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Abstract

Objective—Surgical service providers play a crucial role in the healthcare system. Amongst all 

the influencing factors, surgical team selection might affect the patients’ outcome significantly. 

The performance of a surgical team not only can depend on the individual members, but it can also 

depend on the synergy among team members, and could possibly influence patient outcome such 

as surgical complications. In this paper, we propose a tool for facilitating decision making in 

surgical team selection based on considering history of the surgical team, as well as the specific 

characteristics of each patient.

Methods—DisTeam (a decision support tool for surgical team selection) is a metaheuristic 

framework for objective evaluation of surgical teams and finding the optimal team for a given 

patient, in terms of number of complications. It identifies a ranked list of surgical teams 

personalized for each patient, based on prior performance of the surgical teams. DisTeam takes 

into account the surgical complications associated with teams and their members, their teamwork 

history, as well as patient’s specific characteristics such as age, body mass index (BMI) and 

Charlson comorbidity index score.

Results—We tested DisTeam using intra-operative data from 6065 unique orthopedic surgery 

cases. Our results suggest high effectiveness of the proposed system in a health-care setting. The 

proposed framework converges quickly to the optimal solution and provides two sets of answers: 

a) The best surgical team over all the generations, and b) The best population which consists of 

different teams that can be used as an alternative solution. This increases the flexibility of the 

system as a complementary decision support tool.

Conclusion—DisTeam is a decision support tool for assisting in surgical team selection. It can 

facilitate the job of scheduling personnel in the hospital which involves an overwhelming number 

of factors pertaining to patients, individual team members, and team dynamics and can be used to 

compose patient-personalized surgical teams with minimum (potential) surgical complications.
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1. Introduction

Surgical service providers’ capabilities, skills, and interactions can highly affect patient 

outcome. Among all the influencing factors, such as pre-operative deviation [1], the success 

of a surgical team highly depends on the individual surgical service providers in the team. 

Ideally, the expertise of individual team members complements each other, and team 

members effectively communicate with each other. An optimal team selection might lead to 

reduced conflicts, better coordination [2], and ultimately better patient outcome. Thus, 

selecting the right providers for a surgical team is crucial for optimizing patient outcome, 

e.g. in terms of number of complications or shorter recovery period. Despite the obvious 

benefits, selecting the optimal team yet remains a difficult task [3].

Much of the prior work in this domain has focused on measuring the performance of 

individual healthcare providers. Such efforts are fraught with challenges, including the need 

to control for patient factors, procedural/diagnostic complexity, effects stemming from the 

practice environment itself, lack of details on outcomes of interest, relative rarity of bad 

outcomes, and difficulty with inferring causality between modifiable healthcare provider 

actions and adverse outcomes. For example, a recent attempt to measure anesthesiologist 

performance in patient pain intensity on arrival to the recovery room instead discovered an 

overriding confounding variable in the identity of the recovery room nurse [4]. Worse, recent 

examinations stemming from an evaluation of cardiac anesthesiologists’ impact on patient 

outcomes, its retraction and subsequent revised republication, revealed incredible sensitivity 

to debatable assumptions on the correlation of healthcare providers to their practice 

environment, assumptions which easily lead to multiple reversals in the interpretation of 

results [5].

Effective functionality of surgical teams is regarded as one of the principles of creating safe 

health care delivery systems [6,7]. Health care settings are high-risk work environments 

especially in surgical settings [8,9]. Improving patient outcome and safety is one of the top 

priorities of hospitals and surgical service providers [9]. The majority of surgical adverse 

events occur in intra-operative settings [10]. Several studies have performed human factor 

analysis in the operating rooms (OR), as a complex and high-risk system, and analyzed the 

relationship between the performance of OR and surgical outcomes [6,11]. In addition, 

several studies have focused on intraoperative complications and used various 

methodologies such as malpractice claim analysis [12,13], root cause analysis [14,15], or 

prospective analysis [16–18]. Despite all the efforts in analyzing the relationships between 

key factors in OR and patient outcome, the relative contribution of the influencing factors is 

still unknown [10].

The relation between effective team function and system’s outcome has been also studied in 

various domains, e.g. team work and safety in airline industry, where a significant relation 

was observed between teamwork and safety.1 Several studies have reported the impact of 

effective teamwork and communication among the team members on patient outcome, e.g. 
in trauma care [19,20] and intensive care [21]. Several studies also specifically focused on 

1For a comprehensive review on teamwork and patient safety in healthcare, please refer to [25].
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teamwork in the OR [17,22–24]. This all indicates the importance of team selection and 

human factors. Surgical services, as one of the major care services, are inherently 

precarious. Thus, a high level of coordination is required among the surgical members with 

different expertise and experience levels. The time and resource limitations, availability of 

providers, and the uncertainty which might exist in complex hospital systems [10], can add 

to the intricacy of the team arrangement and selection procedure.

Team selection in surgery procedures is a crucial task [26] as it might affect patient outcome. 

It involves assigning individuals to tasks that change frequently over time [27]. This multi-

period assignment augments the complexity of the task. The scheduling becomes even more 

complicated when the scheduler aims to match the staff capabilities with the tasks, 

considering the operational timing requirements and limitations [27]. One can imagine that 

finding the best fitted staffs for a task and assigning them to a team can be extremely 

difficult in this context. Current commercially available scheduling software (e.g. Snap 

Schedule,2 ScheduleAnywhere3) consider several factors such as personnel preferences for 

days, shifts, units; and regulatory and union requirements. Despite obvious advantages such 

as accessibility and customization, they do not consider the team structure and history, as 

well as patient’s specific characteristics including previous patient outcomes.

In this paper, we will provide a framework for facilitating decision making in team selection 

based on considering history of teams and their members in terms of surgical complications, 

as well as by considering patient’s characteristics such as age, body mass index (BMI) and 

comorbidity scores. The main contribution of this paper is in using metaheuristic approaches 

for identifying a ranked list of surgical teams personalized for each patient, based on prior 

performance of the surgical teams. To the best of our knowledge, no study thus far considers 

prior interactions with resulting patient outcomes. It should be noted that our focus in this 

paper will be on developing a decision support tool for assisting in team selection, and we 

thus will not discuss other related aspects such as scheduling algorithms.4 This will facilitate 

the job of scheduling personnel in the hospital which involves an overwhelming number of 

factors pertaining to patients, individual team members, and team dynamics. In the rest of 

the paper, we will first provide an overview of the existing literature in Section 2, and then 

we will discuss our approach in more detail in Section 3. The performance of the proposed 

framework is evaluated in the Section 4, finally in the last section we will discuss limitations 

of current work and will point to future directions.

2. Related work

The availability of large-scale datasets and the complex nature of real world problems have 

resulted in development of various intelligent and heuristic approaches in different domains 

[28]. Genetic algorithm (GA), developed by John Holland at the University of Michigan in 

1960’s and 1970’s [29], is a search metaheuristic which belongs to the larger class of 

evolutionary algorithms and is widely used in the field of artificial intelligence. GA aims to 

find the optimal solution among a set of possible solutions by considering each solution as 

2www.bmscentral.com.
3www.scheduleanywhere.com.
4Interested readers can find more on workforce scheduling in [31] and [32] survey papers.
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an individual in a population, and by generating better solutions from these individuals via 

applying a selection process similar to natural evolution [30]. That is, if an intermediate 

solution (individual) is a better fit to a problem, it will be more likely to be considered for 

the reproduction. One should note that the genetic algorithm approach differs from the 

derivative-based optimization (DBO, e.g. Newton’s method in optimization) algorithms in at 

least two ways: 1) GA searches a population of potential solutions in each iteration whereas 

DBO quests only a single point, and 2) DBO techniques employ deterministic transition 

rules for finding the next (better) solution while GA uses probabilistic transition rules and 

random selections to form the next population of the solutions [33,34].

GA has been widely used in various domains, e.g. finance [35], engineering [36], and 

economics [37]. GA has been also reported as the most popular meta-heuristic approach 

[38]. In addition, GA has been successfully applied in similar (optimal) team selection 

problems in other domains [39–41]. Some examples are: using genetic algorithm and a 

multi-criteria decision making approach for selecting the line-up for a cricket team [42], a 

fuzzy-genetic analytical model for project team formation problem [43], or using GA and 

social network measures for finding the team formation for a research and development 

(R&D) department [44].

Optimization and the genetic algorithm, in particular, have recently attracted more attention 

in the healthcare field. GA has been applied in a wide range of healthcare sub-domains such 

as cancer detection using GA partial least square discriminant analysis [45], vascular soft 

issue elasticity estimation using the combined finite element modeling and GA [46], 

selecting the most relevant genes that are associated with a disease [47], and healthcare 

management and patient admission scheduling [48]. One notable study in healthcare domain 

is [30] which employed genetic algorithm to develop a framework for multi-objective 

optimization for searching large design spaces and determining the optimal resource levels 

in surgical services. They showed that the framework is able to identify the efficient design 

points. In another study, Steiner et al. [49] focused on partitioning the healthcare system of 

Parana State in Brazil and used multi-objective genetic algorithm for optimizing the system. 

They showed that their proposed approach can be helpful for decision making in health 

management. Du et al. [50] focused on optimizing the scheduling of clinical pathways 

aiming to improve the management standard in hospitals. They combined the genetic 

algorithm with particle swarm optimization and proposed a hybrid model that can improve 

the scheduling of patients’ treatments.5 As evident from literature, researchers have used GA 

in various problems in the healthcare domain, however, to the best of our knowledge, no 

study has so far used GA for facilitating the surgical team selection. Furthermore, there is no 

system or algorithm that considers surgical team structure, cooperation history, and patient 

characteristics in forming (optimal) surgical teams.

5For more information about the application of genetic algorithm in medicine, please refer to [34].
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3. Data and methodology

3.1. Data

This study was approved by the University of Florida institutional review board. The data 

was collected from University of Florida’s integrated data repository (IDR) after obtaining a 

confidentiality agreement from the IDR. It contained de-identified intra-operative data for 

adult patients (age ≥21) who received non-ambulatory/nonobstetric Orthopedics surgery at 

Shands at the University of Florida between June 1, 2011 and November 1, 2014. The de-

identified surgery dates indicated the number of days elapsed from a common undisclosed 

original date prior to the study period. Subjects who did not receive a surgical procedure, or 

who were discharged on the same day as their surgery, were excluded from the dataset. 

Those cases whose de-identified surgery start date and/or end date were missing were 

excluded as well. We also removed any invalid, generic or placeholder provider entries (e.g. 
providers whose ids were missing). A list of patient socio-demographics is given in Table 1. 

Providers were considered from intraoperative phases of care. In the intraoperative phase, 

providers were those individuals who were documented as having participated in a patient’s 

surgery. The majority of these roles were surgeons (and surgical assistants), 

anesthesiologists and anesthetists, and circulating nurses. As a teaching hospital where 

trainees may rotate to different services, trainees were included using their denoted roles 

within the given surgery. The intra-operative dataset, named as the original intra-operative 
data in rest of the paper, contained 6065 unique cases of orthopedics surgery. These 

surgeries were operated by 60 distinct surgeons, 157 anesthesiologists, and 223 circulators.

Surgical complication codes were defined as the codeset of a list of ICD9-CM codes, 

denoting various surgical complications. The complication ICD9-CM codeset is listed in 

Appendix A. The diagnoses are coded during an abstraction of the medical record which 

occurs at the conclusion of the hospitalization. The ICD9-CM complication codeset contains 

codes from 996 through 999, along with their corresponding subclasses. We scanned through 

each of 50 diagnosis codes to check if any of the complication codes matches. The 

complication outcome, which is used in DisTeam, is the sum of all detected complication 

codes for a hospital encounter. Surgical complications do not necessarily denote any error in 

the surgical process, as several complications are outcomes which may be unavoidable given 

the nature of the patient’s comorbidity status and/or the nature of the procedure itself.

3.2. Methodology

The proposed solution for selecting optimal surgical team(s) is composed of two modes: 1) 

Training mode, and 2) Operational mode, as shown in Fig. 1. The training mode consists of 

two separate modules: patient clustering module, and extracting existing teams module. 

Patient clustering allows us to tailor the surgical team selection procedure to patient 

characteristics. The extracting existing teams module fetches distinct surgical service 

providers that will be further used in forming the intermediate solutions (individuals). The 

optimization procedure is performed in the operational mode using the genetic algorithm. 

The training and operational modes are explained in more details.
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3.2.1. Training mode

3.2.1.1. Patient clustering module: First, in the training mode, we used a retrospective 

dataset of patients to form groups of similar patients based on several features including age, 

ethnicity and race, Charlson comorbidity index, and body mass index (BMI). This allowed 

us to identify the most representative cluster for a new patient. We used a variation of K-
Means clustering approach [51], due to its speed and ease of implementation, named K-
Prototypes [52] which can handle both numerical and categorical features.

In K-Prototypes algorithm, data points are clustered against k prototypes.6 K-Prototypes 

algorithm uses decision tree induction algorithms to generate rules for clusters, which helps 

to increase the interpretability of the algorithm and to detect the clusters of interest more 

accurately [52]. In K-Prototypes, number of prototypes (k) should be provided by the user. 

We used the Gap statistic [53] for estimating the best k. The Gap statistic6 considers an 

appropriate reference null distribution and compares the change in within-cluster dispersion. 

Fig. 2a shows the Gap statistic graph versus various numbers of clusters. As seen, the Gap 

statistic peaks at k = 2 with the value of ~2.4. We further investigated the issue by plotting 

DGk = Gap (k) − (Gap (k + 1) − Sk+1). The results are depicted in Fig. 2b. In Fig. 2b, the 

optimal k is the smallest k for which DGk becomes positive. As observed, the existence of 2 

clusters is confirmed. Thus, from Fig. 2a and b, number of clusters was set to 2 in K-

Prototypes clustering algorithm. The 6065 Orthopedics surgery cases were clustered in two 

groups with 2238 and 3827 surgical providers, respectively.

3.2.1.2. Extracting existing teams module: The input to this module is the original intra-

operative data. In this step, the surgical team associated with each patient is extracted. Each 

surgical team consists of a number of team members, i.e. surgical service providers (>1), 

who provided care to the patient, e.g. a surgeon, an anesthesiologist, a nurse, etc. For each 

team, the corresponding information of all team members (surgical service providers) is also 

extracted from the integrated data repository and they are tagged based on their roles 

(surgeon, anesthesiologist, or circulator). The collected information is stored in an 

intermediary dataset, named as the processed intra-operative dataset in Fig. 1.

3.2.2. Operational mode

In the operational mode, whenever a new patient’s information is entered into the system, 

the best possible team is suggested (Fig. 1). To do this, the following steps are taken: 1) 

finding the most similar patient cluster, 2) extracting candidate teams, and finally 3) 

selecting the best candidate. In the clustering module, we determine which cluster best 

represents the new patient by computing the distance between the patient and cluster 

centroids, and then selecting the closest (most similar) centroid as the target cluster.7 The 

target cluster is then used in the optimization module to select the best surgical team.

6For more information, please refer to Appendix B.
7We included clustering fortuning the data based on the given patient characteristics. DisTeam detects the best number of clusters 
based on the input data. That is, number of clusters would be different in real situation (e.g. in a hospital), and it is very likely to see 
more than 2 clusters.
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3.2.2.1. Optimization module—Genetic algorithm (GA) is the core of our optimization 

module. The idea in genetic algorithm is to mimic the process of natural selection8 in order 

to find the optimal solution for a problem [54]. In other words, GA artificially implements 

the natural evolution procedure by mimicking inheritance, selection, mutation, and 

crossover.

A candidate solution is called an individual in genetic algorithm. A population of individuals 

is evolved to find the optimal solution. Each individual possesses a number of 

characteristics, called as chromosomes, which can be altered [55]. In our case, each 

individual represents a surgical team configuration (i.e. a team candidate). The team contains 

three chromosomes representing team members, i.e. surgeon, anesthesiologist, and circulator 

of the surgical team, denoted by S, A, and C respectively in Fig. 3. A population contains 

several surgical team candidates (Fig. 3).

Each team candidate has three members. In our existing dataset, there are 60 distinct 

surgeons, 157 anesthesiologists, and 223 circulators. Thus, there are 
60
1

157
1

223
1 = 60 ∗ 157 ∗ 223 = 2, 100, 660 different possible team configurations, which 

proves prohibitive for a brute force search. This shows the complexity of finding the optimal 

team.

The optimization module starts by initializing a population, via randomizing the possible 

combination of individuals to create a set of distinct individuals. We used the stochastic 

initialization procedure, i.e. the initializer generates different populations if it is provided 

with different initial seeds.9 In particular, an individual is created by generating a random 

index for each provider role, i.e. surgeon, anesthesiologist, and circulator. A random 

population is then created as a set of random individuals. The population generation is an 

iterative process, where each population in each iteration is referred to as a generation. In 

each generation, we evaluate the fitness of each individual in the population as well as the 

fitness of the entire population. The fitness function is the core of the optimization module 

which acts as the objective function in the optimization procedure.

In this study, we used a fitness function that reflects individual and team’s complication 

history. Historically, patient morbidity and severe outcome have been mainly associated with 

the factors in intra-operative period [57]. Several factors can influence patient safety and 

outcome, e.g. surgical team members’ expertise, level of coordination, and communication. 

One way to quantify the patient outcome is counting the number of complications that are 

associated with the surgical encounter. Thus, we formulated the individual fitness function 

based on the number of complications that have occurred during the surgery. In our 

formulation, fitness score ranges from 0 to 1, and a lower fitness score indicates a potentially 

better team configuration. We associated surgical complications with providers at three 

different levels: collective (any past surgical case involving “all” current team members), 

8In biology, natural selection refers to the different survival and reproduction patterns in individuals due to the differences in 
phenotype [56].
9The other possible approach is deterministic initialization, where the initializer produces the same population regardless of the initial 
seed.

Ebadi et al. Page 7

Artif Intell Med. Author manuscript; available in PMC 2018 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pairwise (any past surgical case involving any “two” current team members), and individual 

(any past surgical case involving any current team member). This accounts for individual 

performance, and captures the collective and pairwise cooperation history. We denote the 

number of collective, pairwise, and individual case involving complications by CC, CP, and 

CI, respectively. The same notation is used to denote the total number of collective, pairwise, 

and individual cases (including with/without complications): NC, NP, and NI, respectively.

We first consider past collective surgical cases of the given candidate team. If there are no 

collective surgical cases, then we check for pairwise surgical cases of any members of the 

candidate team. And, if no pairwise cooperation is found, we consider the individual 

provider’s performance. That is, our fitness function was designed to consider past 

cooperation among the members (either collective or pairwise). We compute the ratio of 

complications, as in Eq. (1). If no cooperation history is available, the ratio of complications 

is computed separately for each provider in the team. Average individual complications will 

be higher than collective and past complication ratios, thus the overall fitness value will be 

slightly higher for teams with no past cooperation.10 For a given candidate team t, we 

compute complication ratio and the ratio of no-complication cases, Ct and Nt
0 respectively, in 

Eq. (1).

Ct =

Collective team history, ∑CC

∑NC Cmax
C

Pairwise team history, ∑CP

∑NP Cmax
P

No team history,
∑i ∈ t C

I

∑i ∈ t NI Cmax
I

Nt
0 =

Collective team history,
∑N0

C

∑NC

Pairwise team history,
∑N0

P

∑NP

No team history,
∑i ∈ t N0

I

∑i ∈ t NI

.

(1)

In Eq. (1), i refers to the provider i in team t, Cmax
C , Cmax

P  and Cmax
I  are the maximum 

complications ratio for collective cooperation, pairwise, and individual, respectively. And, 

N0
C, N0

P, and N0
I  are the number of collaborative, pairwise, and individual surgeries with no 

10For example, suppose we have a surgeon with 2/3, an anesthesiologist with 5/2, and a circulating nurse with 8/5 complication ratios. 
There are two approaches for calculating the team complication ratio: 1) calculating the average of the ratios, i.e. (2/3 + 5/2 + 8/5)/3 = 
143/90 ≈ 1.59, and 2) the approach that we followed, i.e. (2 + 5 + 8)/(3 + 2 + 5) = 15/10 = 1.5. Thus, using this approach brings an 
advantage to the cases with cooperation history by resulting in a relatively lower Ct, and therefore a lower Ft.
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complications, respectively. The fitness function is defined as a linear combination of the 

complications ratio and no-complication ratio, as stated in Eq. (2). Since in health-care the 

patient outcome is of the highest importance, we also included the ratio of cases with no 

complication in the function, setting higher weights on performing a surgery with no 

complication at all.

Ft = αCt + 1 − α 1 − Nt
0 . (2)

In Eq. (2), the ratio of cases with no complication Nt
0 is subtracted from 1, as lower Ft values 

are representing better fit.

The extreme conditions were treated exclusively in the code. For example, if a team has no 

cases, a division by zero error is raised. But, the system assigns a large fitness value (i.e. 99) 

for such extreme conditions thus excluding them from the optimization process. More 

specifically, if the denominator in Eq. (1) is zero the division by zero exception is raised in 

the code for which we set the fitness function to a large arbitrary number, i.e. 99. Since 

DisTeam fitness function converges to 0, a solution with large fitness function equal to 99 

would be automatically excluded from the optimization process. After calculating the fitness 

value for the surgical teams (Ft), the fitness of the population is calculated by averaging over 

the team fitness values, as indicated in Eq. (3). In each generation, the fitness of the 

population is used in the optimization procedure in which DisTeam makes the fitness 

function to converge to zero.

F = 1
n ∑

t = 1

n
Ft . (3)

The team fitness score values are compared to find the best team configurations. The 

potentially more suitable teams with lower fitness function values are selected from the 

population. Next, we evolve the population (i.e. teams) over generations to find more 

optimal solutions. In the evolution procedure, in each generation, a proportion of the teams 

who are more fit are retained (survived) for the next generation. These teams are considered 

as parents in the next generation and are used to generate better children (new teams). In 

other words, we select high performing teams and create new teams from them to minimize 

the number of complications. This operation is called crossover, i.e. the process of taking 

more than one parent solutions and producing a (better) child from them. An example is 

shown in Fig. 4.

In addition, a few individuals are randomly selected from the current population and are 

passed to the next generation to assure the chromosomes variety in the next generation. 

Finally, the chromosomes of a very few individuals are manipulated to simulate the 

mutation. To perform the mutation, we randomly select a provider in a team, mutate its 

index to obtain a new provider, and replace the selected provider with the new provider in 

the team (Fig. 5). The mutation proportion is kept at a very low level (<5%) to prevent 

Ebadi et al. Page 9

Artif Intell Med. Author manuscript; available in PMC 2018 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unexpected and large evolutions that might harm the optimization process and convergence 

speed.

The new generation of the individuals is then used in the next iteration of the algorithm and 

the procedure is repeated until we reach the maximum number of generations.11 The 

proposed system has two different outputs: 1) the selected best performing surgical team 

from the entire generations, i.e. the team with the minimum Fi, and 2) the optimal 

population, i.e. the population with the minimum F, containing a set of individuals. The 

population with the minimum average number of complications over its individuals can be 

helpful since it provides the hospital with a set of different team selections which perform 

relatively close to each other. This is extremely helpful in scheduling and brings more 

flexibility, since even if the best performing individual (team) is not available, there will be 

other options to use.

4. Case study

4.1. Optimization module, parameter setting

As a case study, we tested DisTeam performance on the intraoperative data, including 6065 

unique cases of Orthopedics surgery, that was introduced in the Data and Methodology 

section. The data contain patient socio-demographics as listed in Table 1, surgical teams’ 

data, and the outcomes. Different parameters of the genetic algorithm including the 

convergence rate and diversity of the optimal populations were evaluated. Fig. 6 shows the 

trends of the fitness value of the population, as defined in Eq. (3), and its convergence rate 

against generations for 4 different best performing setups. As discussed earlier, the 

optimization module uses genetic algorithm, which needs to be provided with 3 main 

parameters: retain (survival) rate, random selection rate, and mutation. Retain rate indicates 

the proportion of individuals that survive and move to the next generation. Random selection 

guarantees the diversity of the individuals in the next generation by selecting some random 

individuals from the current generation. And, mutation mimics the genetic mutation concept 

by changing one of the chromosomes (surgical service providers) randomly.

Although setting different optimization parameters affects the convergence rate, DisTeam is 

able to quickly converge to the optimal population, i.e. the one with fitness value of 0, 

amongst 2,100,660 total number of possible surgical team formations (Fig. 6). As seen, 

setups 1 and 2 converge faster than the other two. Other setups can be also beneficial as they 

provide more population diversity around the optimal solution through the slower converge 

rate. Thus, based on the needs of the healthcare setting, DisTeam parameters can be set to 

find the optimal solution quickly, or to find the optimal solution along with a variety of 

approximately optimal solutions. The latter will be specifically useful if there are availability 

concerns about specific surgical service providers, which is almost the case in real-life 

situations. In an actual setting, DisTeam can be easily adjusted for workforce availability by 

including a filtering module that initially filters out unavailable surgical service providers for 

the given date and time, and according to the workload. The weighting parameter, i.e. α, 

equals to 0.5 in Fig. 6. Using different weighting rates can be useful in some healthcare 

11A constant number, predefined in the algorithm. We used 100 as the number of generations in our tests.
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settings, e.g. putting more weights on the number of complications rather than the number of 

cases with zero complication. However, different weights can slightly affect the convergence 

of the fitness function. We set α to different values and checked the trend of the fitness value 

for setup 1 that was the fastest converging setup as observed in Fig. 6. The results are 

depicted in Fig. 7. As seen, although using different values impact the convergence rate of 

DisTeam, it still finds the optimal solution in less than 40 generations.

4.2. Setup 1, results

In this section, we present a practical example of the team selection procedure for Setup 1 to 

demonstrate the usability of DisTeam. The objective is to find the optimal surgical team for a 

given patient. Without loss of generality, let us suppose we have a new patient presented to 

the system, 57 years old, white, non-Hispanic, with a BMI of 27.8, and comorbidity index of 

6. As a first step, the cluster whose centroid is the closest to the given patient’s data features 

is selected. In this given example, cluster 1 was selected that contained 3827 distinct surgical 

cases in which 52 surgeons, 151 anesthesiologists, and 207 circulators were involved.

We then provided the system with the selected cluster dataset of surgical service providers to 

find the optimal surgical team for the given patient. As seen in Fig. 8, DisTeam converges to 

the first optimal solution in the 15th generation, which is considerably fast. After the 15th 

generation, the fitness value fluctuates around the optimal solution due to the parameter 

settings that were used in Setup 1. One may note that the heuristic approaches do not 

necessarily converge to the same solution in different runs. That means if we re-run the same 

experiment, we might obtain slightly different results. Another point is that, after surgery, 

the data should be updated for the involved providers in the surgery to keep the data updated 

and thus the process dynamic. This might affect the optimal solution in the upcoming time 

events.

Table 2 shows the optimal surgery team selection that was detected for the given patient. As 

it is observed, the selected surgical providers have had a promising performance in doing the 

Orthopedics operation, comparing their average rate of complications with the role-specific 

averages. In addition, the results show that DisTeams successfully considered the past co-

operations, if available, amongst the selected surgical service providers.

5. Discussion and future work

In this paper, we proposed DisTeam which is a metaheuristic framework for objective 

evaluation of surgical teams and finding the optimal team for a given patient, in terms of 

number of complications. We followed two main goals: 1) adding surgical team performance 

history dimension to the model, 2) providing personalized solutions for patients. The team 

selection in surgery procedures can affect the patient outcome. DisTeam considers patients’ 

characteristics by using a clustering technique, in order to find a personalized solution for 

the given patient. The clustering module provides the personalization, otherwise it does not 

affect the system complexity if it is removed from DisTeam. We tested the system without 

clustering and almost the same convergence rate was observed. The clustering module, can 

be easily updated or modified based on the requirements of the target hospital. Number of 

complications has been considered as the main target variable where the system aims to 
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minimize it through the optimization procedure. Other factors, such as surgical team’s total 

number of cases and cases with zero complications, have been also considered in the 

optimization procedure. Past collaboration experience among the surgical providers is 

another influencing factor which we considered it in our proposed system. We used 

metaheuristic approach due to several reasons: 1) The ability of the program to quickly 

provide a set of multiple local optima which brings more flexibility by listing alternative 

teams, 2) its high performance on noisy data, 3) ease of distribution and parallelization, 4) 

simplicity and ease of interpretation [28,58]. The results show the usability and the great 

potential of DisTeam in forming surgical teams. DisTeam can be extended to include more 

influencing factors. In this paper, we used a simple surgical team selection that included 1 

surgeon, 1 anesthesiologist, and 1 circulator. DisTeam can be easily extended to cover more 

complicated team selections. DisTeam can be employed for any surgical team selection 

procedure in a health-care setting through modifying the population and individual 

generation procedures and defining the best-tuned fitness function, according to the specific 

characteristics of the given problem/surgery.

We draw reader’s attention to the fact that the genetic algorithm is a meta heuristic 

optimization search approach and is different from the conventional statistical approaches 

where the (cross) validation is applied on disjoint training and test datasets. In the training 

phase of DisTeam, we performed clustering and the surgical providers’ information were 

retrieved. This is different from training of the model as the model is not trained on the data, 

but it searches over the data. One should note that DisTeam, in its current version, can act as 

a decision support system, but it cannot be considered as a replacement for the scheduling 

and resource allocation unit in a hospital, due to complexities present in healthcare settings. 

In practice, it needs to be closely integrated with the scheduling software to provide team 

selection suggestions based on the availability and work hours of the providers. In a real 

setting, the scheduling system is preferred to be used in advance, providing DisTeam with 

the list of potentially available individuals. This can reduce the search space, increase the 

convergence speed, create surgical team alternatives that are fully available. Another issue 

that might have an impact on the performance of DisTeam is that new surgical team 

members will possibly have fewer complications reported compared to a senior provider. We 

computed the average number of complications to account for this effect, but still further 

refinement can be taken into the consideration. Moreover, the current version of DisTeam 

contains a relatively small number of patient characteristics and outcomes of interest. As 

each of these facets may increase the interest in personalized medicine, we consider it 

prudent to keep an eye towards extensibility.

Another important thing to note is that DisTeam may not choose the same team with the 

lowest score within the cluster. This is because: 1) There would not be a single “the best” 

team in each cluster since the data are updated according to the performance of the teams 

and providers, thus, the best team might change, and 2) The built-in randomization 

procedure in the algorithm as well as GA functions characteristics cause variety in the 

solutions. Another property of DisTeam is that it provides two sets of answers: a) The best 

team over all the generations, and b) The best population which might consists of different 

teams and can be used as an alternative solution. This increases the flexibility of the system 

as a complementary decision support tool. One should note that in real setting the clustering 
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process is not suggested to be updated as a new data point is added to the system, however, it 

would be better to perform the clustering on a longer period basis, such a weekly or monthly, 

based on the decisions of the operating hospital. Further increases in speed may be also 

attainable via pooling of recent solutions, which would be especially prudent in a dynamic 

approach.

In summary, DisTeam can provide a complimentary perspective besides considering only the 

work hours and availability when scheduling surgical cases. It can support the decision-

making process through providing a list of the most suitable surgical teams in terms of the 

patients’ outcome. While not optimal, it can definitely add a complementary perspective to 

the decision space, rather than just considering surgical service providers’ availability. The 

patient clustering approach that is used in DisTeam allows it to propose teams that are 

personalized to the characteristics of the given patient. This advantage along with the 

consideration of team cooperation history are the two unique properties that distinguish 

DisTeam from other simple approaches that solely rank the top role-specific providers and 

recommend them as a team.

Appendix A

See Table A1.

Table A1

Complication ICD9-CM codeset.

No Code Code definition

1 996.0 Mechanical complication of cardiac device, implant, and graft

2 996.1 Mechanical complication of other vascular device, implant, and graft

3 996.2 Mechanical complication of nervous system device, implant, and graft

4 996.3 Mechanical complication of genitourinary device, implant, and graft

5 996.4 Mechanical complication of internal orthopedic device, implant, and graft

6 996.5 Mechanical complication of other specified prosthetic device, implant, and graft

7 996.6 Infection and inflammatory reaction due to internal prosthetic device, implant, and graft

8 996.7 Other complications of internal (biological) (synthetic) prosthetic device, implant, and graft

9 996.8 Complications of transplanted organ

10 996.9 Complications of reattached extremity or body part

11 997.0 Nervous system complications

12 997.1 Cardiac complications

13 997.2 Peripheral vascular complications

14 997.3 Respiratory complications

15 997.4 Digestive system complications

16 997.5 Urinary complications

17 997.6 Amputation stump complication

18 997.7 Vascular complications of other vessels

19 997.9 Complications affecting other specified body systems, not elsewhere classified

20 998.0 Postoperative shock
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No Code Code definition

21 998.1 Hemorrhage or hematoma or seroma complicating a procedure

22 998.2 Accidental puncture or laceration during a procedure

23 998.3 Disruption of wound

24 9984 Foreign body accidentally left during a procedure

25 998.5 Postoperative infection

26 998.6 Persistent postoperative fistula

27 998.7 Acute reaction to foreign substance accidentally left during a procedure

28 998.8 Other specified complications of procedures, not elsewhere classified

29 998.9 Unspecified complication of procedure, not elsewhere classified

30 999.0 Generalized vaccinia

31 999.1 Air embolism

32 999.2 Other vascular complications

33 999.3 Other infection

34 999.4 Anaphylactic shock due to serum

35 999.5 Other serum reaction

36 999.6 ABO incompatibility reaction

37 999.7 Rh incompatibility reaction

38 999.8 Other infusion and transfusion reaction

39 999.9 Other and unspecified complications of medical care, not elsewhere classified

Appendix B

K–prototypes algorithm

Suppose we have a set of n data points, D = {D1, D2, …, Dn}, where each data point has m 

features, i.e. Di = [di1, di2,…, dim]. The goal is to partition D into k disjoint clusters such that 

the inter-cluster distance of the data points is minimized while maximizing the intra-clusters 

distance. The distance measure is thus defined in K-Prototypes algorithm [52] as in Eq. 

(B1).

E = ∑
i = 1

k
Ei

r + Ei
c = ∑

i = 1

k
Ei

r + ∑
i = 1

k
Ei

c = Er + Ec . (B1)

In Eq. (B1), E is the total distance function for clustering n data points with numerical and 

categorical features. Er is the sum of the distance for the numerical features over all the k 
clusters and Ec is the sum for the categorical attributes. Both Er and Ec are non-negative, 

thus E is minimized through minimizing Er and Ec. The squared Euclidean distance is used 

for calculating the distance function for numerical values. And, the distance function for 

categorical features is based on the number of mismatches between the data points and the 

cluster prototypes. The overall procedure of K-Prototypes algorithm is presented in Fig. B1.
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Gap statistic

Theoretically, the Gap statistic approach is a way to standardize the comparison of log Wk 

with a null reference distribution of data with no clear clustering, where Wk is the within-

cluster dispersion. Suppose, xi, and xj are two given data points in a given cluster Ck, which 

contains nk data points. Then, the sum of intra-cluster distances between the points in Ck is 

defined as in Eq. (B2).

Dk = ∑
xi ∈ Ck

∑
x j ∈ Ck

xi − x j
2 = 2nk ∑

xi ∈ Ck

xi − μk
2 . (B2)

Fig. B1. 
K–Prototypes clustering algorithm. The algorithm is similar to K-Means but it works with 

both numerical and categorical features. K prototypes are first randomly initiated and using a 

distance function, data points are placed in the nearest prototype. The prototypes are then 

updated, and the procedure is repeated until no further movement of data points between the 

clusters is possible.

In Eq. (B2), μk is the centroid of Ck. Through summing up the normalized values of Dk over 

the K clusters, as stated in Eq. (B3), Wk is obtained which can be regarded as a measure of 

the compactness of the clustering approach.

Wk = ∑
k = 1

k 1
2nk

Dk . (B3)

Now, the estimated optimal number of clusters, i.e. K, is detected by the Gap statistic, where 

K is optimal, if log Wk places the farthest below the curve of the reference distribution. Eq. 

(B4) defines the Gap statistic.
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Gapn k = En
∗ logWk − logWk . (B4)

In Eq. (B4), En
∗ is the expectation under a sample size n from the reference distribution. We 

generated the reference dataset by sampling uniformly from the original intra-operative data. 

Next, 10 different replicates were generated from the reference distribution using the Monte 

Carlo sampling method,12 and the average of log Wk was considered as the estimation of 

En
∗ logWk . Finally, Sk is defined based on the standard deviation of the obtained log Wk 

from 10 Monte Carlo replicates, i.e. SDk. This measure accounts for the simulation error, 

and is defined as in Eq. (B5).

Sk = 1 + 1
10SDk . (B5)

The optimal number of clusters (K) is the smallest k for which Eq. (B6) holds [53].

Gap k ≥ Gap k + 1 − Sk + 1 . (B6)
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Fig. 1. 
The surgical team selection framework has two modes: 1) Training mode, and 2) 

Operational mode. In the training mode, the original intra-operative data is first clustered 

based on the patients’ features and the data is preprocessed to extract the surgical teams for 

each orthopedics encounter case, based on the intra-operative data. Next, the distinct surgical 

providers are extracted from the teams. The extracted information along with case 

complementary information such as number of complications are integrated into the 

processed intra-operative dataset. In the operational mode, the proper subset of data for the 

given patient is first selected. And, using the genetic algorithm, the optimal surgical team 

selections for the given patient are detected and stored.
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Fig. 2. 
a) Gap statistic vs. number of clusters. The statistic is peaked at k = 2, indicating the best 

estimated number of clusters, b) Trend of DGk = Gap (k) − (Gap (k + 1) − Sk+1) vs. numbers 

of clusters. DGk becomes positive for the first time at k = 2, confirming that the data has 2 

clusters.
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Fig. 3. 
A population of intra-operative surgical teams. Individuals refer to a surgical team candidate. 

Each team consists of three members indicating the surgeon, the anesthesiologist, and the 

circulator of the team.
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Fig. 4. 
An example of the crossover operation. Generating new individuals (teams) from more fit 

parents, i.e. teams with lower average number of complications.
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Fig. 5. 
An example of mutation operation. Generating new individuals (teams) through random 

selection and mutation.
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Fig. 6. 
Fitness value trends in various setups (α = 0.5). Filled circles represent the first time 

(generation) when the optimal team is found. As seen, Setups 1 and 2 converge to the 

optimal solution faster than the other two setups. The results for Setup 4 suggests that high 

retain rate slows down the optimization procedure. Setups 3 and 4 provide approximately 

optimal team selections, although they converge slower.
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Fig. 7. 
Fitness value trends using different weightings (a). Higher a puts more weights on the 

number of complications rather than the number of cases with zero complications. As seen, 

DisTeam converges to the optimal solution in less than 40 generations in all scenarios.
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Fig. 8. 
Fitness value trend in the optimal surgical team selection procedure for the given patient. 

The filled circle represents the first time (generation) in which the optimal team is found. As 

seen, the first optimal solution is found in the 15th generation.
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Table 1

List of variables, their types, and description.

No Variable Type Description

1 Age Numeric Patient age at hospital encounter (set as 90, if age 90 or older)

2 BMI Numeric Patient’s body mass index

3 Comorbidity Numeric Patient’s Charlson comorbidity index (ver. 2011)

4 LOS Numeric Length of stay (inpatient/observation in days or in hours)

5 Complication count Numeric Derived from diagnosis1-diagnosis50 and complication codeset

6 Service Character Type of surgical service

7 Principal Dx Character Primary diagnosis code and description

8 Principal Px Character Primary procedure code and description

9 Race Character Patient’s race

10 Ethnicity Character Patient’s ethnicity

11 Gender Character Patient’s gender

12 Marital status Character Patient’s marital status at hospital encounter
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