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Abstract

The 90-kDa heat-shock protein (Hsp90) is a molecular chaperone responsible for the stability and 

function of a wide variety of client proteins that are critical for cell growth and survival. Many of 

these client proteins are frequently mutated and/or overexpressed in cancer cells and are therefore 

being actively pursued as individual therapeutic targets. Consequently, Hsp90 inhibition offers a 

promising strategy for simultaneous degradation of several anticancer targets. Currently, most 

Hsp90 inhibitors under clinical evaluation act by blocking the binding of ATP to the Hsp90 N-

terminal domain and thereby, induce the degradation of many Hsp90-dependent oncoproteins. 

Although, they have shown some promising initial results, clinical challenges such as induction of 

the heat-shock response, retinopathy, and gastrointestinal tract toxicity are emerging from human 

trials, which constantly raise concerns about the future development of these inhibitors. 

Novobiocin derivatives, which do not bind the chaperone’s N-terminal ATPase pocket, have 

emerged over the past decade as an alternative strategy to inhibit Hsp90, but to date, no derivative 

has been investigated in the clinical setting. In recent years, a number of natural or synthetic 

compounds have been identified that modulate Hsp90 function via various mechanisms. These 

compounds not only offer new chemotypes for the development of future Hsp90 inhibitors but can 

also serve as chemical probes to unravel the biology of Hsp90. This chapter presents a synopsis of 

inhibitors that directly, allosterically, or even indirectly alters Hsp90 function, and highlights their 

proposed mechanisms of action.

1. INTRODUCTION

An efficient protein quality control system is fundamental to all cellular processes and is 

critical for protein homeostasis within the crowded cellular environment (Taipale, Jarosz, & 

Lindquist, 2010). Since the cellular environment undergoes rapid change, numerous adaptive 

mechanisms have evolved to manage protein folding and quality control. Upon exposure to 

environmental stresses, such as high temperature, oxidative stress, hypoxia, acidosis, or 

malignant transformation, cells induce the expression of a diverse set of proteins, including 

molecular chaperones, which maintain the dynamic equilibrium between protein folding and 

degradation (Caplan, Mandal, & Theodoraki, 2007). Molecular chaperones are a highly 

conserved class of proteins that modulate the folding, intracellular disposition, and 

degradation of client protein substrates (Whitesell & Lindquist, 2005). The heat-shock 

proteins (Hsp’s) represent a class of molecular chaperones that are constitutively expressed 
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under normal physiological conditions, but are upregulated in response to cellular stress to 

sustain cell viability by maintaining the structural and functional integrity of key regulators 

of cell growth, differentiation, and survival (Jolly & Morimoto, 2000).

The 90-kDa heat-shock protein (Hsp90) is a highly abundant molecular chaperone that is 

responsible for the maintenance of protein homeostasis under basal conditions and during 

the stress response (Young, Agashe, Siegers, & Hartl, 2004). Hsp90 comprises ~1–2% of 

total cell protein in unstressed cells, but is overexpressed (~4–6%) under hostile conditions 

to buffer proteotoxic stresses (Donnelly & Blagg, 2008). In humans, Hsp90 exists as four 

isoforms: Hsp90α (inducible form) and Hsp90β (constitutive form) are mainly found in the 

cytosol, while the 94-kDa glucose-regulated protein (GRP94) and Hsp75/tumor necrosis 

factor receptor associated protein 1 (TRAP-1) are localized in the endoplasmic reticulum 

and mitochondria, respectively (Blagg & Kerr, 2006). In addition, a fraction of Hsp90 is 

found on the cell surface of cancer cells as well as in the extracellular milieu (Sidera & 

Patsavoudi, 2008; Trepel, Mollapour, Giaccone, & Neckers, 2010). Hsp90 plays a central 

role in the conformational maturation, activation, cellular trafficking, and proteolytic 

turnover of a wide range of substrates, referred to as client proteins (Neckers & Workman, 

2012; Taipale et al., 2010). In fact, recent studies indicate that there are ~400 client proteins 

that depend upon the Hsp90 protein folding machinery to achieve and maintain their active 

conformations (Taipale et al., 2012). Hsp90 client proteins regulate a vast array of cellular 

functions, including signal transduction, protein trafficking, chromatin remodeling, 

autophagy, cell proliferation, and survival (Zuehlke & Johnson, 2010). However, many 

Hsp90 client proteins are frequently mutated and/or overexpressed in cancer cells and are 

consequently pursued as individual therapeutic targets for cancer treatment (Whitesell & 

Lindquist, 2005). As a result, Hsp90 inhibition can provide a unique opportunity to 

simultaneous deplete multiple anticancer targets (Koga, Kihara, & Neckers, 2009). 

Therefore, current Hsp90 research has focused on its therapeutic potential as a target for the 

development of cancer chemotherapeutics. In contrast to its role in driving oncoprotein 

degradation, Hsp90 inhibition has been shown to induce the prosurvival heat-shock 

response, which increases molecular chaperone levels (Luo, Sun, Taldone, Rodina, & 

Chiosis, 2010; Whitesell, Bagatell, & Falsey, 2003). The upregulation of molecular 

chaperones appears beneficial for neurodegenerative disorders, such as Alzheimer’s and 

Parkinson disease, where they protect cells from the accumulation of neurotoxic proteins 

(Paul & Mahanta, 2014). As a result of its broad participation in cell biology, Hsp90 has 

emerged as a promising therapeutic target for the treatment of multiple disease states, 

including cancer. To date, however, there is no FDA-approved Hsp90 inhibitor. Given the 

essential role played by Hsp90 in multiple cellular processes, unanticipated adverse effects 

resulting from Hsp90 inhibition cannot be ruled out in future.

2. HSP90 STRUCTURE, FUNCTION, CHAPERONE CYCLE, AND POINTS OF 

DISRUPTION BY INHIBITORS

Hsp90 belongs to the GHKL (Gyrase, Hsp90, Histidine Kinase, and MutL) superfamily of 

ATPases that contain a Bergerat ATP-binding fold. GHKL family members feature an ATP-

binding pocket in which ATP is bound in a unique, bent conformation that is distinct from 
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the typical extended conformation exhibited by protein kinases (Dutta & Inouye, 2000). In 

humans, Hsp90 exists as a homodimer with each monomer consisting of a highly conserved 

N-terminal ATP-binding domain (NTD) connected to a middle domain (MD) and a C-

terminal dimerization domain (CTD) (Donnelly & Blagg, 2008). The NTD of Hsp90 

contains an ATP-binding site that is responsible for its ATPase activity and provides the 

requisite energy for the chaperone cycle (Dutta & Inouye, 2000; Panaretou et al., 1998). 

Historically, the NTD has been the major binding site for the development of Hsp90 

inhibitors; e.g., natural products geldanamycin (GDA) and radicicol (RDC) compete with 

ATP for N-terminal ATP-binding and block Hsp90 function. The NTD is connected to the 

MD of Hsp90 by a flexible, highly charged linker. This domain plays a key role in 

modulating Hsp90 ATPase activity by binding the γ-phosphate of ATP when bound to the 

N-terminus (Meyer et al., 2003). Structural and mutagenesis studies indicate that this site 

serves for the recognition and binding of client proteins and cochaperones (e.g., Aha1) (Huai 

et al., 2005). The CTD is important for the homodimerization of Hsp90 into its biologically 

active conformation (Pearl & Prodromou, 2006). The CTD contains a second nucleotide-

binding site that allosterically regulates N-terminal ATPase activity (Prodromou et al., 1999; 

Sőti, Vermes, Haystead, & Csermely, 2003). This domain also features a conserved MEEVD 

sequence that is responsible for recruiting TPR-domain (tetratricopeptide-containing 

repeats) containing cochaperones, such as Hsp70–Hsp90 organizing protein (HOP) and 

immunophilins. Natural products such as novobiocin (NB) and epigallocatechin-3-gallate 

(EGCG) bind the CTD and modulate Hsp90 function (Marcu, Chadli, Bouhouche, Catelli, & 

Neckers, 2000; Yin, Henry, & Gasiewicz, 2009).

The Hsp90-mediated protein folding process is complex and has been reviewed extensively 

(Blagg & Kerr, 2006; Donnelly & Blagg, 2008; Hall, Forsberg, & Blagg, 2014; Li, Soroka, 

& Buchner, 2012; Wandinger, Richter, & Buchner, 2008). Although the complete 

mechanism of the Hsp90-mediated protein folding cycle is still not fully understood, 

accumulating evidence indicates that this cycle requires the interaction of Hsp90 with a 

number of cochaperones, partner proteins, and immunophilins to form the multiprotein 

complexes that enable proper function of the machinery (Fig. 1; Peterson & Blagg, 2009).

The chaperone cycle begins with the binding of nascent polypeptides to the Hsp70/

Hsp40/ADP complex (I) to prevent aggregation (Walter & Buchner, 2002). This complex 

can be stabilized by the Hsp70-interacting protein (HIP) or, alternatively, Bcl2-associated 

athanogene homologs that bind and stimulate the exchange of ATP for ADP (Chaudhury, 

Welch, & Blagg, 2006). The Hsp70/Hsp40/client complex (II) then associates with Hsp90 

(III) to deliver the unfolded protein. The association between Hsp70 and Hsp90 is mediated 

by HOP/Sti1 (Hsp90–Hsp70 organizing protein), which serves as an adaptor protein 

(Murphy, Kanelakis, Galigniana, Morishima, & Pratt, 2001). In the case of protein kinases, 

the cochaperone Cdc37 (cell-division-cycle 37 homologue, also known as p50) is often 

recruited to the Hsp70/Hsp40/client complex, which promotes the loading of client kinases 

onto Hsp90 with the aid of HOP (Caplan et al., 2007). Following client substrate loading, 

various immunophilins (FKBP51, FKBP52), cochaperones, and partner proteins bind the 

Hsp90 homodimer (IV) to form an activated heteroprotein complex (V) with concomitant 

release of Hsp70, HIP, and HOP (Kosano, Stensgard, Charlesworth, McMahon, & Toft, 
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1998). ATP binds to the “open” heteroprotein complex (V) at the N-terminus of Hsp90 and 

promotes a structural reorganization of Hsp90 that results in a “closed” conformation (VIII) 

(Prodromou et al., 2000). At this stage, Hsp90 inhibitors can compete with ATP for the N-

terminal binding site, which prevents formation of the closed conformation, and ultimately, 

leads to the degradation of many clients via the ubiquitin–proteasome pathway (Donnelly & 

Blagg, 2008). In the absence of an inhibitor, this multiprotein assembly is stabilized by the 

association of cochaperone p23, followed by the recruitment of Aha1 (activator of Hsp90 

ATPase homologue 1) to the MD of each Hsp90 monomer. Binding of Aha1 stimulates the 

hydrolysis of ATP and promotes folding of the bound client, followed by the dissociation of 

immunophilins and cochaperones (Ali et al., 2006).

As depicted in Fig. 1, the chaperone cycle is a multistage process that requires the 

participation of various cochaperones and coactivators that work in conjunction with Hsp90 

to modulate the activity of the machinery (Table 1; Peterson & Blagg, 2009; Zuehlke & 

Johnson, 2010). These cochaperones and partner proteins enter the chaperone cycle at 

different stages and assist in the conformational maturation of specific client protein classes. 

For example, Cdc37 is required for the recruitment of kinase clients to the Hsp90 machinery 

and is overexpressed in some kinase-driven cancers. In addition, numerous posttranslational 

modifications, including phosphorylation, S-nitrosylation, and SUMOylation, regulate 

Hsp90 function by modulating its affinity for cochaperones and/or client proteins (see 

Impact of Posttranslational Modifications on the Anticancer Activity of Hsp90 Inhibitors by 

Woodford et al.) (Hall, Forsberg, et al., 2014; Trepel et al., 2010).

3. THE ROLES OF HSP90 IN CANCER

As the field of cancer research has progressed, new approaches to cancer chemotherapy have 

emerged. Molecularly targeted therapeutic strategies initially focused on the inhibition of 

specific enzymes and/or receptors associated with cell signaling, but off-target effects and/or 

resistance have limited their efficacy against most advanced solid tumors. Through better 

understanding of cancer biology, it has become increasingly evident that clinical cancers 

result from dysregulation of multiple interconnected pathways (Logue & Morrison, 2012). 

In 2000 and 2011, Hanahan and Weinberg proposed 10 hallmarks of cancer that result from 

genetic and epigenetic alterations of key regulatory proteins, enzymes, and receptors 

(Hanahan & Weinberg, 2000, 2011). These hallmarks include (1) sustaining proliferative 

signaling, (2) evading growth suppressors, (3) resisting cell death, (4) enabling replicative 

immortality, (5) inducing angiogenesis, (6) activating invasion and metastasis, (7) 

deregulated cellular energetics, (8) avoiding immune destruction, (9) tumor-promoting 

inflammation, and (10) genome instability and mutation. In light of this understanding, 

Hsp90 inhibition is particularly appealing because it has the potential to simultaneously 

disrupt multiple pathways by acting on a single target and thereby exerting a multipronged 

attack on malignant cells (Xu & Neckers, 2007). Hsp90 is essential for the stability and 

function of a wide range of oncogenic proteins, such as signaling kinases, steroid hormone 

receptors, telomerase, and many others that contribute directly to the hallmarks of cancer 

(Table 2) (and chapter by Vartholomaiou et al., 2016) (Blagg & Kerr, 2006; Koga et al., 

2009). Therefore, inhibition of Hsp90 by a small molecule represents an exciting strategy for 

development of new cancer chemotherapeutics (Fig. 2).
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The ubiquitous and essential nature of Hsp90 function raised concerns about the potential 

for selective use of Hsp90 inhibitors. However, studies have indicated that Hsp90 inhibitors 

are more toxic to malignant cells than to normal tissues, and therefore the potential does 

exist for selective cytotoxicity (Chiosis & Neckers, 2006; Chiosis et al., 2003; Kamal et al., 

2003; Workman, 2004). Moreover, at least some Hsp90 inhibitors accumulate in malignant 

cells to a greater extent than surrounding tissue (Chiosis et al., 2003). In support of this 

observation, Kamal and coworkers demonstrated that the apparent accumulation of Hsp90 

inhibitors in tumor cells following systemic administration could result from the increased 

affinity of Hsp90 present in cancer cells as compared to normal cells (Kamal et al., 2003). 

Although the concept remains debated, it has been suggested that Hsp90 in cancer cells is 

engaged in an activated heteroprotein complex that exhibits both enhanced ATPase activity 

and higher affinity for Hsp90 inhibitors, compared to the inactivated, homodimeric complex 

found in normal cells. Moreover, a number of Hsp90 inhibitors have shown promising 

results in clinical trials and have been relatively well tolerated at drug exposures that clearly 

impair Hsp90 function as judged by induction of a systemic heat-shock response and 

depletion of client proteins in both tumor and normal tissues (Jhaveri, Taldone, Modi, & 

Chiosis, 2012; Neckers & Workman, 2012). Taken together, preclinical studies and a decade 

of clinical experience with various Hsp90 inhibitor chemotypes indicate that Hsp90 can be 

safely targeted for the development of cancer chemotherapeutics.

Classical Hsp90 inhibitors act by competitive binding to the ATP-binding site at the N-

terminal domain of Hsp90, and consequently halt progression of the protein folding 

machinery, which leads to the degradation of most client proteins (Khandelwal, Crowley, & 

Blagg, 2016). The natural products, GDA and RDC, were the first Hsp90 inhibitors 

identified in the early 1990s. Upon their identification, both GDA and RDC served as 

starting points for various drug discovery programs (Bagatell & Whitesell, 2004), which 

ultimately led to the investigation of 17 distinct chemical entities in clinical trials (Neckers 

& Workman, 2012). Some of these investigational new drugs that inhibit the Hsp90 N-

terminus are shown in Fig. 3. Clinical experience to date has provided a proof of concept for 

the use of Hsp90 inhibitors in cancer patients as a novel approach to inhibit multiple cancer 

pathways via Hsp90 modulation. Although there have been some encouraging clinical 

responses, concerns regarding concomitant induction of the prosurvival response, disruption 

of apoptotic mechanisms, impairment of antitumor immune mechanisms, cardiac 

arrhythmia, and hepatotoxicity have emerged from clinical trials (Whitesell & Lindquist, 

2005). While isoform-selective N-terminal inhibitors may address some of the toxic 

liabilities, induction of the prosurvival heat-shock response (Fig. 4) by inhibitors when given 

at or near their maximally tolerated dose may represent a fundamental impediment to their 

clinical efficacy (Whitesell & Lindquist, 2005). Therefore, Hsp90 inhibitors that do not 

induce the heat-shock response represent a promising new direction for the Hsp90 field of 

research.

In 2000, Neckers and coworkers discovered that NB, a coumarin antibiotic, bound to a 

previously unrecognized Hsp90 C-terminal nucleotide-binding site (IC50 ~ 700 μM in 

SKBr3 cells) and induced the degradation of Hsp90-dependent client proteins, v-src, Raf-1, 

and Erb2 (Marcu, Chadli, et al., 2000; Marcu, Schulte, & Neckers, 2000). Interestingly, NB 

did not induce a prosurvival heat-shock response, one of the major drawbacks associated 
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with N-terminal inhibition. Moreover, it was observed that Hsp90 C-terminal inhibitors 

allosterically modulate the N-terminal ATPase activity. Encouraged by the initial findings, 

attempts were made to improve the selectivity and potency of NB. In 2005, initial structure–

activity relationship studies were performed to reveal several key structural features of NB 

that are required for Hsp90 inhibitory activity (Burlison, Neckers, Smith, Maxwell, & Blagg, 

2006; Yu et al., 2005). It was observed that both the coumarin 4-hydroxy and the 3′-

carbamoyl group on NB are detrimental to Hsp90 inhibition and upon their removal, the first 

Hsp90 C-terminal inhibitors (DHN1 and DHN2) with improved potency and selectivity were 

reported by our group.

Subsequent SAR studies explored the coumarin core and benzamide side chain of NB and 

revealed optimal appendages for these moieties (Burlison et al., 2008; Donnelly et al., 2008; 

Garg, Zhao, & Blagg, 2015; Zhao et al., 2011, 2015). It was observed that the coumarin core 

of NB serves as a backbone for orientation of the sugar and benzamide side chains within 

the binding pocket and could be replaced with other aromatic/heteroaromatic cores (Burlison 

et al., 2008; Donnelly et al., 2008). In fact, introduction of a biphenyl or quinolinone ring 

system in lieu of the coumarin core not only improved efficacy but also provided insights 

into the nature of the C-terminal binding pocket (Zhao, Moroni, Colombo, & Blagg, 2013; 

Zhao et al., 2015). In addition, it was discovered that replacement of benzamide side chain 

with biaryl and triazole moieties led to analogs that manifested improved antiproliferative 

activities (Burlison et al., 2008; Zhao et al., 2014). Furthermore, recent studies indicate that 

the sugar moiety, although important for enhancing solubility (and hence activity), could be 

replaced with other sugars or sugar surrogates without compromising inhibitory activity 

(Donnelly, Zhao, Reddy Kusuma, & Blagg, 2010; Shelton et al., 2009; Zhao, Reddy 

Kusuma, & Blagg, 2010; Zhao et al., 2011). SAR studies on the NB scaffold have led to the 

development of several promising lead molecules such as KU135, KU174, and KU675, 

which manifest potent antiproliferative activity against multiple cancer cell lines (Donnelly 

et al., 2008; Eskew et al., 2011; Ghosh et al., 2015; Liu et al., 2015; Samadi et al., 2011; 

Zhao et al., 2010, 2011). A summary of SAR for NB and its derivatives based on their 

cytotoxicity is presented in Fig. 5.

4. NOVEL HSP90 INHIBITORS: BEYOND THE USUAL SUSPECTS

Current Hsp90 inhibitors derived from the natural products, GDA, RDC, or a purine scaffold 

have been reviewed extensively in literature (Hong et al., 2013; Khandelwal et al., 2016; 

Trepel et al., 2010). Although significant progress has been made toward the development of 

highly active N-terminal inhibitors, their clinical application has been hampered by 

undesired side effects in many cases. Several NB analogs have been developed during the 

past decade (Burlison et al., 2006; Donnelly & Blagg, 2008; Zhao et al., 2011), and these 

have shown promising results in preclinical studies. Their evaluation in clinical trials, 

however, has not yet been undertaken. More recently, new compounds have been identified 

that disrupt Hsp90 chaperone activity via yet other mechanisms (Brandt & Blagg, 2009; 

Piaz, Terracciano, De Tommasi, & Braca, 2015). These compounds can be broadly divided 

into two main categories: (1) direct Hsp90 inhibitors or (2) disruptors of Hsp90/cochaperone 

interactions, both of which will be discussed in detail below.
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4.1 Compounds that Bind Directly to Hsp90

4.1.1 Epigallocatechin-3-Gallate—EGCG is a polyphenolic compound found in green 

tea and is well known for its antioxidant, antimicrobial, and anticancer activities (Zaveri, 

2006). Previous studies have shown that EGCG inhibits the activity of a wide range of 

proteins at 70 μM, including telomerase, the aryl hydrocarbon receptor (AhR), several 

kinases, and transcription factors, all of which are well-known Hsp90 client proteins (Yin, 

Henry, & Gasiewicz, 2008). In 2005, using affinity purification experiments, Palermo and 

coworkers revealed that EGCG exhibits its inhibitory activity against AhR, at least in part 

via Hsp90 inhibition (Palermo, Westlake, & Gasiewicz, 2005). Subsequent studies by Yin 

and coworkers demonstrated that EGCG binds near the C-terminal ATP-binding site 

(residues 538–738) of Hsp90 and unlike NB and other inhibitors, stabilizes the association 

of cochaperones Hsp70, Cyp40, and XAP-2 to Hsp90 (Yin et al., 2008). Furthermore, it was 

found that EGCG induces concentration-dependent degradation of the Hsp90-dependent 

oncoproteins ErbB2, Raf-1, and pAkt along with a slight increase in Hsp70 levels.

Recently, Khandelwal and coworkers published the first structure–activity relationships 

studies on EGCG using cytotoxicity and the depletion of several Hsp90 client proteins as 

endpoints (Khandelwal, Hall, & Blagg, 2013). Results are summarized in Fig. 6. In these 

studies, they observed that the phenols on the B- and the D-rings are detrimental to 

inhibitory activity, while syn-stereochemistry of the linker that connects the B- and D-rings 

with the benzopyran core is beneficial. The prenylated benzamide present in NB was shown 

to represent an ideal replacement for the gallic acid moiety of EGCG and resulted in ~15-

fold improvement in antiproliferative activity and ultimately led to the development of 

compound 21 (MCF-7, IC50 = 4 μM). Further studies by Bhat and coworkers confirmed the 

non-essential nature of the B- and D-ring phenols and established the ester linker connecting 

the C- and D-rings could be replaced with an amide or sulfonamide without compromising 

anticancer activity (Bhat et al., 2014). How these modifications affect interactions with 

Hsp90 remain unknown.

4.1.2 Silybin—Silybin is the major component of the flavonolignan extract isolated from 

the seed of milk thistle plants (Silybum marianum) and has demonstrated hepato-protective 

effects and growth inhibitory activity against various cancer cells (Gazak, Walterova, & 

Kren, 2007). Early studies demonstrated that silybin induced cell cycle arrest and caused the 

depletion of CDK2, CDK4, cyclin E, and cyclin D1 proteins in colon cancer cells (Agarwal 

et al., 2003). CDK2 and CDK4 are well-known Hsp90-dependent clients, which led to 

speculation that Hsp90 could be the primary target of silybin. In an effort to determine 

whether silybin can bind Hsp90, Zhao and coworkers performed a luciferase-refolding assay 

with silybin and demonstrated that silybin inhibited the renaturation of heat-denatured 

luciferase, suggesting that Hsp90 could be a biochemical target for silybin (Zhao, Brandt, 

Galam, Matts, & Blagg, 2011). Subsequent studies demonstrated that silybin induced a 

concentration-dependent degradation of the Hsp90-dependent client proteins Her2, Raf-1, 

and Akt, without affecting Hsp70 or Hsp90 levels (Zhao, Brandt, et al., 2011). SAR studies 

by the same research team identified key structural features required for the scaffold’s 

cytotoxic activity in which Hsp90 inhibition could play a part (Fig. 7; Zhao, Brandt, et al., 

2011). Their studies showed that the C-3 and C-23 hydroxyl groups were not required for 
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activity; however, at least one substitution (preferably 4-hydoxyl) on the E-ring was 

important for activity. Furthermore, SAR studies suggested that the A-ring phenol was not 

required and its removal led to the development of compounds 25 and 26, which manifest 

IC50s of 13 and 16 μM against MCF-7 cell line, respectively, versus an IC50 of ~200 μM for 

silybin. Recently, Riebold and coworkers demonstrated that silybin binds to the C-terminal 

domain of Hsp90 and releases mature glucocorticoid receptors from the Hsp90 complex as 

demonstrated by NMR analysis (Riebold et al., 2015).

4.1.3 Cisplatin and LA-12—Cisplatin (Fig. 8) is a platinum-containing chemotherapeutic 

agent that is widely used for the treatment of ovarian, testicular, bladder, cervical, and other 

solid tumors (Galanski, 2006). The anticancer activity of cisplatin has been ascribed to its 

ability to form intrastrand and/or interstrand DNA adducts which are particularly lethal in 

several cancer cell types (Jordan & Carmo-Fonseca, 2000). However, it has also been shown 

that due to its chemical reactivity, cisplatin interacts with various proteins, phospholipids, 

and RNA (Sreedhar, Soti, & Csermely, 2004). In 1999, Itoh and coworkers reported that 

cisplatin inhibits Hsp90 chaperone activity (Itoh et al., 1999). Affinity purification and 

protein fingerprinting studies were used to demonstrate that cisplatin binds to the Hsp90 C-

terminal domain. Subsequently, Csermely and coworkers demonstrated that cisplatin is a C-

terminal inhibitor that binds near the previously identified C-terminal nucleotide-binding site 

(Söt, Rácz, & Csermely, 2002). Studies by Rosenhagen and colleagues indicated that the 

administration of cisplatin to neuroblastoma cells resulted in the degradation of steroid 

hormone receptors (androgen and glucocorticoid receptors), but no other Hsp90-dependent 

clients, such as Raf-1, lck, and c-rac (Rosenhagen et al., 2003). Moreover, by use of a heat-

shock factor (HSF)-dependent luciferase reporter assay, they showed that cisplatin does not 

induce the heat-shock response. These results suggest that unlike compounds that bind 

Hsp90, cisplatin selectively inhibits some Hsp90 functions and thus, could provide insights 

into novel ways to modulate its chaperone activity. Recently, it was shown that LA-12 (Fig. 

8), an optimized derivative of cisplatin, exhibits higher affinity for Hsp90 than cisplatin and 

moreover, induces the degradation of additional Hsp90 client proteins, such as mutant p53, 

Cyclin D1, and estrogen receptors (Kvardova et al., 2010). In addition, LA-12 exhibits a 

more favorable pharmacokinetic profile as compared to cisplatin and demonstrates enhanced 

cytotoxicity against multiple cancer cell lines, including those that are cisplatin resistant 

(Kvardova et al., 2010; Zak et al., 2004).

4.1.4 Taxol—Taxol (Fig. 8) is a frequently used chemotherapeutic agent for the treatment 

of various cancers and its anticancer activity has been attributed to the inhibition of mitosis 

via stabilization of microtubules (Wani, Taylor, Wall, Coggon, & McPhail, 1971). In 

addition, taxol produces many lipopolysaccharide (LPS)-like cellular responses, such as 

induction of cytokines, activation of kinases, and transcription factors, suggesting that it 

exhibits a multifaceted effect on cancer cells (Ding, Porteu, Sanchez, & Nathan, 1990; Ding, 

Sanchez, & Nathan, 1993). Byrd and coworkers performed affinity purification experiments 

with biotinylated taxol and identified Hsp90 and Hsp70, as potential mediators of its LPS-

mimicking activity (Byrd et al., 1999). Surprisingly, unlike classical Hsp90 inhibitors (e.g., 

GDA), taxol appears to stimulate Hsp90 function and induces macrophage activation (Byrd 

et al., 1999). No study describing the region in which taxol binds Hsp90 has been reported. 
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Further work is needed to investigate the effect of taxol on Hsp90-dependent client proteins 

and to determine whether its binding to Hsp90 causes disruption of cochaperone 

interactions. Interestingly, a follow-up study showed that taxol and 17-AAG act 

synergistically in breast cancer xenografts and that 17-AAG sensitizes cancer cells to taxol-

induced apoptosis through suppression of the Hsp90 client, Akt kinase (Solit, Basso, Olshen, 

Scher, & Rosen, 2003). Combination therapies with taxol and other Hsp90 inhibitors may 

represent new avenues for cancer chemotherapy, but benefit has yet to be demonstrated in 

the clinic. A recent phase-3 study of ganetespib in combination with the taxane, docetaxel, 

in recurrent lung cancer (GALAXY 2) failed to show any significant clinical benefit and was 

terminated.

4.1.5 Sansalvamide A-Amide—Sansalvamide A (San A) is a depsipeptide isolated from 

a marine fungus of the genus Fusarium and exhibits moderate antitumor activity (IC50 45 

μg/mL against HCT-29 colon cancer cells) (Belofsky, Jensen, & Fenical, 1999). San A is a 

cyclic pentapeptide containing a lactone moiety (Fig. 9), which is susceptible to ring 

opening by the esterases present in plasma and in cells. In an effort to improve stability, 

Silvermann and coworkers synthesized a peptide derivative of San A, sansalvamide A-amide 

(San A-amide), which was found to be 10-fold more potent (IC50 4.5 μg/mL) than the 

natural product (Gu, Liu, & Silverman, 2002; Sellers et al., 2010). Biochemical studies by 

Vasko and coworkers revealed that San A-amide binds the N-MD of Hsp90 and disrupts 

Hsp90 chaperone activity (Vasko et al., 2010). Interestingly, like 17-AAG, San A-amide 

induces Hsp70 levels (Ardi, Alexander, Johnson, & McAlpine, 2011); however, it shows no 

effect on the binding of the client protein Her2, suggesting a unique mechanism of action for 

this compound (Vasko et al., 2010). In addition, it was found that San A-amide disrupts 

interactions between Hsp90 and various C-terminal domain-binding cochaperones, including 

IP6K2, FKBP52, and HOP, suggesting an allosteric mechanism for its modulation of Hsp90 

function (Kunicki et al., 2011; Vasko et al., 2010). Moreover, San A-amide shows no effect 

on Hsp90 ATPase activity and preferentially binds to the closed conformation of Hsp90, 

further supporting the notion that San A-amide, among many other biological activities 

might act as an allosteric modulator of Hsp90 function (Alexander, Partridge, Agard, & 

McAlpine, 2011).

Over the past decade, McAlpine and coworkers have conducted several structure–activity 

relationship studies on San A-amide and have developed a number of analogs that manifest 

potent cytotoxicity against several cancer cell lines, including pancreatic, breast, prostate, 

and colon (Ardi et al., 2011; Carroll et al., 2005; Davis et al., 2012; Rodriguez et al., 2007; 

Sellers et al., 2010). Like San A-amide, these compounds have been reported to 

allosterically inhibit interaction between Hsp90 and multiple TPR-containing proteins, and 

also, induce caspase-dependent apoptosis in cancer cells. Interestingly, some of these 

analogs (32 and 33) manifest anti-proliferative activities without inducing the heat-shock 

response, a major drawback associated with the parent compounds (Koay et al., 2014; 

McConnell, Alexander, & McAlpine, 2014). Recently, Ramsey and coworkers reported a 

novel San A-amide derivative, 34, which induces apoptosis and interacts with Hsp90 in 

biochemical pull-down assays, but has no effect on interaction between Hsp90 and C-
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terminal domain proteins, suggesting a novel mechanism by which it might modulate Hsp90 

function (Ramsey et al., 2012).

4.1.6 Deguelin and L80—Deguelin is a naturally occurring flavonoid isolated from 

Derris trifoliata Lour. or Mundulea sericea (Leguminosae). It has demonstrated potent 

antiproliferative, antimetastatic, and apoptotic activity against several cancers both in vitro 
and in vivo (Chang et al., 2012; Hastings, Hadden, & Blagg, 2008; Lee et al., 2015). A 

number of reports indicate deguelin induces cell death by inhibiting several cell signaling 

pathways, such as PI3K-Akt, IKK-IκBα-NF-κB, AMPK-mTOR-survivin, and HIF-1α-

VEGF. In 2007, Oh and coworkers reported that deguelin disrupts interactions between 

Hsp90 and its client protein, HIF-α (Oh et al., 2007). Subsequent biochemical analysis and 

molecular docking studies suggested that deguelin binds the C-terminal ATP-binding pocket 

of Hsp90 and suppresses Hsp90 function, which leads to proteasome-mediated degradation 

of Hsp90 client proteins, without inducing Hsp90 expression (Lee et al., 2015). In 

preclinical studies, administration of deguelin significantly reduced tumor growth by 

inducing apoptosis. However, it was observed that deguelin produces Parkinson’s disease-

like syndrome in rats at high doses, which may limit its therapeutic application (Caboni et 

al., 2004). In an attempt to circumvent this detrimental feature and to develop simpler 

analogs, Chang and coworkers reported structure–activity relationships studies for deguelin 

using HIF-1α reduction and cytotoxicity as endpoints (Fig. 10; Chang et al., 2012). Their 

studies revealed that the 2,2-dimethyl-2H-chromene moiety and both methoxy groups at the 

C9 and C10 positions of deguelin are critical for these activities. The SAR insights reported 

led to the development of compounds 36 and 37, which have cytotoxicity IC50s of 0.14 and 

0.49 μM, against H1299 cell line, respectively. The extent to which these effects result from 

Hsp90 inhibition remain unclear. Recently, Lee and coworkers reported a novel deguelin 

derivative, L80 that manifests antiproliferative and apoptotic activities both in vitro and in 
vivo without systemic toxicity (Lee et al., 2015). Consistent with earlier observations for this 

scaffold, L80 was found to bind directly to Hsp90 in biochemical assays and disrupt the 

Hsp90 chaperone cycle. Computational studies suggest L80 might form key interactions 

with Ser677 and Lys615 within the Hsp90 C-terminal domain. However, the exact 

mechanism remains unclear in cells.

4.2 Disruptors of Hsp90 Interaction with Cochaperones and Client Proteins

Currently, Hsp90 inhibitors undergoing clinical evaluation are pan-inhibitors and induce the 

degradation of many Hsp90-dependent client proteins (Jhaveri et al., 2012; Patel et al., 

2013). Although pan-Hsp90 inhibition could be beneficial by providing a multifaceted attack 

on cancer cells, it may also produce detrimental side effects. For example, it has been found 

that inhibition of the Hsp90-dependent trafficking of cardiac potassium channel hERG could 

be responsible for the cardiac arrhythmias seen in clinical trials of some Hsp90 inhibitors 

(Peterson, Eskew, Vielhauer, & Blagg, 2012). Consequently, there is growing interest in 

identifying new Hsp90 modulators that could provide alternative mechanisms of action 

without the negative effects of pan-inhibition. Over the past decade, new compounds have 

emerged that disrupt interactions between Hsp90 and its cochaperones (Brandt & Blagg, 

2009; Hall, Forsberg, et al., 2014; Piaz et al., 2015). These compounds not only represent 

new chemotypes for the development of future Hsp90 inhibitors but also appear to block the 
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maturation of more restricted subsets of Hsp90 client proteins, which could limit target-

related toxicities induced by pan-inhibitors. Several natural products, such as celastrol, 

gedunin, and cruentaren A, have been shown, among a plethora of other biochemical and 

biological effects to disrupt interactions between Hsp90 and its partner proteins.

4.2.1 Celastrol, a Disruptor of Cdc37–Hsp90 Interaction—Celastrol (Fig. 11) is a 

pentacyclic triterpenoid isolated from the root extract of Tripterygium wilfordii Hook F. (as 

known as Thunder of God Vine) and has been used for centuries in oriental traditional 

medicine to treat inflammatory and autoimmune disorders, such as rheumatoid arthritis 

(Allison, Cacabelos, Lombardi, Álvarez, & Vigo, 2001; Duan et al., 2000; Salminen, 

Lehtonen, Paimela, & Kaarniranta, 2010; Tao & Lipsky, 2000). In recent years, a renewed 

interest in the therapeutic application of celastrol has increased due to its diverse biological 

activities, especially for the treatment of various inflammatory diseases and cancer (Allison 

et al., 2001; Duan et al., 2000; Kannaiyan et al., 2011). Studies have indicated that celastrol 

manifests cytotoxicity against different cancer cell lines, including prostate, multiple 

myeloma, lung, gliomas, pancreatic, and cervical cancers (Liu, Ma, & Zhou, 2011; Liu et al., 

2010; Yang, Chen, Cui, Yuan, & Dou, 2006; Zhou & Huang, 2009). In addition, it 

suppresses metastatic invasion, induces apoptosis (Kannaiyan et al., 2011; Sethi, Ahn, 

Pandey, & Aggarwal, 2007), and sensitizes drug-resistant cancer cells to combination 

therapy (Chen, Rose, Doudican, Osman, & Orlow, 2009). Celastrol is a quinone methide 

triterpene and exhibits a high propensity to form covalent Michael adducts with cysteine 

residues (Salminen et al., 2010). In fact, studies with celastrol have identified numerous 

intracellular targets with relevance to cancer, such as NF-κB/IKKβ (Sethi et al., 2007), the 

proteasome (Yang et al., 2006), topoisomerase II (Nagase et al., 2003), and a variety of 

signaling pathways that are essential to the survival of cancer cells (Liu et al., 2011).

In 2006, Lamb and coworkers developed a novel chemical genomic approach called 

connectivity maps to discover and predict the biological pathways targeted by various 

anticancer agents (Lamb et al., 2006). Briefly, these researchers generated a database of gene 

expression changes resulting from the exposure of tumor cells to drugs with well-

characterized modes of action. Using this database to identify compounds with similar 

modes of action, Hieronymus and coworkers reported that celastrol exerts its 

antiproliferative activity, at least in part via disruption of Hsp90-related pathways 

(Hieronymus et al., 2006). Since this initial work, extensive research has been conducted to 

investigate the effect of celastrol on Hsp90. Using molecular docking studies and 

coimmunoprecipitation assays, Zhao and coworkers revealed that celastrol disrupts the 

association between Hsp90 and Cdc37, which leads to the degradation of Hsp90-dependent 

client kinases, such as Akt and Cdk4 (Zhang et al., 2008). It was also observed that celastrol 

induces the heat-shock response by activation of HSF-1 (Westerheide et al., 2004). In 

another study, Chadli and coworkers showed that celastrol can inactivate the cochaperone 

p23 and cause amyloid-like fibril formation, which in turn halts the chaperoning of steroid 

hormone receptors (Chadli et al., 2010). Early studies indicated that celastrol binds the 

Hsp90 C-terminal domain and allosterically modulates its chaperoning activity (Zhang et al., 

2009). However, HSQC NMR-based studies by Sreeramulu and coworkers suggested that 

celastrol disrupts Hsp90/Cdc37 interactions by covalently binding to cysteine residues on 
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Cdc37, without direct interactions with Hsp90 (Sreeramulu, Gande, Göbel, & Schwalbe, 

2009). Recently, Zanphorlin and coworkers conducted detailed studies on celastrol and 

proposed a new model for celastrol/Hsp90 binding, suggesting that celastrol binds the C-

terminal domain of Hsp90 and interferes with Hsp90 function by induction of its 

oligomerization (Zanphorlin, Alves, & Ramos, 2014). Taken together, these studies suggest 

that celastrol may modulate Hsp90 function through multiple mechanisms. Additional 

studies are needed to further clarify the exact nature of its effects on Hsp90, but promiscuity 

limits its utility as a probe for studying Hsp90 function specifically in whole cells.

In 2014, Wei and coworkers performed a limited structure–activity relationship study on the 

celastrol scaffold using cytotoxicity and depletion of kinase levels as endpoints (summarized 

in Fig. 11; Wei et al., 2014). Seven celastrol derivatives were prepared and their antitumor 

activity evaluated against human hepatocellular carcinoma (HCC) cell line in vitro and in 

HCC patient-derived xenografts. These celastrol derivatives were shown to deplete cellular 

levels of protein kinases involved in the Raf/MEK/ERK and PI3K/AKT/mTOR signaling 

pathways and induce apoptosis. Although no derivative was found more active than the 

natural product (cytotoxicity IC50, 0.30 μM against Hep3B HCC cell line), it was revealed 

that modifications to the carboxylic acid moiety of celastrol were tolerated.

4.2.2 Gedunin, a Disruptor of Hsp90–p23 Interaction—Gedunin (Fig. 12) is a 

tetranortriterpenoid isolated from the Indian neem tree (Azadirachta indica, Meliacae) and 

has been used for the treatment of malaria and other infectious diseases in traditional Indian 

medicine (Patwardhan et al., 2013). In addition, gedunin has demonstrated antiproliferative 

activity against various cancer cell line including prostate, colon, and ovarian (Hieronymus 

et al., 2006; Kamath et al., 2009; Uddin et al., 2007). Like celastrol, gedunin is a strong, 

thiol-reactive electrophile that activates the heat-shock response. In 2006, Hieronymus and 

coworkers used connectivity map analysis to report that gedunin exerts its antiproliferative 

activity at least in part via modulation of Hsp90-dependent pathways, which results in the 

depletion of cellular levels of Hsp90-dependent client proteins (Hieronymus et al., 2006; 

Lamb et al., 2006). Subsequent biochemical studies showed that gedunin inhibits Hsp90 

ATPase activity and disrupts the Hsp90 chaperone cycle. However, unlike most Hsp90 

inhibitors, gedunin was unable to compete with GDA for binding to the N-terminal ATP-

binding pocket in florescence polarization assays, suggesting a novel mechanism for Hsp90 

modulation (Hieronymus et al., 2006). Recent studies by Patwardhan and coworkers 

revealed that gedunin binds to the cochaperone p23 and blocks its interaction with Hsp90, 

which leads to deactivation of the Hsp90 folding machinery (Patwardhan et al., 2013). 

Interestingly, unlike GDA, gedunin induced relatively modest overexpression of Hsp70. 

Furthermore, it was observed that gedunin selectively destabilizes steroid receptors such as 

GR and induces apoptotic cell death through the activation of caspase 7. In 2008, Brandt and 

coworkers synthesized a series of compounds with chemical modifications to the gedunin 

scaffold and revealed key structural features that are required for cytotoxic activity (Brandt, 

Schmidt, Prisinzano, & Blagg, 2008). Nineteen semisynthetic derivatives of gedunin were 

prepared and their antiproliferative activity evaluated against MCF-7 and SKBr3 breast 

cancer cells. No analog was found to be more active than the natural product (MCF-7, IC50 

= 8.84 μM). Further-more, it was shown that the α,β-unsaturated ketone within the A-ring, 
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although important for antiproliferative activity, did not necessarily serve as a Michael 

acceptor and therefore, may avoid potential toxicities associated with such motifs.

4.2.3 Withaferin A, a Disruptor of Hsp90–Cdc37 Interaction—Withaferin A (WA, 

Fig. 13) is a withanolide isolated from the Indian medicinal plant of Withania somnifera 
(commonly known as “Ashwagandha” or “Indian Winter Cherry” in Ayurvedic medicine) 

and possesses diverse biological activities, such as anti-inflammatory (Kaileh et al., 2007), 

antistress, antioxidant, immunomodulatory (Mishra, Singh, & Dagenais, 2000), anti-

angiogenesis (Mohan et al., 2004), and anticancer activities (Yang, Shi, & Dou, 2007). Since 

its discovery in the late 1960s, withaferin A has been extensively studied for its anticancer 

activity, and numerous mechanisms and molecular targets proposed (Falsey et al., 2006; 

Kaileh et al., 2007; Shohat, Gitter, Abraham, & Lavie, 1967; Srinivasan, Ranga, Burikhanov, 

Han, & Chendil, 2007; Yang et al., 2007; Yokota, Bargagna-Mohan, Ravindranath, Kim, & 

Mohan, 2006). It has been reported that withaferin A inhibits nuclear factor-κB (NF-κB) 

activation of IκB kinase via a thioalkylation-sensitive redox mechanism (Kaileh et al., 2007) 

induces apoptosis in prostate cancer cells through Par-4 induction (Srinivasan et al., 2007), 

targets β5 subunit of tumor proteasome (Yang et al., 2007), and covalently binds to Annexin 

II to alter cytoskeletal architecture (Falsey et al., 2006). In 2010, Yu and coworkers 

demonstrated that withaferin A exhibits antiproliferative activity and inhibits Hsp90 in 

pancreatic cells where it was reported to deplete cellular levels of Hsp90-dependent client 

proteins (Akt, Cdk4, and GR) (Yu et al., 2010). In addition, it was observed that withaferin 

A induces Hsp70 expression, without affecting Hsp90 levels. Moreover, these researchers 

found that withaferin A binds Hsp90 and halts the Hsp90 chaperone cycle through a novel 

ATP-independent mechanism. To identify the domain to which withaferin A binds in Hsp90, 

a pull-down assay using WA-biotin was used, which suggested interaction with the 

chaperone’s C-terminal domain (Yu et al., 2010). Coimmunoprecipitation studies showed 

that withaferin A disrupts formation of the Hsp90/Cdc37 complex in pancreatic cancer cells 

(Yu et al., 2010). Structure–activity relationship studies have identified a pharmacophore of 

WA that involves the 4-hydroxy-5,6-epoxy-22-en-1-one moiety and its unsaturated lactone 

as critical for cytotoxic activity (Mohan et al., 2004; Yousuf et al., 2011). Recent studies 

with the withanolides indicate that the 5,6-epoxide may react with reactive cysteine residues 

in Hsp90 and induce aggregation, leading to disruption of Hsp90 function (Gu et al., 2014).

4.2.4 Derrubone, a Disruptor of Hsp90–Cdc37 Interaction—Derrubone is a 

prenylated isoflavone that was originally isolated from the Indian tree Debrris robusta in 

1969 (East, Ollis, & Wheeler, 1969). However, its biological activities remained 

uncharacterized until recently. In 2007, high-throughput screening of a library of natural 

products identified derrubone as a potential Hsp90 inhibitor (Hadden, Galam, Gestwicki, 

Matts, & Blagg, 2007). The screening was based on the ability of natural products to inhibit 

the Hsp90-dependent refolding of thermally denatured firefly luciferase (Galam et al., 2007). 

In this study, derrubone potently inhibited refolding with an IC50 value of 0.23 ± 0.04 μM. 

Subsequent cellular studies revealed that it exhibits antiproliferative activity against various 

cancer cell lines (MCF-7 IC50 = 11.9 μM; HCT116 IC50 = 13.7 μM), and depletes cellular 

levels of Hsp90-dependent client proteins, including Her2, Raf-1, Akt, and ERα, without 

altering Hsp90 levels (Hadden et al., 2007; Mays, Hill, Moyers, & Blagg, 2010). Using 
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purified recombinant Hsp70, Hadden and coworkers demonstrated that derrubone has no 

effect on Hsp70 ATPase activity, suggesting Hsp90 inhibition as a plausible mechanism for 

its inhibitory activity on refolding (Hadden et al., 2007). Moreover, it was observed that 

derrubone inhibits Hsp90 function by stabilizing the Hsp90 hetero-complex (Hsp90/

cochaperone/client complex) formed between Hsp90, Cdc37, and heme-regulated eIF2α 
kinase (HRI), and consequently, halts progression of the chaperone cycle. In follow-up, a 

small library of derrubone analogs was prepared and evaluated to elucidate the critical 

structural features of derrubone for cytotoxicity and Hsp90 client protein depletion (Hastings 

et al., 2008; Mays et al., 2010). These structure–activity relationship studies revealed the 

importance of the 6-prenyl and 3-aryl side chains for activity (Fig. 14). Recent molecular 

docking studies by Khalid and coworkers suggest derrubone binds to the Hsp90 C-terminal 

domain and interacts with Leu665, Leu666, and Leu694 (Khalid & Paul, 2014).

4.2.5 Gambogic Acid, a Disruptor of Hsp90–Cdc37 Interaction—Gambogic acid 

(Fig. 15) is a xanthonoid isolated from the exudate of Garcinia hanburyi Hook f. 

(Clusiaceae) and has been used for centuries to treat infections and tumors (Ren et al., 

2011). In recent decades, interest in gambogic acid as a potential anticancer agent has 

increased because it demonstrates antitumor, antiangiogenic, and antimetastatic activities 

against multiple cancer cell lines (Ren et al., 2011). Recently, it entered phase II clinical 

trials in China for metastatic cancers (Chi et al., 2013). Several studies have shown that 

gambogic acid exerts its anticancer activity via numerous targets and signaling pathways, 

such as apoptosis induction (Pandey et al., 2007), antiangiogenesis (Yi et al., 2008), 

inhibition of human topoisomerase-Iiα (Qin et al., 2007), and telomerase (Zhao et al., 

2008). In 2010, Zhang and coworkers ascribed the antiproliferative activity of gambogic acid 

to Hsp90 inhibition in HeLa cells (Zhang et al., 2010). Using fluorescence-quenching assays 

and spectroscopic tools, they demonstrated that gambogic acid binds the Hsp90 N-terminal 

domain and inhibits its ATPase activity. In addition, it was found that gambogic acid causes 

down-regulation of the TNF-α/NF-κB signaling pathway, which in turn induces apoptosis in 

HeLa cells. Their findings were further supported by a contemporaneous study by Davenport 

and coworkers, which demonstrated that gambogic acid inhibits Hsp90-dependent refolding 

of thermally denatured luciferase in a high-throughput screening assay previously developed 

by the same group (Davenport et al., 2011; Galam et al., 2007). In these studies, it was found 

that gambogic acid inhibits the proliferation and survival of two breast cancer cell lines 

(MCF-7, IC50 2.0 μM and SKBr3, IC50 0.8 μM), and depletes cellular levels of the Hsp90-

dependent client proteins Her2, Akt, and Raf-1 in a concentration-dependent manner. 

Importantly, it was observed that gambogic acid induces Hsp90 and Hsp70 expression, a 

hallmark of Hsp90 N-terminal inhibition, but also a general feature of many thiol-reactive 

compounds. Like celastrol, gambogic acid was found to block the association of Hsp90, 

Hsp70, and Cdc37 with HRI. Recent surface plasmon resonance (SPR) analysis and virtual 

docking studies suggest gambogic acid binds the Hsp90 N-terminal domain; however, it 

does not compete with GDA for binding, suggesting a site of interaction distinct from the 

ATP-binding pocket (Davenport et al., 2011).

4.2.6 Cruentaren A, a Hsp90/F1F0 ATP Synthase Disruptor—Cruentaren A (Fig. 

16) is a macrolide isolated from the myxobacterium Byssovorax cruenta which is highly 
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cytotoxic to various cancer cell lines (Kunze, Sasse, Wieczorek, & Huss, 2007). It has been 

reported that cruentaren A exerts its cytotoxicity through selective inhibition of F1F0-ATP 

synthase, the enzyme responsible for the mitochondrial production of ATP (Kunze et al., 

2007, 2006). In 2006, Papathanassiu and coworkers discovered that F1F0-ATP synthase can 

act as an Hsp90 cochaperone that provides the energy required for the maturation of client 

proteins (Papathanassiu, MacDonald, Bencsura, & Vu, 2006). They also demonstrated that 

fungal peptides, known as efrapeptins, disrupt interaction between Hsp90 and F1F0-ATPase 

synthase, which leads to the depletion of Hsp90-dependent client proteins, including ERα, 

mutated p53, and caspase-3, along with downregulation of Hsp27, Hsp70, and even Hsp90 

levels. However, the complex peptide structure and promiscuous nature of efrapeptins render 

them unsuitable for further development. Recently, Hall and coworkers demonstrated that 

incubation of cruentaren A, a more selective F1F0-ATP synthase inhibitor, disrupts 

interactions between Hsp90α and F1F0-ATPase synthase (Hall, Kusuma, Brandt, & Blagg, 

2014). Interestingly, it was observed that inhibition of F1F0-ATPase synthase via cruentaren 

A reduces cellular levels of select Hsp90 client proteins without induction of the heat-shock 

response and thus, could provide a novel approach to modulating Hsp90 function. However, 

limited synthetic accessibility to cruentaren A represents an obstacle that has yet to be 

overcome.

5. CONCLUSIONS AND FUTURE PROSPECTIVE

Since recognition of Hsp90 as a critical mediator of oncogenic survival and proliferation 

decades ago, significant progress toward the development of N-terminal Hsp90 inhibitors 

has been made and numerous compounds have undergone clinical evaluation. Although 

these inhibitors have shown promising results in a limited number of disease settings, 

problems, such as induction of prosurvival responses, and a range of dose-limiting systemic 

toxicities have become apparent. In contrast, C-terminal Hsp90 inhibitors derived from NB 

have shown promising results in preclinical studies, but their therapeutic potential has yet to 

be tested in humans. In recent years, many new compounds that modulate Hsp90 function by 

a variety of mechanisms have been reported. Natural products, such as EGCG, taxol, and 

silybin, have been identified as exhibiting the potential to inhibit Hsp90, but the extent to 

which such activity contributes to their broad-spectrum of antitumor activities remains 

largely unknown. In addition, small molecules have been reported that disrupt the protein–

protein interactions that occur between Hsp90 and its cochaperones and client proteins. 

These may provide useful insights for the development of compounds that can alter Hsp90 

function in more subtle ways than direct inhibition of its N-terminal ATP-binding pocket, 

such as selective disruption of only certain client proteins which might lead to fewer 

undesirable effects. Interestingly, many of these natural products, including celastrol and 

withaferin, feature thiol-reactive motifs, which react with cysteine residues in Hsp90 or its 

cochaperones. Such compounds represent “soft spots” for Hsp90 manipulation, and suggest 

a potential role for Hsp90 in global protein homeostasis as a sensor of redox stress. This 

chapter has highlighted the broad range of compounds emerging in recent times that impact 

Hsp90 function and are now being used to probe more deeply into the biology of Hsp90. 

The insights gained from such studies should enable the development of new Hsp90 

inhibitors with improved properties for clinical applications in the near future.
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Figure 1. 
The Hsp90-mediated protein folding process.
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Figure 2. 
Rationale for Hsp90 inhibition as an anticancer strategy. Classical Hsp90 inhibitors compete 

with ATP for the nucleotide-binding domain of Hsp90 and halt the progression of the 

chaperone cycle. Consequently, the client protein is often directed to the ubiquitin-mediated 

degradation pathway.
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Figure 3. 
Structure of representative examples of Hsp90 N-terminal inhibitors.
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Figure 4. 
A proposed mechanism for induction of heat-shock protein expression by Hsp90 N-terminal 

inhibitors. Hsp90 inhibitors bind to the Hsp90 N-terminus, which result in the release of a 

transcription factor, HSF-1. Upon release, HSF-1 becomes trimerized, phosphorylated, and 

translocated to nucleus, wherein it binds to consensus sequences and upregulates many 

prosurvival mechanisms, including overexpression of prosurvival chaperones such as Hsp27, 

Hsp40, Hsp70, and Hsp90.
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Figure 5. 
Structure–activity relationships for novobiocin and its derivatives.
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Figure 6. 
Summary of cytotoxicity structure–activity relationships for EGCG and its analogs.
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Figure 7. 
Summary of SAR for silybin and its analogs.
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Figure 8. 
Structures of cisplatin, LA-12, and taxol.
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Figure 9. 
(A) Structures of sansalvamide A and its analogs. (B) Proposed mechanism of action of 

sansalvamide A derivatives.
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Figure 10. 
Structures of deguelin, L80, and its derivatives.
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Figure 11. 
Structures of celastrol and its derivatives.
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Figure 12. 
Summary of SAR for gedunin and derivatives.
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Figure 13. 
Summary of SAR for withaferin A.
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Figure 14. 
Summary of cytotoxicity SAR for derrubone and its derivatives.

Garg et al. Page 38

Adv Cancer Res. Author manuscript; available in PMC 2018 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Structure of gambogic acid.
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Figure 16. 
Structure and cytotoxic activity of cruentaren A.
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Table 1

Cochaperones and Partner Proteins That Participate in the Hsp90 Protein Folding Cycle (Peterson & Blagg, 

2009; Zuehlke & Johnson, 2010)

Cochaperone or Partner Proteins Description

Aha1 Stimulates ATPase activity

Cdc37 Mediates activation of protein kinase substrates

CHIP Involved in degradation of unfolded client proteins

Cyclophilin-40 Peptidyl propyl isomerase

FKBP51 and 52 Peptidyl propyl isomerase

HOP Mediates interaction between Hsp90 and Hsp70

Hsp40 Stabilizes and delivers client proteins to Hsp90 complex

Hsp70 Stabilizes and delivers client proteins to Hsp90 complex

p23 Stabilizes closed, clamped substrate bound conformation

HIP Inhibits ATPase activity of Hsp70

PP5 Protein phosphatase 5

Sgt1 Client adaptor, involved in client recruitment

Tom70 Facilitates translocation of pre-proteins into mitochondrial matrix

WISp39 Regulates p21 stability
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Table 2

Hsp90 Client Proteins Associated with the Hallmarks of Cancer (Blagg & Kerr, 2006; Vartholomaiou et al., 

2016)

Hallmarks of Cancer Hsp90 Client Protein(s)

1. Sustaining proliferative signaling Raf-1, AKT, Her2, MEK, Bcr-Abl

2. Evading growth suppressors Plk, Wee1, Myc1, CDK4, CDK6, Myt1

3. Resisting cell death NF-κ, AKT, p53, c-MET, Apaf-1, Survivin

4. Enabling replicative immortality Telomerase (h-Tert)

5. Inducing angiogenesis HIF-1α, VEGFR, PI3K/AKT, RTKs, flt-3

6. Activating invasion and metastasis c-MET, SSDF-1, MMP-2

7. Deregulated cellular energetics ARNT, ARRB1, HIF-1α, HMG1, SREBF1

8. Avoiding immune destruction IRAK3

9. Tumor-promoting inflammation IL-6, IL-8, IRAK1, IRAK2, IRAK3

10. Genome instability and mutation FANCA, MAFG, NEK8, NEK9, NEK11
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