1 (Pavir. J05404), RGA1
(Pavir. Gb01964), TAO1 (Pavir. Gb01964), and RPPI
(Pavir. J20461) (Table 3). These annotations provide a
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Fig. 3 GO classifications of DEGs between transgenic PvNHXT lines and WT plants. GO terms were functionally classified into three GO categories:
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Y-axis represents GO categories
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valuable resource for investigating the function of
PyNHX1 in switchgrass pathogen defense.

Transgenic switchgrass overexpressing PvNHXI has
been demonstrated to have an altered plant hormone
signal transduction pathway (KO: sita04075). Auxin
signaling-related genes were upregulated in the trans-
genic plants, including SAUR-like auxin-responsive
protein gene (Pavir.Ga00493), auxin efflux carrier gene
(Pavir.J25610), and auxin response factor 5 (Pavir.
J32718) (Table 4). Gibberellin, salicylic acid, jasmonic
acid, brassinosteroids, and abscisic acid signaling-related
genes were also significantly upregulated (g-value < 0.01)
in transgenic plants. Ethylene signaling was altered in
transgenic plants, with upregulation of two genes (Pavir.
Bb03119 and Pavir.Ea01573) and downregulation of two
genes (Pavir.Fa00424 and Pavir.J10765). The cytokinin
biosynthesis genes, Pavir.Ba01358 and APavir.J18777,
were upregulated, while the cytokinin dehydrogenase 11
gene (Pavir.Fa00713) was downregulated in transgenic
plants (Table 4).

Identification of transcription factors
We performed a global transcription-factor classification
of differentially expressed transcripts and identified 452

transcription factors (TFs) belonging to 59 TF families.
Among these TF families, FART and WRKY were most
abundant, followed by bHLH (26, 5.75%), MYB (24, 5.
31%), AP2-EREBP (22, 4.87%), and mTERF (20, 4.42%)
(Fig. 6). Notably, all members in the SBP, HB, TCP, and
CCAAT families were downregulated, and members in
the CAMTA and ARF families were up-regulated. In the
C3H and C2H2 families, similar numbers of up- and
downregulated members were present (Additional file 8).

Validation of gene expression profiles using qRT-qPCR

To confirm the accuracy and reproducibility of the Illu-
mina RNA-seq results, 24 DEGs were selected for qPCR
assays, including growth-related, resistance-related and
transporters-related genes. The qPCR results for selected
DEGs showed good agreement with the transcript-
abundance changes determined by RNA-seq. For example,
Pavir.Ja04853, glutathione S-transferase F11 (GSTF11)
was upregulated 8.85-fold, and the FPKM value in RNA-
seq was 9.32 (Additional file 9). A highly significant correl-
ation was found between the qPCR and RNA-seq (R* = 0.
8591, P<0.01), indicating the reproducibility and
reliability of the RNA-seq data (Fig. 7).
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Fig. 5 DEGs in transgenic switchgrass encode proteins involved in the plant-pathogen interaction pathway (KEGG: sita04626)

Discussion

It was previously shown that transgenic switchgrass
overexpressing PvNHXI exhibited significantly better
growth performance than WT plants (P <0.05) and that
the enhanced growth phenotype was associated with the
expression level of the transgene in different lines [16].
Recent studies have suggested that NHXs play an im-
portant role in orchestrating plant growth by influencing
the rates of photosynthetic activity [27, 28] and cell

expansion [29, 30]. The results of the transcriptome ana-
lysis here are consistent with this suggestion. All GO
terms identified in cellular components were related to
plant photosynthesis (Fig. 3). The level of transcription
of related genes involved in photosynthesis and cell ex-
pansion were significantly upregulated in transgenic
lines (Table 2; Additional file 3). Other studies have
shown that NHXs are abundantly expressed in flower
organs of transgenic rice [31], Arabidopsis [32],
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Table 3 List of disease resistance genes identified in transgenic
compared to WT plants

No. Gene name  Gene ID log,Ratio (TG vsWT)  Q value

1 RPM1 Pavir. J04308 9.0709 262 E-49
2 RGA1 Pavir. Gb01964  8.2700 1.83 E-39
3 RGA2 Pavir. Fa02339  6.0500 1.62 E-42
4 RGA3 Pavir. Ba04033  4.8092 2.71 E-03
5 RGA4 Pavir. Ba02211 74103 9.58 E-30
6 TAO1 Pavir. Ba03591 34021 4.22 E-05
7 RPP1 Pavir. J20461 54335 4.18 E-05
8 RPP13 Pavir. Hb01356  5.8656 295 E-03
9 RPPL1 Pavir. Gb00467  8.0560 2.75 E-30
10 RPP13L3 Pavir. J08640 57515 6.25 E-05
" RPP13L4 Pavir. Fb00106  7.8920 824 E-18
12 RXW24L Pavir. Cb00342  4.9239 1.04 E-02
13 GDPDL2 Pavir. J28202 6.2089 6.28 E-07
14 At1g58400 Pavir. Ha01139 104920 4.06 E-68
15 At1g59780  Pavir. J11190 5.8864 1.69 E-05
16 At1g50180  Pavir. J17143 3.1030 4.78 E-02

mungbean [4], and cowpea [33]. Thus, NHXs would be
expected to be involved in the regulation of plant flower
development. Transgenic switchgrass overexpressing
PvNHX1 was found to display two distinct expression
patterns in key flowering-time regulators, suggesting that
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the role of NHXs in flowering time was complex and
did not simply act through promotion or inhibition
[16]. In this study, our GO analysis indicated that
DEGs in biological processes were associated with
flower development, such as pollen-pistil interaction,
and recognition of pollen and pollination, suggesting
that NHXs might have specific roles in pollen devel-
opment (Fig. 3; Additional file 6). This speculation is
supported by findings from Arabidopsis, in which the
filaments in plants with the double knockout nhxl
nhx2 did not elongate sufficiently to position anthers
at the height of the stigma. Additionally, the anthers
lacked the ability to dehisce and release pollen, lead-
ing to a failure of flower set and silique formation
[34]. Overall, our data point to an important role in
which PvNHX1 regulates K" homeostasis, cell
expansion, and pollen development in stamens, and
that this homeostasis enables filament elongation and
anther dehiscence to occur. Our analysis showed that
the potassium channel gene KCO2 (Pavir. J05404), a
highly selective inward-rectifying potassium channel
[35], and three HAK (high-affinity potassium trans-
porter) genes, that exhibit potassium ion transmem-
brane transporter activity [36], were significantly
upregulated in transgenic plants (Additional file 5).
Moreover, MSP1 (Pavir.Ha01736), which is involved
in cell specification during anther development and
initiation of anther wall formation [37] (Additional

Table 4 Genes in the plant hormone signal transduction pathway with altered expression

Hormone Gene ID log,Ratio (TG vs.WT) Annotation

Auxin PavirJ19751 94224 Involved in auxin-activated signaling pathway
Pavir.Ga00493 34397 SAUR-like auxin-responsive protein; SAUR71
PavirJ25610 34175 Auxin efflux carrier component 1b; PIN1B
Pavir.Fb01962 2.5885 Auxin-induced in root cultures protein; AIR12
PavirJ32718 2.5492 Auxin response factor 5-like; ARF5

Cytokinin PavirBa01358 24615 Cytokinin ribosides 5-monophosphates; LOGL9
PavirJ18777 23612 Histidine containing phosphotransfer; AHP1
Pavir.Fa00713 —2.3029 Cytokinin dehydrogenase 11; CKX11

Gibberellin Pavir.Cbh00641 59078 Synthesis of gibberellin precursor; KS1
Pavir. Aa00893 26192 Gibberellin-regulated protein 3; GASA3

Ethylene PavirBb03119 Inf Acts as a regulator of ethylene signaling; EIN4
Pavir.Ea01573 59235 Involved in the ethylene biosynthesis; ACO1
Pavir.Fa00424 —3.5140 Ethylene insensitive 3-like 3 protein; EIL3
PavirJ10765 —3.1209 Reversion-to-ethylene-sensitivity 1; RTE1

Salicylic acid PavirEb03507 79131 Mediating salicylic acid transcription; HBP1C
PavirHa01753 34826 Salicylic acid-inducible transcription; TGA21

Abscisic acid Pavirlb02120 33525 Abscisic acid 8-hydroxylase 1; CYP707A5

Jasmonic acid PavirJ01580 Inf Jasmonate ZIM domain-containing protein; JAZ

Brassinosteroid Pavir.Fb01473 Inf Brassinosteroid insensitive 1 protein; BRI1
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file 3), and LecRK42 (Pavir.J33874), which is required
for pollen development in Arabidopsis [38],

Were also significantly upregulated in transgenic
plants. These results provide information on the mo-
lecular mechanisms in which NHXs participate in flower
development.

NHXs were previously shown to have a key role in
plant responses to abiotic stresses [4—6, 16]. Our obser-
vations here were consistent with those reports as we
found that transgenic switchgrass had higher levels of
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transcription of related genes, for instance, Pavir.J31898
(general defense protein), Pavir.Ha00186 (response to
salt stress), Pavir.Aa00547 (response to hyperosmotic
and heat shock), and Pavir.J16055 (response to drought
and freezing stress) (Additional file 4). We also found
significant upregulation of genes related to oxidative
stress (Pavir.J40048; Pavir.Ba04000; Pavir.Ba01869) and
heavy metal stress (Pavir.Ba00376; Pavir.Ha00320), sug-
gesting stress responses are activated in transgenic
PvNHX1 lines. To date, little is known about the func-
tion of NHXs in biotic stresses, such as weed stress and
pathogen attack. In the present study, we found that the
glutathione S-transferase genes (Pavir.Ea01215; Pavir.
1a04853), which have a significant detoxification activity
against some herbicides [39], were significantly upregu-
lated (Additional file 4). Our results also showed signifi-
cant enrichment of DEGs related to metabolic pathways
for plant-pathogen interactions (Fig. 4, Additional file 7).
These results suggest a close correlation between NHXs
and plant disease resistance. This speculation is sup-
ported by a report from tobacco (Nicotiana benthami-
ana L.), in which NbNHXI silencing resulted in
increased sensitivity to Phytophthora parasitica var.
nicotianae (Ppn) sensitivity, whereas ectopic expression
of NHXI from Salicornia europaea or Arabidopsis en-
hanced Ppn resistance in tobacco [40]. Here, we sought
to obtain greater insights into the molecular events
underlying NHX activities in plant disease resistance by
analyzing the level of transcription of DEGs involved in
plant-pathogen interaction pathways. Our results
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showed that many DEGs were involved in pathways for
biosynthesis of secondary signaling compounds, such as
Ca®* signaling, protein kinase, and phosphatidylinositol
signaling (Fig. 5). Protein kinases represent an important
mechanism in defense signal transduction, and have
been implicated in a wide variety of plant biotic and
abiotic stress responses [41]. These findings suggest that
overexpression of PvNHXI activated a complex signal
transduction network and enhanced disease resistance.
In addition, the expression levels of many genes encoding
disease resistance proteins were significantly upregulated in
PvNHX1-overexpressing plants, for instance, RPMI1 [42],
RGAs [43], TAOI [44], RPP1 [45], RPPI3 [46], and
GDPDL?2 [47]. We also identified many potential disease
resistance genes, such as RXW24L (Pavir. Cb00342), RPPLI
(Pavir.Gb00467), RPP13L3 (Pavir.J08640), RPP13L4 (Pavir.
Fb00106), Ar1g58400 (Pavir.Ha01139), At1g59780 (Pavir.
J11190), and AtIg50180 (Pavir.J17143) (Table 3). These
disease resistance genes may be a valuable resource for
future molecular breeding to develop plants with greater
protection against multiple diseases.

Plant hormones have vital regulatory roles in plant
growth, development, and defense response. These hor-
mones can be functionally divided into growth hor-
mones  (auxins,  cytokinins,  gibberellins, and
brassenosteroids), and stress hormones (abscisic acid,
jasmonic acid, and salicylic acid) [48]. In the present
study, transgenic plants overexpressing PvNHXI
showed upregulation of five auxin signaling-related
genes, such as SAUR71 [49], PIN1B [50], and ARF5 [51]
(Table 4). PvNHX1 also influenced gibberellin signaling,
which is involved in the regulation of plant growth and
flowering. Most genes involved in cytokinin and brasse-
nosteroid signaling pathways were upregulated, except
CKX11 (Pavir.Fa00713), which catalyzes the oxidation
of cytokinins [52], that was downregulated. Ethylene
plays a crucial role in plant growth and development,
and also functions in regulation of responses to various
biotic and abiotic stresses. Overexpression of PvNHX1
changed the transcription levels of many genes involved
in ethylene biosynthesis and signal transduction (Table
4). In addition, many genes involved in abscisic acid,
jasmonic acid and salicylic acid signaling pathways were
altered, suggesting a close correlation between
PvNHX1-induced plant defense responses and these
hormone-regulated pathways. In general, TFs control
differential gene expression in most major biological
processes. In the present study, many TFs, such as
WRKY, MYB, FAR1, and bHLH, were found to be
either upregulated or downregulated in the transgenic
plants (Fig. 6; Additional file 8). These results indicate
that the critical roles of PvNHXI in plant growth, de-
velopment, and defense are mediated via transcriptional
regulation of related genes and/or TFs.
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Conclusions

This study provides a comprehensive overview of the
regulation of transcription in transgenic switchgrass over-
expressing PvNHX1. We identified a number of DEGs
and annotated these using the GO and KEGG databases.
This study demonstrated that PvNHX1 had an important
role in plant growth and development through its regula-
tion of photosynthetic activity, cell expansion, K*
homeostasis, and pollen development. Focusing on the
regulatory mechanisms of stress response, we found that
PvNHX1 overexpression activated a complex signal
transduction network to enhance disease resistance. Many
known and potential disease resistance genes were also
identified and will be of use in future molecular
approaches to switchgrass breeding. Our analyses also
showed that overexpression of PvNHXI altered the
transcription of hormones and TFs that have roles in the
regulation of plant growth, development, and defense
mechanisms. To our knowledge, this is the first report on
gene expression profiling of transgenic switchgrass
overexpressing PvNHXI using RNA-seq technology.
These data will contribute to our understanding of the
molecular mechanisms underlying the action of NHXs in
plants, and provide important clues for further study of
genes and networks that contribute to growth, develop-
ment and defense responses in switchgrass.
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