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Polysaccharide-based biopolymers have many material prop-
erties relevant to industrial and medical uses, including as drug
delivery agents, wound-healing adhesives, and food additives
and stabilizers. Traditionally, polysaccharides are obtained
from natural sources. Microbial synthesis offers an attractive
alternative for sustainable production of tailored biopolymers.
Here, we review synthetic biology strategies for select “green”
biopolymers: cellulose, alginate, chitin, chitosan, and hyaluro-
nan. Microbial production pathways, opportunities for pathway
yield improvements, and advances in microbial engineering of
biopolymers in various hosts are discussed. Taken together, micro-
bial engineering has expanded the repertoire of green biological
chemistry by increasing the diversity of biobased materials.

Context for polysaccharide-based biopolymers

Polysaccharide-based scaffolds have applications in medi-
cine, as agricultural and food products, and as biomaterials with
bioactive, biocompatible, and biodegradable properties (Table
1). Biopolymers, such as the chitin derivative chitosan, have
been shown to accelerate wound healing (1) and offer opportu-
nities for scalable manufacturing in the bioprinting industry (2).
Traditionally, biopolymers are obtained from natural sources
by extraction from the environment and require further down-
stream processing, including, in many cases, the use of harsh
chemicals to obtain desired material properties. For example,
chitin, which is traditionally sourced from shellfish, is a waste
product resulting from the seafood industry that requires
chemical protection and deprotection steps of various hydroxyl
groups to impart desired functional properties (3).

Biobased production of chemicals from sugars and biomass
is more sustainable than traditional non-renewable petrochem-
ical routes (4). The cell factory approach, where a chemical is
synthesized in vivo, utilizes simple and inexpensive starting
materials like glucose. Metabolic pathways can be overex-

pressed and optimized in native organisms or reconstructed
into heterologous hosts for improved yields. In the past 30
years, notable advances have been made in the microbial bio-
synthesis of building block chemicals, such as dicarboxylic
acids (e.g. glucaric acid (5)), diamines (e.g. putrescine (6)),
hydroxyacids (e.g. 3-hydroxybutyrate (7)), and diols (e.g.
butanediol (8)). Whereas microbial production of bioplastics
from hydroxyacid monomers is a keystone example of industrially
relevant biopolymerization (9), this Minireview will not cover this
area as other reviews sufficiently discuss this topic (10).

By harnessing nature’s toolbox of diverse biochemistry,
microbial production of building block monomers can be
extended to in-cell functionalization and polymerization. One-
step microbial production of biopolymers is a sustainable alter-
native to avoid the use of environmentally damaging chemicals
and catalysts and offers a scalable process that does not depend
on harvesting from fragile ocean ecosystems, as is the case for
biopolymers chitin and alginate; competing for valuable land as
is the case for cellulose; or interfering with ethics of animal-
based products as is the case for hyaluronan. Synthesizing
biopolymers through enzymatic or whole-cell biocatalysis
allows for higher regio- and stereoselectivity for in-cell compo-
sition-tailoring of polymers, which can reduce downstream pro-
cessing. Useful objectives for metabolic engineering are poly-
mer chain length by molecular weight control, sequence of
saccharide units for composition control, and yield improve-
ments for increased economic feasibility. Although greener
methods do exist for biopolymer extraction from natural
sources, such as utilization of ionic liquids for extracting chitin
from crustacean shells (11), the economic competitiveness ver-
sus synthetic biology strategies has not yet been demonstrated.

This Minireview highlights strategies for cellular biosynthe-
sis of select industrially and medically relevant polysaccharides:
cellulose, alginate, chitin, chitosan, and hyaluronan. These
biopolymers are examples of polysaccharides that are synthe-
sized by the synthase-dependent pathway where polymeriza-
tion and translocation processes are performed by a single syn-
thase protein complex (12). Native biosynthetic mechanisms,
such as microbial exopolysaccharide (EPS)3 biosynthesis, serve
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as a template for biotechnological production of biomaterials.
Typically, synthase-dependent pathways favor homopolymer
formation, and the polymers are released into the extracellular
environment as non-covalently associated EPS fibers. These
fibers are secreted into the surrounding environment at high
molecular weights and can be harvested from cell cultures in a
cost-effective manner by filtration. Several studies have dem-
onstrated the synthesis of natural or novel variants of biopoly-
mers from engineered organisms (13). General production
strategies for microbial biosynthesis of biopolymers, such as
increasing the pool of metabolite precursor supply and carbon
flux toward the end product (14), are discussed within. Because
of the diversity of material design options, microbial produc-
tion of biopolymers also offers an attractive opportunity toward
the production of new, custom-made materials beyond those
from natural sources, such as engineered biosynthesis of non-
natural fluorinated polyhydroxyalkanoates for bioplastics (15).

Synthetic biology strategies for polysaccharide
biosynthesis

Cellulose

Cellulose is the most abundant polymer on the planet and is
one of the most widely used natural materials in products such
as papers and textiles. The value of the global market size for
cellulose fiber was USD 20.61 billion in 2015 and is projected to
reach USD 48.37 billion by 2025 (16). Cellulose is a monomeric
polymer of �(134) D-glucose units (Fig. 1A) forming chains
that twist into higher crystalline structures of cellulose I (tri-
clinic structures I� and I�) and cellulose II. Cellulose crystals
are formed by aggregation of nearby chains secreted from col-
lections of cellulose synthase complexes arranged in the cell

membrane, typically forming rosettes in plant cells and axially
aligned lines in bacteria (17).

Bacterial cellulose (BC) production offers unique advantages
over plant fiber processing by reducing the chemical and power
input during purification and offering access to the cell surface
through the media to modulate crystal formation during syn-
thesis. Manual addition of hydrogen bonding molecules to the
culture media can control I�/I� ratios and molecular weights in
resulting cellulose particles (18, 19). BC crystals interweave in
random patterns according to bacterial movement and form a
pellicle at the oxygen–media interface that grows to take the
shape of the bioreactor. Pellicles (also called tea mushroom or
Symbiotic Culture of Bacteria and Yeast (SCOBY)) occur natu-
rally on the surface of Kombucha fermented tea cultures and
have been used as materials for thousands of years (20). When
grown in controlled conditions, regular cellulose films with
complex structure can incorporate functional additives to
achieve optical activity, conductivity, magnetism, and photo-
catalytic degradation (21). The genetic tractability of bacteria
makes cellulose material synthesis an attractive target for syn-
thetic biology.

Bacterial cellulose synthase (BCS) requires cyclic di-GMP for
activation and is internally regulated by accumulation of UDP,
which is released from UDP-glucose during polymerization
(Fig. 2) (22). Heterologous expression of Gluconacetobacter
xylinus cellulose synthase genes from plasmids in Escherichia
coli led to amorphous synthesis and a non-native cellulose II
structure indicating the importance of membrane organization
to crystallization (23). Bacteria that produce crystalline fibrils
include a fourth gene bcsD that is likely to facilitate the forma-
tion of multienzyme structures in the membrane, as evidenced
by knockouts that produce cellulose with reduced crystallinity
(24). BCS operons are known to occasionally include a gene
encoding endoglucanase, BcsZ, which is capable of specifically
degrading amorphous improperly formed cellulose chains.
Inclusion of BcsZ protein after fibrils are formed increases crys-
tallinity in reconstituted in vitro systems (24). Induction by
quorum-sensing molecule N-acyl homoserine lactone can be
used to penetrate the pellicle layer and lead to effective control
of engineered expression in a newly isolated strain of Komaga-
taeibacter rhaeticus (25). Maximum titers of 15.3 g/liter at pro-
duction rates of up to 3.1 g/liter/h have been achieved in biore-
actor fermentations with Acetobacter (Table 1) (26).

Alginate

Alginates are natural biopolymers that are abundant in
marine brown algae (Phaeophyceae) (27) and in Pseudomonas
and Azotobacter genera of bacteria (28). These EPS are the
major structural component of algal cell walls, comprising up to
40 – 45% of the total algal dry matter (29), whereas in Pseu-
domonas and Azotobacter, alginates contribute to highly-struc-
tured biofilm-matrix and cyst-wall formations, respectively
(30). Commercially, alginates have widespread use as stabiliz-
ers, viscosifiers, and gelling agents in food, cosmetics, beverage,
paper, printing, and pharmaceutical industries (28). Globally,
the demand for alginates was valued at USD 624 million in
2016, and the demand is projected to reach USD 923.8 million
by 2025 with a consumption volume of 21,516 tons (31).

Figure 1. Chemical structures of biopolymers highlighted in this Minire-
view. A, cellulose; B, alginate; C, chitin, D, chitosan; E, hyaluronan. The number
of units is indicated on the bottom right of each bracket. X and Y designate
different monomeric units.
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Structurally, alginates are a family of linear, non-repeating
block copolymers consisting of variable ratios of �-D-mannu-
ronic acid and its C5 epimer �-L-guluronic acid linked by
�-(1,4)-glycosidic bonds (Fig. 1B) (32). Variation in the molar
ratios of �-D-mannuronic acid to �-L-guluronic acid residues
controls the molecular weight and material properties of alg-
inates. Because of their unique water-retaining capability,
biocompatibility, low toxicity, relatively low cost of produc-
tion, and temperature-independent mild gelation (sol-gel
transition) ability in the presence of multivalent cations
(e.g. Ca2�), alginates are excellent biomaterials for use in
biomedical applications, including wound healing, dental
implants, drug delivery systems, tissue engineering, and
regenerative medicine (33).

The alginate biosynthesis pathway has been extensively
investigated in Pseudomonas aeruginosa (34) and Azotobacter
vinelandii (35), but the complex polymerization, transport, and
secretion system, as well as regulatory mechanisms controlling
the pathway, are not fully understood. Metabolic engineering
efforts for increasing alginate production are still in their
infancy. Alginate production is tightly regulated in bacteria,
and thus efforts have been made to characterize and engineer
the regulatory system in Pseudomonas fluorescens (36) to iden-
tify the correlation between precursor availability and alginate
production. Maleki et al. (37) showed increased alginate
production (2.2 g/liter) from glycerol in an engineered P. fluo-
rescens strain, in which deletion of glucose-6-phosphate dehy-
drogenase redirected more carbon flux through the Entner-
Doudoroff pathway to produce alginate precursor fructose
6-phosphate (Fig. 2). A similar correlation between alginate
production and precursor availability was observed in another
recent study with P. fluorescens (38). Studies with A. vinelandii
(39) utilized a different strategy, in which increased carbon
fluxes were channeled toward alginate production by disrupt-
ing the competing polyhydroxybutyrate pathway. Implement-
ing this strategy resulted in an alginate titer of up to 6.6 g/liter
with a yield of 1.9 g/g sucrose. Single gene-deletion studies in
A. vinelandii (39, 40) also increased alginate yield (0.66 g/g on
sucrose) (Table 1) and lowered the degree of acetylation for
altered molecular composition. More recently, alginate over-
production was reported during biofilm formation in a newly
discovered strain Pseudomonas mandelii 6A1 (41) that was iso-
lated from Antarctica (41). Biofilm formation by the strain was
increased at lower temperatures due to increased alginate pro-
ductivity, which in turn was correlated to the down-regulation
of the regulatory protein MucA, which acts as a repressor in the
alginate operon (41).

Synthetic biology strategies for aminopolysaccharide
biosynthesis

Chitin and chitosan

The aminopolysaccharide monomer glucosamine (GlcN)
and its derivative N-acetylglucosamine (GlcNAc) are attractive
candidates for microbial biosynthesis because of the facility of
the amine group for functionalization and the utility for subse-
quent polymerization into chitin and chitosan (Fig. 2). GlcN
and GlcNAc are glucose moieties with C2 hydroxyl substitutionT
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by an amino group and acetylated amino group, respectively.
Aminopolysaccharides and subsequent biopolymers have tra-
ditionally been obtained through strong acid hydrolysis of chi-
tin from shellfish. In recent years, microbial production of GlcN
and derivatives has been demonstrated in a variety of hosts
including E. coli, Bacillus subtilis, and Saccharomyces cerevisiae
(42).

In E. coli, expression of GlcNAc transferase and deletion of
nagE, a GlcNAc transporter, increased GlcN titer to 17 g/liter
(43). The GlcNAc synthesis module has been strengthened at
the transcriptional level by increasing enzyme expression
through testing a range of promoters for two key enzymes, glu-
cosamine synthase and glucosamine acetyltransferase (44).
Elimination of acidic by-products was accomplished by knock-
ing out ldh and pta of the lactate and acetate synthetic path-
ways, respectively. By overexpressing glucosamine synthase
(GlmS), inactivating catabolic genes, and utilizing a two-stage
fed-batch fermentation, Deng et al. (43) achieved GlcN titers of
up to 110 g/liter in E. coli in a fed-batch fermentation (Table 1).

In B. subtilis, expression of various combinations of synthetic
small regulatory RNAs and the Hfq protein, designed to repress
glycolysis by targeting pfk (encoding phosphofructokinase) and
peptidoglycan synthesis by targeting glmM (encoding phos-
phoglucosamine mutase), improved GlcNAc titers to 31.65
g/liter in a 3-liter fed-batch bioreactor (45). With a dynamic
metabolomics approach, Liu et al. (46) found that a futile cycle
between N-acetylglucosamine-6-phosphate (GlcNAc-6-P) and
GlcNAc is the primary challenge for pathway productivity,
due to high energy demands of ATP phosphorylation–
dephosphorylation. Deletion of the responsible glucokinase
doubles GlcNAc productivity through a dual effect of increas-
ing ATP and restoring healthy growth to the cell.

In S. cerevisiae, a synthetic suicide riboswitch that regulated
growth in response to the precursor GlcN-6-P was applied to
screen for overproducers of GlcNAc. The growth-coupled cir-
cuit allowed for screening of an effective glutamine-fructose-6-
phosphate transaminase (GFA1) mutant and haloacid dehalo-
genase-like (HAD) phosphatase (47). The mutant contained
changes in GFA1 expression, which is the first and rate-limiting
step of chitin biosynthesis, along with overexpression of HAD
phosphatase YqaB, specific for conversion of GlcNAc-6-P
to GlcNAc. Subsequently, GlcNAc production was further
improved by reducing glycolytic flux by the disruption of pfk-2,
achieving titers of 1.2 g/liter when fed glucose and 1.8 g/liter
when fed galactose, in shake flask fermentation (48). Under
galactose feeding, deletion of pfk-2 allowed for enough reduc-
tion of glycolysis to activate gluconeogenesis thus allowing for
galactose to be used as a sole carbon source.

Microbial production challenges in the biosynthesis of GlcN
and GlcNAc include feedback inhibition effects where GlcN-
6-P is a strong inhibitor of GlcN synthase and GlcN degrada-
tion, thus limiting the accumulation of GlcN inside the cell (Fig.
2) (49). Additionally, aminosugars can serve as alternative car-
bon and nitrogen sources, so it is difficult to achieve high titers
in culture broth, unless a recovery strategy is incorporated
in the fermentation (43). UDP-N-acetylglucosamine (UDP-
GlcNAc) is normally maintained at high intracellular concen-
trations in growing bacterial cells to balance growth and pro-
duction as the sugar donor for the synthesis of N-acetylated
chitooligosaccharide, the precursor for the biosynthesis of pep-
tidoglycan. Aminosugars containing free amino groups are
unstable in aqueous solution at neutral pH where GlcN can
undergo spontaneous rearrangement and dimerization to form
fructosazine, D-arabinose, and pyrazine derivatives, among oth-
ers (50). Thus, biopolymerization is advantageous to circum-
vent degradation issues. Opportunities exist for combining
strategies for GlcN and GlcNAc overproduction for subsequent
biopolymerization.

Chitin is the second most abundant biopolymer on the planet
and is found in almost all fungi, many animals (invertebrates),
several protists, and a few algae, playing an essential role in
structure. Over 800 putative chitin synthases associated with
130 genomes have been identified (51). Chitin is a hexosamine
biopolymer composed of as many as 5,000 �-(1,4)-glycosidi-
cally linked GlcNAc units cross-linked by hydrogen bonding
(Fig. 1C). Chitosans are deacetylated chitin, as heteropolymers
of GlcNAc and GlcN units (Fig. 1D). Chitosans are variable

Figure 2. Overview of biosynthetic routes to biopolymers. The main steps
in the microbial biosynthetic routes for cellulose, alginate, chitin, chitosan,
and hyaluronan from glucose are briefly depicted. The solid arrow represents
an enzymatic step, and the broken arrow represents a multistep pathway that
includes a number of enzymatic steps. The yellow circle represents the start-
ing material, glucose; gray circles represent intermediate metabolites; red cir-
cles represent a sugar nucleotide; and blue, orange, purple, and green circles
represent product biopolymer molecules. Abbreviations used are as follows:
AcCoA, acetyl coenzyme-A; BC, bacterial cellulose; F6P, fructose 6-phosphate;
G1P, glucose 1-phosphate; G6P, glucose 6-phosphate; GDP-Man, GDP-man-
nose; GDP-ManA, GDP-mannuronic acid; GlcN-6-P, glucosamine 6-phosphate;
GlcNAc-1-P, N-acetylglucosamine 1-phosphate; GlcNAc-6-P, N-acetylgluco-
samine 6-phosphate; M1P, mannose 1-phosphate; M6P, mannose 6-phos-
phate; OAA, oxaloacetate; TCA, tricarboxylic acid; UDP-Glc, UDP-glucose;
UDP-GlcNAc, UDP-N-acetylglucosamine; UDP-GlcUA, UDP-glucuronic acid.
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mixtures of molecules depending on the degree of polymeriza-
tion and the degree of acetylation and are valuable functional
biopolymers due to their physicochemical and biological com-
patibility. Chitosans have many agricultural, industrial, and
biomedical applications, including use as an agricultural agent
for plant defense and yield increase (52), drug delivery (53),
wound healing (54), water filtration (55), and bio-printing (2).
Chitosan trisaccharide is a valuable precursor for synthesis of
epitopes such as type II blood group antigens (56). The global
market size for chitin and chitosan was valued at USD 3.19
billion in 2015 and is projected to reach USD 17.84 billion by
2025 (57, 58). Microbial production of chitin and chitosan
offers a green alternative to shellfish harvesting and allows for
control of degree of polymerization and acetylation (59). van
Montagu and co-workers (60) pioneered a cell factory approach
for chitin oligosaccharide biosynthesis in E. coli by functional
expression of the nod gene cluster from Rhizobium. NodC is a
chitin oligomer synthase (Fig. 2) producing fully acetylated chi-
tin oligomers of 2–5 saccharide residues (61), where the C-ter-
minal domain of transmembrane NodC controls chain length
(62). In vitro exposure of chitin oligosaccharides to enzymes
NodB from Rhizobium sp. GRH2 and COD from Vibrio chol-
erae allowed for specific patterning of deacetylated chitosan
oligomers (63). In 1997, Samain et al. (64) demonstrated the
production of gram amounts of a perfectly defined, mono-
deacetylated chito-pentose with a GlcN unit at the non-reduc-
ing end in E. coli (Table 1). Novel chitosan oligomers have been
obtained, such as N-acetyl-lactosamine (65) and thio-chito-ol-
igosaccharide analogs, where the oxygen glycosidic linkage is
replaced with sulfur for improved stability against hydrolysis by
chitinases (66).

Hyaluronan

Hyaluronic acid (HA), also known as hyaluronan, is known
for its structural role in the extracellular matrix of vertebrate
epithelial, neural, and connective tissues like cartilage. HA is a
linear copolymer of disaccharide units of �(133)-GlcNAc and
�(134)-glucuronic acid (Fig. 1E), produced in varying molec-
ular weights, by vertebrates and prokaryotes. The repeating
carboxylate groups from glucuronic acid moieties are highly
hydrophilic and HA polymers have been incorporated for water
retention and viscosity properties in cosmetics for more than
100 years. Purified high molecular weight preparations of HA
elicit no detectable inflammatory response in mammalian cells,
making HA a key functional material in designs for surgical
biomaterials and cell scaffolds (67) such as HA-based hydrogels
enabling the successful culture of rod photoreceptors in vitro
(68). The global demand for HA was estimated to be worth USD
7.2 billion in 2016; thanks to the steady increase in demand, the
global market size is projected to reach USD 15.4 billion by 2025
(69).

Traditionally, HA is purified from animal tissues such as
rooster combs and umbilical cords. A lower cost bacterial fer-
mentation method has been developed by leveraging the natu-
ral producer Streptococcus zooepidemicus. However, natural
microbial HA pathways have typically evolved as a masking
technique to hide invading cells within the human body, and
S. zooepidemicus is itself a recognized human pathogen. Endo-

toxins and viral contaminants from animal and pathogen
sources are a source of concern and have driven development of
sustainable Generally Recognized as Safe (GRAS) alternatives.
Synthesis of HA has been demonstrated in B. subtilis (70), Lac-
tococcus lactis (71), and Pichia pastoris (72). In bacteria, HA is
synthesized from UDP-glucuronic acid (UDP-GlcUA) and
UDP-GlcNAc by a single enzyme complex hyaluronan synthase
(HAS) (Fig. 2). UDP-GlcUA and UDP-GlcNAc occur naturally
as part of cell wall synthesis, which directly competes with HA
synthesis. The relative abundance of precursors and HAS has a
definitive effect on chain length and average molecular weight
of resulting HA polymers (73).

A key challenge for HA and most polysaccharide syntheses
stems from the tradeoff between a high ATP and NAD�

requirements leading to high dissolved oxygen (DO) require-
ments for electron cycling versus low molecular diffusion in
high-viscosity cultures as the concentration of high-molecular-
weight polymer increases. DO has a critical effect on molecular
weight, possibly by affecting the abundance of precursors (74).
The desired outcome of high titer leads to poor mixing and an
increasingly anaerobic environment. Countering this effect
mechanically with increased aeration and mixing is energy-in-
tensive and impractical at higher viscosities. In strains capable
of anaerobic fermentation, this leads to elevated levels of fer-
mentation products such as lactic acid, which limits HA pro-
duction (S. zooepidemicus) (75). In strains that are sensitive to
low DO, such as B. subtilis, the anaerobic environment leads to
early cessation of production at 3 g/liter (76). This limitation in
B. subtilis was overcome by controlled expression of hyaluron-
idase to reduce molecular weight and viscosity of the culture
with the tradeoff that smaller chains are produced (6 � 103 Da
versus 6 � 106 Da) (76). In anaerobic-tolerant Corynebacterium
glutamicum, heterologous expression of the HA pathway with
knockout of lactate dehydrogenase allowed for accumulation of
21 g/liter HA with a mid-range mass of 2 � 105– 8 � 105 Da (77)
(Table 1). In S. zooepidemicus, a recombinant suicide plasmid
added to prevent natural expression of hyaluronidase, yielded 9
g/liter of a higher molecular weight product (78).

Summary and future outlook

Metabolic engineering and synthetic biology strategies have
advanced the techniques for microbial production of biopoly-
mers and promise sustainable and reliable alternatives to cur-
rent production from natural sources. Synthetic biology strat-
egies highlighted include the implementation of a riboswitch to
balance glycolytic flux in the biosynthesis of chitin and HA
precursor GlcNAc (47), expression balancing with promoter
replacement of synthase and acetyltransferase genes in the bio-
synthesis of GlcNAc (45), redirection of carbon flux by deleting
glycolytic genes in the biosynthesis of alginate (37), and pre-
venting expression of degradative enzymes like hyaluronidase
for HA biosynthesis (78).

Although efforts have successfully demonstrated microbial
biopolymer production, there are still challenges to address: 1)
understanding competition for endogenous cellular resources,
such as precursor sugar nucleotide pools and energy require-
ments (e.g. ATP, NAD�); 2) transcriptional regulation, where
synthesis is tightly regulated and controlled by complex regu-
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latory machinery, which functions when cells need to construct
structural components like EPS that relate to pathogenicity and
defense mechanisms; 3) in vivo biopolymerization, where there
is a need for better characterization of polymerization enzymes
(79) and the steps in EPS biosynthesis, even though gene clus-
ters have been known for several years (80); and finally, extra-
cellular secretion, which poses process engineering challenges
where titer is limited by viscosity leading to mass transfer issues
(81). Host compatibility should also be considered, for example,
the robustness of model organisms like E. coli to industrial
conditions.

To address these challenges, the advent of new technologies
and approaches is critical. Although dynamic regulation of car-
bon fluxes has been implemented in monomeric carbohydrate
biosynthesis like glucaric acid (82), application of similar strat-
egies for biopolymer synthesis has yet to be explored. Precursor
supply by regenerating sugar nucleotides can balance cellular
resources (42), and genome-level metabolic modeling of micro-
bial cell factories is instrumental for optimizing the perfor-
mance of heterologous biopolymer-producing pathways (83).
For example, model-guided metabolic engineering followed by
experimental validation of growth-coupled glycan-overpro-
ducing strains identified metabolic imbalances that rerouted
flux toward glycan precursor synthesis (83). 13C metabolic flux
analysis is another powerful tool for identifying pathway bottle-
necks (84) in the optimization of microbial biopolymer synthe-
sis (84). DNA sequencing (85) and synthesis technologies cou-
pled to machine learning (86), along with the development
of CRISPR–Cas9 gene-editing technologies, have allowed for
increased engineering efficiency (87). Bioprospecting for new
sequences and functions (88) can help characterize polymeri-
zation protein complexes and also help identify novel molecu-
lar targets for the potential of tailor-made mixed biopolymers
of varying material properties made from functionalized block
copolymers.

Copolymer formulations provide further opportunities for
tailoring, where strategies of metabolic engineering and growth
medium modifications can help control biopolymer composi-
tions (89). Yadav et al. (90, 91) demonstrated bacterial produc-
tion of a hybrid cellulose-chitin copolymer for biomedical
applications where lysozyme susceptibility allowed for in vivo
biodegradation. Structurally, the presence of GlcNAc in bacte-
rial cellulose disrupts the highly ordered cellulose crystalline
structure, thus transforming the cellulose type I� structure to
cellulose-chitin type II due to alterations in fibril–fibril interac-
tions (92). Further functionalization of modified bacterial cel-
lulose through deacetylation can generate materials with a
reactive amine surface that allows for various applications, such
as engineering novel biocomposites, tissue engineering scaf-
folding, biosensor small molecule detection, and drug delivery
vehicles (90).

For microbial production of biopolymers to be considered a
green technology, important criteria, including energy effi-
ciency, material efficiency, land use, and costs metrics need to
be assessed. Whereas building block chemicals such as lactic
acid and isoprene have been assessed by green metrics (93), an
opportunity exists for assessing other valuable biosynthesized
materials. Microbially-produced lactic acid and the polymer

polylactic acid have higher economic efficiency over chemical-
ly-produced similar materials due to increased energy effi-
ciency and fermentation-driven stereoselection of D(�)- or
L(�)-lactic acid (94). Moving beyond cellular control, more
opportunities for green processing exist, including valorization
with CO2 and utilization of feedstocks from biodegradation of
waste products such as bioplastics (95). Other metrics such as
life cycle assessment, the E-factor, and principles of green
chemistry should be implemented to drive a circular and sus-
tainable economy forward with reduced waste and conserva-
tion of resources. The environmental and health risk of biopo-
lymers, for instance fluorine-containing bioplastics (15), need
to be addressed. Biopolymer microbial synthesis could also be
suitable in sustainable systems such as space stations or inter-
galactic habitats because of its renewability and replicability.
There is an overlap between closed systems designed for space
habitation and “green” technology on Earth (96).

Emerging technologies for in silico design and predictions of
material properties will help advance the cell factory approach
to biopolymer production such as in the creation of biomimetic
scaffolds composed of 3D cell culture polysaccharide hydrogels
(97). Opportunities also exist for combination of the cell factory
approach with manufacturing such as in the controlled biofilm
layering by EPS secreting microbes biofabricated by 3D print-
ing, along with advances in 4D printed biomaterials with
integrated “smart” diagnostics (98). Imagine a world where
microbes are full cell factories, not just making single molecules
but assembling entire functional materials.
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