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Abstract

Background—Influenza A virus (IAV) infection is a common respiratory tract infection that 

causes considerable morbidity and mortality worldwide.

Objective—To investigate the effect of a genetic deficiency of tissue factor (TF) in a mouse 

model of influenza A infection.

Methods—Wild-type mice, low tissue factor (LTF) mice and mice with the TF gene deleted in 

different cell types were infected with a mouse-adapted A/Puerto Rico/8/34 H1N1 strain of IAV. 

TF expression was measured in the lungs, and bronchoalveolar lavage fluid (BALF) was collected 

to measure extracellular vesicle TF, activation of coagulation, alveolar hemorrhage and 

inflammation.

Results—IAV infection of wild-type mice increased lung TF expression, activation of 

coagulation and inflammation in the BALF, but also led to alveolar hemorrhage. LTF mice and 

mice with a selective deficiency of TF in lung epithelial cells had low basal levels of TF and failed 

to increase TF expression after infection; these two strains of mice had more alveolar hemorrhage 

and death compared with controls. In contrast, deletion of TF in either myeloid cells or endothelial 

cells and hematopoietic cells did not increase alveolar hemorrhage or death after IAV infection. 

These results indicate that TF expression in the lung, particularly in epithelial cells, is required to 

maintain alveolar hemostasis after IAV infection.
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Conclusion—Our study indicates that TF-dependent activation of coagulation is required to 

limit alveolar hemorrhage and death after influenza A infection.
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Introduction

Influenza A virus (IAV) infection is a common cause of respiratory tract infection 

worldwide resulting in considerable mortality every year, especially in the elderly.(1) Viral 

infections in general are often associated with activation of the coagulation system as part of 

the innate immune response.(2–8) In mouse models of lethal IAV subtype H1N1 infection 

there is both pulmonary and systemic activation of coagulation.(9–11) In humans, acute IAV 

infection is associated with an increase in the incidence of thrombosis-related cardiovascular 

events, such as myocardial infarction and stroke.(12) Despite the activation of the 

coagulation system in the airspace, alveolar hemorrhages are observed in patients with IAV 

pneumonia and in lungs of H1N1 IAV-infected mice.(13–15)

Tissue factor (TF) plays an essential role in hemostasis but aberrant expression can 

contribute to thrombosis.(16) TF expression is induced in different cell types after viral 

infections. For instance, TF is induced in monocytes in HIV patients, is induced in 

circulating blood cells in monkeys infected with Ebola, and is induced in endothelial cells 

infected with herpes simplex virus or Dengue virus.(3–5, 8, 17, 18) Importantly, inhibition 

of the TF/FVIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever.

(17) Therefore, the prevailing view is that TF contributes to the pathology of viral infections.

TF is expressed in a tissue-specific manner.(19) We have proposed that TF expression in the 

lung is required to maintain hemostasis in this vital organ.(19) It is expressed by a variety of 

cell types, including bronchiolar, bronchial and alveolar epithelial cells, alveolar 

macrophages and fibroblasts.(20–25) Low TF [LTF] mice express ~1% levels of TF (26) and 

when crossed more than 6 generations onto a C57Bl/6 background exhibit spontaneous 

hemorrhages in their lungs.(27) Moreover, we found that intra-tracheal instillation of LPS 

into the lungs of LTF mice increased levels of cell-free hemoglobin in bronchoalveolar 

lavage fluid (BALF), which indicated alveolar hemorrhage.(25) Finally, Tf+/− mice have 

decreased levels of the coagulation activation marker thrombin-antithrombin complexes 

(TATc) in BALF after ventilator-induced acute lung injury (ALI).(28) These results 

demonstrate that TF plays a central role in lung hemostasis under basal conditions and after 

lung injury.

TF also contributes to lung pathology. Indeed, excessive TF-dependent activation of 

coagulation leads to intra-alveolar fibrin deposition associated with endotoxemia and sepsis.

(29) In a mouse endotoxemia model, we observed increased total Tf mRNA expression in 

the lung and increased expression in alveolar epithelial cells but not bronchiolar epithelial 

cells.(20, 30) Similarly, Drake and colleagues found increased TF protein expression in 

alveolar epithelial cells in the lungs of septic baboons.(23) BALF from healthy individuals 

contains TF activity in small membrane vesicles called extracellular vesicles (EVs).(31) In 
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addition, patients with acute respiratory distress syndrome (ARDS) or ALI have increased 

TF expression in alveolar epithelial cells and alveolar macrophages.(24) Interestingly, EV 

TF activity is increased in the airspace in patients with ALI/ARDS and appears to originate 

from alveolar epithelium.(24, 32, 33) Finally, LPS stimulation of alveolar macrophages 

increases TF expression.(34)

In this study, we used a genetic approach to examine the role of TF-dependent activation of 

coagulation on alveolar hemorrhage and survival in mice after IAV infection.

Material and Methods

We used the mouse-adapted strain of influenza A/Puerto Rico/8/1934 (H1N1, PR/8) (ATCC, 

Manassas, VA). The virus was propagated in 10–12 day old embryonated chicken eggs and 

purified as described previously.(7) Viral titers were determined using a hemagglutination 

assay.(7) For virus inoculation, mice were anesthetized with isoflurane and infected intra-

nasally with IAV at the dose of 0.02 hemagglutination units (HAU) in 50 µL PBS. Lungs and 

BALF were collected at various times after infection. Mice were euthanized if they had 

≥25% loss of initial body weight as instructed by our animal protocol.

Mice

We used male wild-type (WT) C57Bl/6, LTF mice and mice with deletion of the TF gene on 

different cell types. LTF mice have been described (26, 27). Tffl/fl mice were crossed with 

mice expressing the Cre recombinase in different cell types to generate mice with cell type-

specific deletion of the TF gene.(35) Mice with the TF gene deleted in myeloid cells using 

the lysosomal M promoter (Tffl/fl,LysM-Cre) have been described and will be referred as 

TFΔMy mice.(36) We used the Tie2 promoter to delete the TF gene in both endothelial cells 

and hematopoietic cells (Tffl/fl,Tie2-Cre) and will refer to these mice as TFΔEc.(36) Mice 

with the TF gene deleted in lung epithelial cells using the surfactant protein C promoter 

(Tffl/fl,SPC-Cre) have been described and will be referred to as TFΔEp mice.(37) We used 

Tffl/fl littermates as controls. We also used factor IX (FIX) null mice.(38) All mice were 

backcrossed onto the C57Bl/6 background and were 8–10 weeks of age. All experimental 

protocols were approved by the University of North Carolina-Chapel Hill's Institutional 

Animal Care and Use Committee.

Bronchoalveolar lavage

Mice were euthanized by cervical dislocation under isoflurane anesthesia after the terminal 

blood draw, and then BALF or tissue samples were prepared from non-perfused lungs as 

described below. BALF was collected from infected and uninfected mice by postmortem 

lavage using 3 × 900 µL of ice-cold PBS.(7) BALF were centrifuged (500 × g, 20 minutes, 

4°C), and the supernatant and cell pellets separated. Cell pellets were re-suspended in 200 

µL of PBS. WBC and hemoglobin levels in re-suspended cell pellets were determined using 

a Hemavet 950 (Drew Scientific, Miami Lakes, FL).
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TF immmunostaining

Paraffin-embedded lung sections were de-paraffinized with antigen retrieval by standard 

procedures. Slides were blocked by 2% normal rabbit serum (Vector Lab, Burlingame, CA) 

in 0.4% triton X-100/PBS for 15 min at room temperature. Then, slides were incubated 

overnight at 4°C with 1 µg/mL anti-human TF goat polyclonal antibody (R&D Systems, 

Minneapolis, MN), rinsed and incubated with 1.5 µg/mL biotinylated rabbit anti-goat 

secondary antibody (Vector Lab) for 20 min at room temperature. Slides were developed 

color with DAB (Vector Lab) for 1 min and counterstained with hematoxylin (Thermo 

Fisher Scientific, Waltham, MA) for 1 min.(39)

RNA isolation and RT-PCR

Total lung RNA was isolated by TRIzol method (Life Technologies, Carlsbad, CA).(40, 41) 

One microgram of RNA was reverse transcribed into cDNA using the iScript™ RT 

Supermix (Bio-Rad Laboratories, Hercules, CA). The levels of H1N1 PR/8 genomes and TF 

mRNA were measured by real-time PCR using SSoFast™ Probes Supermix (Bio-Rad) in a 

realplex2 Mastercycler (Eppendorf, Hamburg, Germany) as described.(7) The housekeeping 

gene Rpl4 was used to correct for variations in input RNA and reaction efficiency.(42) Real-

time PCR primer/probes for H1N1 PR/8, murine Tf, and murine Rpl4 were purchased from 

Integrated DNA Technologies (Coralville, IA): H1N1 PR/8 forward, 5'-

GGACTGCAGCGTAGACGCTT-3'; H1N1 PR/8 reverse, 5'-

CATCCTGTTGTATATGAGGCCCAT-3'; H1N1 PR/8 probe, 5'-/56-FAM/

CTCAGTTATTCTGCTGGTGCACTTGCCA/36-TAMSp/-3'; Tf forward, 5'-

TTTGGCAAGGACTTGGGTTA-3'; Tf reverse, 5'-GCTTACTCCTTCTTCCACATCA-3'; Tf 
probe, 5'-/56-FAM/CCGTGCTTG/ZEN/AGCCTTTCCGATAAGT/3IABkFQ/-3'; Rpl4 
forward, 5'-TGGTGGTTGAAGATAAGGTTGA-3'; Rpl4 reverse, 5'-

CTTGCCAGCTCTCATTCTCTG-3'; Rpl4 probe, 5'-/56-FAM/CTGAACAGC/ZEN/

CTCCTTGGTCTTCTTGTA/3IABkFQ/-3'.

Measurement of TF activity

For measurement of TF activity, lung tissues were homogenized in 15 mM n-Octyl-β-D-

glucopyranoside in 25 mM HEPES/saline buffer at the volume of 1.5 mL per 10 mg of 

tissue. Samples were incubated at 37°C for 15 minutes.(26, 35) Homogenized samples were 

diluted 20 times with 25 mM HEPES/saline buffer. For measurement of TF activity in the 

BALF cells, cell pellets were homogenized in 200 µL of 15 mM n-Octyl-β-D-

glucopyranoside in 25 mM HEPES/saline buffer. The homogenized samples were diluted 5 

times with 25 mM HEPES/saline buffer. Twenty-five µL of the diluted samples were mixed 

with an equal amount of pooled normal mouse plasma and 20 mM CaCl2 and the clotting 

time was determined using a STart4 coagulation analyzer. EV TF activity was measured 

from 10 µL of BALF supernatant as described.(43) Serially diluted recombinant human TF 

(Innovin, Dade Behring) was used to generate a standard curve. TF activity was normalized 

to the protein concentration obtained by BCA assay as described.(7)
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Measurement of TATc and cytokines/chemokines

Levels of TATc in BALF supernatant were quantified by ELISA (TAT Enzygnost Micro Kit; 

Dade Behring, Deerfield, IL).(7, 36) The level of various cytokines/chemokines in the BALF 

supernatant was measured using commercial ELISAs (Duo-Set, R&D Systems, 

Minneapolis, MN).(7)

Statistics

All statistical analyses were performed using either GraphPad Prism (version 5.0; GraphPad 

Software Inc., La Jolla, CA). Data are represented as mean ± SEM. For 2-group comparison 

of continuous data, 2-tailed Student’s t test was used. For multiple-group comparison, data 

were analyzed by 1- or 2-way ANOVA and were Bonferroni corrected for repeated measures 

over time. A P value less than 0.05 was considered significant.

Results

Influenza A virus infection of mice increases TF expression, activation of coagulation, 
alveolar hemorrhage and inflammation

To determine the effect of IAV infection on TF expression in the lung, WT mice were 

infected with IAV and lung and BALF samples were collected at 0, 1, 3, 4, 7 and 14 days 

post infection (dpi). We detected IAV genomes in the lungs at 3, 4 and 7 days (Figure 1A). 

We measured lung TF activity as well as EV TF activity and TATc as a marker of the 

activation of coagulation in BALF. IAV infection led to a time-dependent increase in lung 

TF activity and EV TF activity with maximal levels 4 dpi (Figure 1B and C). IAV infection 

also increased TATc in the BALF at 4, 7 and 14 dpi (Figure 1D). We measured levels of 

hemoglobin in the BALF as a marker of alveolar hemorrhage. Levels of hemoglobin 

increased in a time-dependent manner with maximal levels at 7 dpi (Figure 1E). Levels of 

WBC in the BALF also increased after infection (Figure 1F). We measured levels of 

different cytokines/chemokines in the BALF of mice before and 7 dpi. IAV infection 

significantly increased IL-1β and Ccl2 (Figure 1G and H), and Ccl5 (37.6±14.9 pg/mL vs. 

327.3 ± 25.7 pg/mL, N=4, P<0.05) and Cxcl10 (0±0.0 pg/mL vs. 5882.7±255.5 pg/mL, 

N=4, P<0.05) but not TNF-α or Cxcl2 (data not shown). These data indicate that IAV 

infection of WT mice increases TF expression, activation of coagulation, alveolar 

hemorrhage and inflammation.

Influenza A infection increases TF expression in lung epithelial cells

We examined the effect of a global deficiency of TF on the induction of TF and activation of 

coagulation after IAV infection. LTF mice had significantly lower basal levels of lung TF 

activity than control mice (Figure 2A). In addition, we did not observe any increase in lung 

TF activity after IAV infection in LTF mice (Figure 2A). Levels of EV TF activity in BALF 

were also significantly lower in LTF mice after IAV infection compared with controls 

(Figure 2B). As expected, IAV-infected LTF mice had significantly lower levels of TATc in 

the BALF compared with IAV-infected control mice (Figure 2C).

To examine the contribution of lung epithelial cell TF to total TF expression in the lung and 

activation of coagulation after IAV infection, we used TFΔEp mice that have a selective 
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deletion of the TF gene in lung epithelial cells. We recently showed that these mice have 

lower basal levels of lung TF compared with controls.(37) Uninfected TFΔEp mice had 

significantly lower levels of lung TF mRNA and activity compared to Tffl/fl littermate 

controls (Figure 2D and E). Importantly, we did not observe any increase in lung TF mRNA 

or activity in TFΔEp mice after IAV infection (Figure 2D and E). Moreover, there were 

significantly lower levels of EV TF activity in BALF in TFΔEp mice compared with controls 

(Figure 2F). TFΔEp mice also had lower levels of TATc in the BALF compared with control 

mice but the difference was not statistically significant (Figure 2G). Next, we analyzed 

TFΔMy mice to examine the role of myeloid cell TF in IAV infection. We have shown that 

levels of TF are significantly decreased in circulating myeloid cells in these mice.(36) 

Deletion of TF in myeloid cells did not affect TF expression in the lung or EVs in the BALF, 

or activation of coagulation after IAV infection (Figure 2H–K). Similar results were 

observed with TFΔEc mice that have a deficiency of TF in endothelial cells and 

hematopoietic cells (data not shown).

We analyzed TF protein in the lung of uninfected and IAV infected mice by 

immunohistochemistry. In uninfected WT mice we observed strong TF signal in adventitial 

cells surrounding larger blood vessels and in bronchial epithelial cells as well as weaker 

signal in alveolar epithelial cells (Figure 3B and E). The TF signal was increased in all cell 

types after IAV infection (Figure 3C and F). We did not observe TF signal in endothelial or 

blood cells. In IAV infected TFΔEp mice, we observed TF antigen in adventitial cells 

surrounding blood vessel but no signal in bronchial epithelial cells and alveolar epithelial 

cells (Figure 3G–I). Interestingly, adventitial cells surrounding bronchioles expressed TF in 

TFΔEp mice (Figure 3H). These results indicate that lung epithelial cells are a major source 

of basal TF expression in the lung and are the primary source of inducible TF in the lungs of 

IAV infected mice.

Reduced TF expression leads to increased alveolar hemorrhage in mice after influenza A 
virus infection

We determined the role of TF in maintaining lung hemostasis in mice after IAV infection. 

We assessed alveolar hemorrhage by measuring the level of hemoglobin in BALF. There 

were no signs of alveolar hemorrhage in uninfected mice. However, BALF from IAV-

infected control mice was light pink and had increased levels of hemoglobin compared with 

uninfected mice at 7 dpi (Figure 4A–D). BALF of LTF mice was bright red and had a 

significantly higher level of hemoglobin compared with control mice at 7 dpi (Figure 4A). 

BALF of infected TFΔEp mice also had increased levels of hemoglobin in the BALF at 7 dpi 

compared with controls (Figure 4B). In contrast to the results with the LTF and TFΔEp 

mice, we did not observe an increase in alveolar hemorrhage in TFΔMy or TFΔEc mice 

(Figure 4C and D). Interestingly, FIX null mice did not exhibit increased alveolar 

hemorrhage after IAV infection (data not shown). These data indicate that either a global a 

deficiency of TF or a selective deficiency of TF in lung epithelial cells is associated with 

increased alveolar hemorrhage after IAV infection.
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A deficiency of TF does not affect inflammation or levels of virus

In an endotoxemia model LTF mice had significantly lower levels of IL-6 compared with 

controls.(44) Therefore, we determined if a deficiency of TF was associated with reduced 

expression of inflammatory mediators in the BALF at 7 dpi. Levels of IL-1β, Ccl5 and 

Cxcl10 were not significantly reduced in LTF mice after IAV infection but there was a 

significant increase in Ccl2 (Supplementary Figure 1A, C, E and G). We did not observe any 

differences in the expression of inflammatory mediators in TFΔEp mice (Supplementary 

Figure 1B, D, F and H). In addition, either a global deficiency of TF or cell type-specific 

deletion of TF did not affect the level of IAV genomes in the lungs 7 dpi (Supplementary 

Figure 2A–D).

Effect of TF deficiency on mortality of mice after influenza A virus infection

We used a dose of IAV that caused ~20% mortality in control mice. The body weight of 

control mice decreased after infection and then partially recovered by day 14. We analyzed 

the effect of either global deficiency in TF or deletion of the TF gene in different cell types 

on the mortality of mice after IAV infection. Infected LTF mice had a significantly higher 

mortality compared with infected control mice but surviving mice had similar weight 

changes as control mice (Figure 5A and B). Similarly, TFΔEp mice also exhibited an 

increase in mortality but no change in weight loss after infection compared to control mice 

(Figure 5C and D). TFΔMy and TFΔEc mice had a similar mortality and weight change as 

control mice (Figure 5E–H). FIX null mice exhibited similar survival to controls (data now 

shown). These results indicate that either a global deficiency of TF or a deletion of TF in 

epithelial cells is associated with increased mortality after IAV infection.

Discussion

Patients infected with IAV commonly have alveolar hemorrhage and this is a complication 

of influenza pneumonia particularly with the H1N1 strain.(13, 45–50) Importantly, 

retrospective studies showed an association between alveolar hemorrhages and increased 

mortality.(51, 52) Although alveolar hemorrhage is a feature of influenza pneumonia, the 

mechanisms of hemorrhage are unknown. Furthermore, it is unclear why severe alveolar 

hemorrhage is well described in influenza pneumonia but is a less common feature in other 

infectious pneumonias.(15) Our studies show that the lung epithelium, the very cells infected 

and killed by influenza infection, is the primary source of TF in the airspace. Importantly, 

either a global deficiency in TF or a genetic deficiency of TF in lung epithelial cells is 

associated with a significant increase in alveolar hemorrhage after IAV infection. These 

results indicate that lung epithelial TF helps limit alveolar hemorrhage in IAV pneumonia.

We found that IAV infection increases TF expression in the lungs of WT mice and this 

induction is abolished in mice with either a global deficiency in TF or a selective deficiency 

of TF in lung epithelial cells, but not in myeloid cells or endothelial cells and hematopoietic 

cells. Similarly, we recently found that induction of TF expression in the lung by intra-

tracheal LPS is abolished in these TFΔEp mice but not in mice with a deficiency of TF in 

myeloid cells.(37) These studies indicate that epithelial cells are a major source of basal TF 

expression and the primary source of induced TF expression in the lung. However, TFΔEp 
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mice had higher levels of TF than LTF mice suggesting that other cell types in the lung 

express TF, such as fibroblasts. Indeed, we observed TF expression in adventitial cells 

surround blood vessels and bronchioles in TFΔEp mice that are likely to be fibroblasts. We 

did not see any deteectableTF expression in endothelial or blood cells. The increase in TF 

expression in infected WT mice was associated with activation of coagulation in the BALF. 

This is consistent with a previous study showing that levels of TATc were increased in the 

BALF of mice 4 days after IAV infection.(11) A global deficiency of TF was associated with 

a significant reduction in TATc in the BALF, which indicated that TF regulates coagulation 

in the lung after IAV infection.

We observed a low level of alveolar hemorrhage in WT mice after IAV infection, which 

indicates that the infection represents a hemostatic challenge to the lung. This finding is 

consistent with other studies of IAV infection in mice.(9–11) Mice with either a global 

deficiency in TF or a selective deficiency of TF in lung epithelial cells, but not mice lacking 

TF in myeloid cells or endothelial cells and hematopoietic cells or FIX null mice, exhibited 

increased alveolar hemorrhage after IAV infection. Similarly, we found that LTF mice and 

TFΔEp mice exhibited increased alveolar hemorrhage after intra-tracheal LPS.(25, 37) LTF 

mice exhibited more alveolar hemorrhage than TFΔEp mice indicating that cell types in 

addition to epithelial cells, such as fibroblasts, contribute to lung hemostasis after lung 

injury.

We observed a significant increase in mortality in infected LTF mice compared with 

controls. Similarly, TFΔEp mice were more susceptible to IAV infection compared with 

controls but this phenotype was not as dramatic as the LTF mice. At present, we can only 

speculate about the reasons for the increased mortality in LTF and TFΔEp mice. Increased 

alveolar hemorrhage is likely to contribute to the increased death but a deficiency of TF may 

also impacts other processes, such as vascular permeability. Interestingly, a deficiency of TF 

was not associated with a reduction in inflammatory mediators. In fact, LTF mice had 

increased levels of Ccl2. Finally, a reduction of TF did not affect levels of IAV genomes at 7 

dpi.

Inhibition of TF using a monoclonal antibody has been shown to attenuate the coagulopathy, 

reduce ALI and decrease mortality in an Escherichia coli baboon model of septic shock.(53) 

Similarly, systemic inhibition of the TF/FVIIa complex with site-inactivated recombinant 

factor VIIa (FFR-FVIIa), which acts as a competitive inhibitor of FVIIa, attenuated the 

coagulopathy and reduced lung injury in an Escherichia coli baboon model of septic shock.

(54) These studies led to a clinical trial to determine if FFR-FVIIa would be beneficial in 

mechanically ventilated patients with ALI and ARDS. However, there were no beneficial 

effects of FFR-FVIIa on morbidity and clinical outcome but there was a trend towards an 

increased risk of serious bleeding and higher mortality with the higher dose of FFR-FVIIa.

(55, 56) These results support the notion that TF plays a critical role in lung hemostasis.

In summary, we demonstrate a critical protective role for TF in the lung in a clinically 

relevant model of severe influenza pneumonia. Our results suggest that impairment of 

hemostasis may contribute to the pathology associated with influenza A pneumonia.

Antoniak et al. Page 8

J Thromb Haemost. Author manuscript; available in PMC 2018 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Non-standard abbreviations

ALI acute lung injury

ARDS acute respiratory distress syndrome

BALF bronchoalveolar lavage fluid

dpi days post infection

IAV influenza A virus

H1N1/PR8 hemagglutanin type 1 and neuraminadase type 1/Puerto Rico strain 8/34

HAU hemagglutination units

Hb hemoglobin

LTF low tissue factor

Rbc red blood cells

SPC surfactant protein C

TATc thrombin-antithrombin complexes

TF tissue factor

TFΔEp Tffl/fl,SPC-Cre

TFΔMy Tffl/fl,LysM-Cre

TFΔEc Tffl/fl,Tie2-Cre
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Figure 1. Influenza A infection increases TF expression and inflammation in the mouse lung
Wild-type mice were infected with influenza A virus (IAV) and samples were collected 

before and 1, 3, 4, 7 and 14 days after infection. (A) IAV genome levels in the lungs were 

quantified by real-time PCR and normalized to Rpl4 mRNA levels. Data are shown relative 

to day 3. (B) TF activity levels in the lung were measured using a one-stage clotting assay. 

(C) TF activity levels of extracellular vesicles (EV) isolated from the bronchoalveolar lavage 

fluid (BALF) were measured using a two-stage FXa generation assay. (D) Levels of 

thrombin-antithrombin complexes (TATc) in the BALF. (E) Levels of hemoglobin (Hb) in 

the BALF. (F) Levels of white blood cells (WBCs) in the BALF after IAV infection. (G) 

Levels of IL-1β in the BALF after IAV infection. (H) Levels of Ccl2 in the BALF after IAV 

infection. Data (mean ± SEM; n = 3–13 per group) were analyzed by 1-way ANOVA. 

Statistical significances are shown as *P<0.05, **P<0.01 and ***P<0.001 versus day 0.
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Figure 2. Levels of TF expression in TF deficient mice before and after influenza A infection
(A–C) Low TF (LTF) mice, (D–G)TFfl/fl,SPC-Cre (TFΔEp) and (H–K) TFfl/fl,LysM-Cre 

(TFΔMy) mice and their respective control mice (referred as C) were infected with influenza 

A virus (IAV) and the lungs and bronchoalveolar lavage fluid (BALF) were collected. Levels 

of lung Tf mRNA (D and H) and TF activity (A, E and I), TF activity of BALF extracellular 

vesicles (EV) (B, F and J), and BALF thrombin-antithrombin complexes (TATc) (C, G and 

K) are shown. Controls are shown in white bars and experimental mice are shown in black 

(LTF), hatched (TFΔEp), or cross-hatched (TFΔMy) bars. Levels of Tf mRNA in the lungs 

were quantified by real-time PCR before and 4 days after IAV infection. Data were 

normalized to Rpl4 mRNA levels. Levels of the uninfected controls were set to 1. Data 

(mean ± SEM; n = 3–7 for day 0, n =3–10 for day 4, and n = 3–8 for day 7) were analyzed 

by 2-way ANOVA or Student’s t-test. Statistical significance is shown as *P<0.05, **P<0.01 

and ***P<0.001 between groups or #P<0.05, ##P<0.01 and ###P<0.001 versus uninfected 

control of the respective genotypes.
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Figure 3. Influenza A infection increases TF protein expression in the lung
We analyzed TF antigen expression in the lungs of uninfected (B, E) and infected (7 dpi) 

wild-type mice (C, F), and infected TFΔEp mice (G–I) by immunohistochemistry. Tissue 

sections were incubated with (B, C, E, F–I) or without (A and D) a goat anti-mouse TF 

polyclonal antibody. The black arrows indicate TF expression in the epithelium of bronchi 

(Bc). The arrowheads indicate TF staining in adventitial cells of blood vessels (Bv). The 

white arrow indicates TF expression in adventitial cells surrounding a bronchiole. Original 

magnification x200. Scale bar is 100 µm.
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Figure 4. Effect of genetic deficiency of TF on alveolar hemorrhage in mice after influenza A 
infection
(A) Low TF (LTF) mice, (B) Tffl/fl,SPC-Cre (TFΔEp), (C) Tffl/fl,LysM-Cre (TFΔMy) and 

(D) Tffl/fl,Tie2-Cre (TFΔEc) mice and their respective control mice (referred as C) were 

infected with influenza A virus (IAV), and the bronchoalveolar lavage fluid (BALF) was 

collected before and 7 days after infection. Gross appearance of BALF and levels of 

hemoglobin (Hb) in BALF before and after IAV infection are shown. Controls are shown as 

white bars and experimental mice are shown as black bars (LTF), hatched (TFΔEp), cross-

hatched (TFΔMy), or vertical-striped (TFΔEc) bars. Data (mean ± SEM; 3– 11) were 

analyzed by Student’s t-test. Statistical significance is shown as *P<0.05 between groups.
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Figure 5. Effect of a global or cell type-specific deficiency of TF on mortality of mice after 
influenza A infection
(A and B) Low TF (LTF), (C and D) Tffl/fl,SPC-Cre (TFΔEp), (E and F), Tffl/fl,LysM-Cre 

(TFΔMy) and (G and H) Tffl/fl,Tie2-Cre (TFΔEc) mice and their respective control mice 

(referred as C) were infected with influenza A virus (IAV) and observed for 14 days. 

Survival rates (A, C, E and G) and changes in body weights of infected mice (B, D, F and H) 

are shown. Body weights before infection were set to 100% and did not differ significantly 

between genotypes. Data (mean ± SEM; n = 9–10 for A and B, n = 17–30 for C and D, n = 

7–8 for E and F, and n = 14–24 for G and H) were analyzed by log-rank test (A, C, E and G) 

or by 2-way ANOVA (B, D, F and H). Statistical significance is shown as *P<0.05 and 

**P<0.01 between groups.
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