Skip to main content
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: Hum Genet. 2017 Dec 29;137(1):15–30. doi: 10.1007/s00439-017-1861-0

Table 4.

Data resources providing quantitative scores for the deleterious impact of non-coding variants on gene regulation

Resource Training Methods INDEL Stand-alone Tools Web Service Batch Data Download Pubmed Reference
Basset Deep Convolutional Neural Network No Python No No 27197224
CADD Linear Kernel Support Vector Machine Yes Python Yes Yes 24487276
CScape Sequential Learning No Python Yes Yes 28912487
DANN Deep Neural Network No Python No Yes 25338716
DanQ Deep Learning No Python No No 27084946
DeepSEA Deep Convolutional Neural Network Yes Yes Yes 26301843
deltaSVM Gapped k-mer Support Vector Machine No R & C++ No No 26075791
EIGEN Unsupervised Spectral Learning No R No Yes 26727659
FATHMM-indel Gaussian Kernel Support Vector Machine Yes Yes Yes 28985712
FATHMM-MKL Multiple Kernel Learning No Python, Perl Yes Yes 25583119
FATHMM-XF Extended Features No Python Yes Yes 28968714
FunSeq2 Weighted Scoring No Perl Yes Yes 25273974
GAVIN Gene-specific Calibration Yes Java, MOLGENIS Yes No 28093075
GenoCanyon Unsupervised Learning No R Yes Yes 26015273
GWAVA Random Forest Classifier Yes Python Yes Yes 24487584
LINSIGHT Probabilistic Modeling/GLM No C++ Yes Yes 28288115
PredictSNP2 Consensus Scoring No N/A Yes Yes (disease-specific) 27224906
PRVCS Composite Likelihood No Java, Perl No Yes 27273672
RSVP Ensemble of Decision Trees No C++ No Upon Request 27406314
SNVrap Integration of 18 Resources No N/A Yes No 25308971