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Cyanobacteria are photosynthetic prokaryotes showing great
promise as biocatalysts for the direct conversion of CO2 into
fuels, chemicals, and other value-added products. Introduction
of just a few heterologous genes can endow cyanobacteria with
the ability to transform specific central metabolites into many
end products. Recent engineering efforts have centered around
harnessing the potential of these microbial biofactories for sus-
tainable production of chemicals conventionally produced from
fossil fuels. Here, we present an overview of the unique chemis-
try that cyanobacteria have been co-opted to perform. We high-
light key lessons learned from these engineering efforts and dis-
cuss advantages and disadvantages of various approaches.

In 1998, Anastas and Warner published a list of 12 principles
of green chemistry as guidelines to help researchers develop
more sustainable chemical processes (1). Cyanobacteria pro-
vide a powerful platform for the development of green catalysts
that utilize renewable feedstock in the form of atmospheric
carbon dioxide (CO2) and convert it into fuels, commodity
chemicals, and value-added products using (sun)light as the
energy source. Cyanobacterial catalysts are expected to meet
several of the green chemistry principles given the benign
nature of the processes. The resultant carbon capture and uti-
lization technologies have the potential to play an important
role in mitigating the harmful effects of elevated CO2 levels if
the technology advances to an industrial scale. Despite the
potential, a number of technological challenges need to be over-
come before cyanobacteria-based processes become commer-
cially viable. In this Minireview, we present an overview of met-
abolic engineering of cyanobacteria and discuss some of the
chemistry that these photosynthetic microbes have been engi-
neered to perform. The studies reviewed herein are proof of
concept for photosynthetic chemical production platforms, but
industrial production systems have yet to be realized.

Cyanobacteria are ancient photosynthetic prokaryotes that
are the progenitors of the higher plant chloroplast. They inhabit

virtually any environment that contains water and can grow
under diverse conditions (2). These organisms are the origina-
tors of photosynthesis and are responsible for generating the
planet’s original oxygen supply (3). Currently, cyanobacteria
account for as much as for 25% of the planet’s primary produc-
tivity and about 2/3 of the primary productivity in the open
ocean (4, 5). Cyanobacteria use photosynthesis and the Calvin-
Benson cycle (CBC)3 to generate biomass using only CO2 and
sunlight as carbon and energy sources (Fig. 1). Manipulating
the metabolism of these photosynthetic prokaryotes provides
the opportunity for direct conversion of CO2 into commodity
chemicals. This strategy may be advantageous over hetero-
trophic bioproduction platforms that require plant-derived fer-
mentable sugars and compete with food production. Eukary-
otic green algae have also been pursued for the production of
lipid biofuels or biohydrogen (6, 7). Cyanobacteria offer distinct
advantages over both plants and green algae. Cyanobacteria are
more efficient at solar energy capture than plants, converting as
much as 9% of the solar energy into biomass compared with
only 0.5–3% for higher plants (8, 9). Additionally, cyanobacteria
acquire their carbon through a bicarbonate intermediate,
which presents a unique opportunity to supply carbon enrich-
ment by the addition of bicarbonate derived from atmospheric
CO2 or factory emissions (10). Cyanobacteria also grow faster
than higher plants and maximize atom economy by not produc-
ing wasteful biomass such as roots and stems. This directs a
higher amount of fixed carbon to desired products. Cyanobac-
teria are also readily genetically tractable, which provides ease
of genetic manipulations to alter their metabolism. In contrast,
the genetic complexity of eukaryotic algae has made metabolic
engineering more challenging (11). Importantly, cyanobacteria
can be cultivated in bioreactors in arid or otherwise unfarmable
land, which minimizes the competition with food crops (12).
However, these organisms, like plants or eukaryotic green
algae, still require significant nitrogen and phosphorus inputs,
which are limited and expensive resources that must be con-
served (12, 13). Culturing cyanobacteria in waste or saltwater
and/or using nitrogen-fixing strains could present a partial
solution to this problem (14).
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In 1999, Deng and Coleman (15) reported the first metabolic
engineering of a cyanobacterium to produce ethanol. Subse-
quent studies over the last 2 decades have demonstrated heter-
ologous expression of pathways for the production of com-
pounds such as alcohols, diols, fatty acids, and organic acids
(Table 1 and references cited therein). These works cover fuel
as well as non-fuel commodity chemicals. In addition, cyano-
bacteria synthesize thousands of bioactive molecules (16, 17),
which are synthesized from pathways that, for the most part,
have not been targeted for production. Although the list of
engineered chemicals is long, the majority is derived from a
small number of central metabolites. Below, we discuss some of
the production pathways that have been engineered in cyano-
bacteria and thereby hope to illustrate the variety of engineer-
ing strategies and an underlying set of metabolic “rules” for
working with photosynthetic microbes.

General comments on metabolic engineering of
cyanobacteria

Metabolic engineering of cyanobacteria presents several
unique challenges posed by their photoautotrophic lifestyle.
Among these are the following: (i) carefully partitioning the flux
of CO2-derived carbon between biomass and chemical produc-
tion (18, 19); (ii) the high level of O2 produced in photosynthesis
will inhibit O2-sensitive enzymes and reactions (20); (iii) pho-
tosynthesis produces NADPH rather than NADH, which can
make NADH-dependent reactions rate-limiting (21–24); and
(iv) there can be radically different metabolic behavior of the
production host in the dark versus light conditions (25, 26).
Furthermore, some core metabolic pathways in cyanobacteria
behave differently than in heterotrophic organisms or are miss-
ing some enzymatic steps. For instance, cyanobacteria do not
have a traditional TCA cycle and are lacking �-ketoglutarate
dehydrogenase. As a consequence, in cyanobacteria the TCA
cycle functions as a bifurcated pathway for production of bio-
mass precursors rather than a complete cycle (27, 28). Redox
balance in cyanobacteria is also a key consideration, as photo-
synthesis can generate an overabundance of reducing equiva-
lents in the absence of sufficient catabolic processes, leading to
stunted growth (29). Finally, it is worth considering that some
cyanobacterial strains may be better equipped to produce cer-

tain types of metabolites due to differences in intracellular
metabolite pools or cell physiology (23, 29 –31).

Metabolic flux analysis of cyanobacteria

A number of studies report intracellular reaction rate analy-
sis of model strains of cyanobacteria either with constraint-
based modeling such as flux balance analysis (32) or isotopic
13C metabolic flux analysis (Fig. 2) (33–35). Notably, glycolysis,
pentose phosphate pathway, and the TCA cycle are far less
active in cyanobacteria during photoautotrophic growth com-
pared with those in model heterotrophs (28). In non-stationary
isotopic 13C-labeling experiments, the intermediates of the
CBC and gluconeogenesis pathway show rapid accumulation of
13C with no detectable label accumulation in the TCA cycle
intermediates, suggesting a slow turnover of these metabolites.
However, some of the recent studies demonstrate plasticity in
cyanobacterial metabolism resulting in a significantly higher
flux through TCA cycle in engineered cyanobacteria (36). This
flexibility in metabolism may be the key to success of the ongo-
ing metabolic engineering efforts.

Bioproduction strategies in cyanobacteria from CO2

Pyruvate- and DHAP-derived products

Pyruvate and DHAP are positioned in close proximity to the
critical carbon-fixation reactions and are generated from glyc-
eraldehyde 3-phosphate (GAP) via one or five chemical steps,
respectively. In general, titers for chemicals produced from
pyruvate or DHAP are among the highest reported for alcohols
in cyanobacteria (15, 37– 40). Pyruvate-derived production
pathways are shown in Fig. 3A. In one of the first cyanobacterial
metabolic engineering projects, ethanol was produced by
expressing pyruvate decarboxylase and aldehyde dehydroge-
nase (15). More recent projects have applied systems-level anal-
ysis to study the whole-cell metabolic effects of ethanol produc-
tion (41). L-Lactic acid has been produced by integrating an
NADH-dependent dehydrogenase and transporters (23, 42).
Yields were further improved by introducing a trans-hydrogen-
ase to convert NADPH to NADH (23). The presence of the
trans-hydrogenase caused a growth defect in cells unless the

Figure 1. Overview of photosynthetic metabolism and production of
green chemicals in cyanobacteria. Energy and reducing equivalents are
generated by photosynthetic and respiratory complexes in the thylakoid
membrane (cartoon top left). ATP, NADPH, and CO2 feed into the Calvin-Ben-
son cycle and glycolysis. Target chemicals produced in cyanobacteria either
through native metabolism or engineering are shown in the red boxes. G3P,
3-phosphoglycerate; PSI, photosystem I; PSII, photosystem II.

Table 1
List of chemicals produced by metabolic engineering of cyanobacteria

Chemical Highest titer Refs.

�thanol 54 nmol OD730
�1 liter�1 day�1 15

�sobutanol 450 mg liter�1 37, 43
Isopropanol 288 mg liter�1 25, 47
1,2-Propanediol 150 mg liter�1 22
1,3-Propanediol 1.22 g liter�1 25, 39
1-Butanol 29.9 mg liter�1 21
Free fatty acids 130 mg liter�1 30, 49, 71, 76, 77
�soprene and isoprenoids 1.26 g liter�1 63,78–80, 82–86
�iohydrogen 54 mol/1017 cells 57
L-Lactate 0.0178 mmol gDW�1 h�1 23, 42
Succinate 430 mg liter�1 56
�sobutyraldehyde 6230 �g liter�1 h�1 37
�cetone 22.48 mg liter�1 50, 53
�thylene 5650 �l liter�1 h�1 55
Sugars and sugar alcohols 35.5 mg liter�1 h�1 31, 59, 64
Glycerol 7733 �g liter�1 h�1 25, 45
3-Hydroxypropionic acid 837.18 mg liter�1 52, 54
3-Hydroxybutyrate 533.4 mg liter�1 48
�lka/enes 1200 �g gDW�1 51, 67, 74
�atural products 5 mg liter�1 79, 99, 100
Phenylpropanoids 7.2 mg liter�1 98
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NADH-consuming dehydrogenase was also present to balance
redox levels (23). Bioproduction of 1-butyraldehyde (37), isobu-
tanol (37, 43), 2-methyl-1-butanol (40), and 2,3-butanediol
(2,3-BD) (38, 44) from pyruvate was engineered by wholly or
partly co-opting the parallel branched-chain amino acid
(BCAA) pathways for valine and isoleucine. The first step in
biosynthesis is an irreversible decarboxylative condensation
that provides a strong thermodynamic driving force for the pro-
duction pathways (21, 37). The alcohols and aldehydes are gen-
erated from BCAA intermediates by further decarboxylation
and reduction. The production of 2,3-BD follows from decar-
boxylation of 2-acetolactate to acetoin and reduction to 2,3-BD
(38). A common feature of each of these engineered pathways is
the presence of at least one decarboxylation step and reduction
using NADPH as a cofactor. The high yield observed for these
pyruvate-derived products may be attributable to the following:

(i) the high concentration of substrate (pyruvate) available dur-
ing active photosynthesis; (ii) the presence of an early irrevers-
ible decarboxylation step in some of the pathways; and (iii) uti-
lization of NADPH as a redox cofactor, which is abundantly
available under photoautotrophic growth.

1,2-Propanediol and 1,3-propanediol have been produced
from DHAP (Fig. 3B) (22, 25). 1,3-PD is produced from DHAP
via glycerol, which is generated as a side product in consider-
able quantities (25). Increasing expression of the bottleneck
enzymes that convert glycerol to 1,3-PD resulted in a 4-fold
increase in 1,3-PD and a concomitant decrease in glycerol (39).
Glycerol production has been engineered as a useful 3-carbon
precursor for a variety of chemicals (45). 1,2-PD was produced
via methylglyoxal and acetol in two reductive steps (22). Swap-
ping of NADH-dependent enzymes for those that utilize
NADPH increased product titers of 1,2-PD nearly 10-fold (22),
providing another example of the importance of matching
cofactors to the production host.

Acetyl-CoA– derived products

Overall, product titers from acetyl-CoA–derived metabolites
are lower than those derived from pyruvate, likely due to the
low carbon flux to the TCA cycle and acetyl-CoA during light
periods (Fig. 2) (27). It has been suggested that under light con-
ditions cyanobacteria primarily utilize these pathways to gen-
erate carbon precursors for cellular components, as photosyn-
thesis can generate sufficient reducing equivalents and energy
(27). Thus, a key limitation is driving sufficient carbon to acetyl-
CoA. One method is to activate glycolysis by inducing dark
fermentation of the stored glycogen reserves generated during
light periods (46). Alternatively, acetyl-CoA production can be
triggered by nitrogen starvation of the cells (29, 47), although
this can result in lower overall product yields due to decreased
cell growth. Meaningful production levels of some chemicals
were achieved only when cells were exposed to dark periods and
nutrient starvation to increase the available acetyl-CoA pool (20,
29, 46–48). Without intervention, dark fermentation can result in
the wasteful excretion of acetate and other compounds by cyano-
bacteria (26). In some cases, deletion of enzymes catalyzing the
conversion of acetyl-CoA to acetate or storage polyhydroxybu-
tyrates (PHB) has led to increased production of target chemicals
(29, 49–52). Alternatively, Anfelt et al. (29) introduced a shunt by
expressing phosphoketolase and phosphate acetyltransferase to
directly convert CBC intermediates to acetyl-CoA.

A common theme in the bioproduction of acetyl-CoA is to
convert it to acetoacetyl-CoA, which is then converted to 4-car-
bon products by reduction or 3-carbon products by decarbox-
ylation and reduction (Fig. 3C). Acetone is produced from ace-
toacetate by decarboxylation (50, 53). Isopropanol can then be
produced from acetone by reduction. The highest yields of iso-
propanol required culturing under light conditions followed by
dark incubation to ferment the carbon stores generated during
the light period into product (25, 47). 1-Butanol has been pro-
duced by introduction of an NADH-dependent fermentative
Clostridium pathway under anoxic or under nitrogen-starved
conditions (20, 29). Lan and Liao (21) improved 1-butanol
production by introducing an ATP-dependent irreversible
step to drive formation of acetoacetyl-CoA and by using

Figure 2. Generalized flux map for cyanobacterial photoautotrophic
metabolism. The arrow thicknesses are proportional to the flux through the reac-
tions. The flux values shown here are normalized to a CO2 uptake rate of 100
mmol/gDW/h and are averages of two studies involving 13C metabolic flux anal-
ysis performed on Synechocystis sp. PCC 6803 (33) and Synechococcus sp. PCC
7002 (35). The dotted arrows indicate drawdown of carbon for biomass synthesis.
2PG, 2-phosphoglycerate; 3PGA, 3-phosphoglycerate; ACA, acetyl-CoA; ADPG,
ADP-glucose; AKG, �-ketoglutarate; E4P, erythrose-4-phosphate; F6P, fructose-6-
phosphate; FUM, fumarate; G1P, glucose-1-phosphate; G6P, glucose-6-phos-
phate; ICI, isocitrate; MAL, malate; OAA, oxaloacetate; PEP, phosphoenolpyruvate;
PYR, pyruvate; R5P, ribose-5-phosphate; RU5P, ribulose-5-phosphate; RUBP, ribu-
lose-1,5 bisphosphate; S7P, sedoheptulose-7-phosphate; SBP, sedoheptulose-
1,7-bisphosphate; UDPG, UDP-glucose; X5P, xylulose-5-phosphate.
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NADPH-dependent enzymes in the subsequent steps. This
strategy of introducing an irreversible step was also utilized by
Chwa et al. (53) to increase acetone production from aceto-
acetyl-CoA. 3-Hydroxybutyrate (3-HB) production was engi-
neered by increasing flux to 3-HB via acetoacetyl-CoA, express-
ing thioesterase, and by deleting the enzyme that catalyzes the
polymerization of 3-HBs to the storage molecule PHB (48).
This led to excretion of 3-HB from the cells. The product titers
improved when the culture was subjected to phosphate starva-
tion (48). 3-Hydroxypropionic acid (3-HP) has been produced
from malonyl-CoA via two successive reductions with malo-
nate semialdehyde as an intermediate (54). The authors also
introduced a parallel pathway to 3-HP via �-alanine to avoid the
feedback-regulated synthesis of malonyl-CoA from acetyl-CoA
(54). 3-HP titers have been improved by increasing flux to mal-
onyl-CoA production and eliminating competing pathways
(52).

TCA cycle– derived products

The TCA cycle in cyanobacteria is under-utilized compared
with that in heterotrophic organisms but is activated in
response to certain growth conditions (27). Succinate and eth-
ylene have been produced by intervening at the level of the TCA
cycle (55, 56). Succinate can be produced during dark fermen-
tation in some cyanobacterial strains (26, 57). Increased succi-
nate production via the oxidative TCA cycle branch was engi-
neered by introducing �-ketoglutarate decarboxylase and
succinic semialdehyde dehydrogenase (56). Product titers were
improved nearly 4-fold by increasing carbon flux by overex-
pressing phosphoenolpyruvate carboxylase and citrate syn-
thase (56). Succinate was secreted from the cells into the
medium. Ethylene is the most widely produced chemical feed-
stock on the planet. Inclusion of a single gene, ethylene-forming
enzyme, converts �-ketoglutarate into ethylene, which is then
collected directly from the culture headspace (55). A challenge

Figure 3. Representative engineered and native production pathways for chemicals in cyanobacteria. Panels show bioproduction pathways derived
from pyruvate (A), dihydroxyacetone phosphate (B), acetyl-CoA (C), and fatty acyl-ACPs (D). Red arrows indicate NAD(P)H-dependent oxidation or reduction
steps. Blue arrows indicate decarboxylation steps. Black arrows are other types of enzymatic steps. A, branched-chain amino acid pathway is boxed. Starting
metabolites are in gray circles. ACAC, acetoacetate; 1-BA, 1-butyraldehyde; 1-BO, 1-butanol; IB, isobutanol; IP, isopropanol; PYR, pyruvate; WE, wax ester.
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of working in the TCA cycle is that �-ketoglutarate and other
intermediates serve as carbon skeletons for amino acids and
other cellular components. Thus, the engineered catabolic pro-
cesses must be balanced by regeneration of the substrate to
sustain biomass production (27, 56).

Glycogen and sugar products

During light periods, cyanobacteria store excess carbon and
energy in the form of intracellular glycogen granules (58). Typ-
ically, between 5 and 15% of the fixed carbon is stored via this
pathway with the glycogen content reaching 50% under certain
growth conditions (31, 59). The diurnal lifestyle then mandates
that the stored chemical energy is utilized during dark periods
similar to that during heterotrophic growth. Additionally,
freshwater cyanobacteria naturally accumulate intracellular
sucrose as an osmoregulator when exposed to salt stress (60).
This property has been utilized to induce sugar excretion by
integrating transporters and exposing cells to high-salt condi-
tions (31, 42, 61). This results in considerable accumulation of
sugars in the growth medium. It may be possible to use a cya-
nobacterial co-culture to produce sugar feedstock for ferment-
ative bioproduction of commodity chemicals by heterotrophs
(61).

Interestingly, glycogen knockout mutants grow well under
laboratory conditions even under diurnal growth conditions.
Thus, a glycogen knockout strategy has been utilized to divert a
greater fraction of the fixed carbon to products of interest. To
exemplify this approach, the sugar alcohol mannitol has been
produced from fructose 6-phosphate by introduction of man-
nitol dehydrogenase and phosphatase and by knocking out
glycogen synthesis (62). Deleting glycogen synthesis is an
attractive strategy as it can force cells to utilize other carbon
sinks–such as engineered production pathways–to balance car-
bon fixation and consumption processes (43, 62, 63). Indeed,
carbon and redox equivalent production by the CBC and pho-
tosynthesis may actually exceed catabolic processes and
thereby act as a bottleneck to production. Integration of car-
bon-consuming production pathways has, in some cases, been
shown to increase cell growth rate and photosynthetic activity,
possibly by alleviating feedback photosynthetic inhibition (61,
64). Although promising, this strategy requires careful carbon
partitioning to maintain cell growth and to minimize accumu-
lation of undesirable fermentative metabolites (63). It remains
to be seen whether a similar knockout of other carbon storage
pathways or non-essential genes (58) would lead to greater flux
toward the desired products.

Fatty acyl-ACP– derived products

Fatty acyl-ACP molecules are produced via the fatty-acid
synthase (FAS) pathway in cyanobacteria using acetyl-CoA and
malonyl-CoA as building blocks (65). Unlike eukaryotic
microalgae, cyanobacteria do not synthesize triacylglycerols as
a carbon storage (6). However, cyanobacteria naturally produce
alkanes and alkenes (C15–C19) from acyl-ACPs (66 –68). Pro-
duction of several fatty acyl-ACP– derived products has been
engineered in cyanobacteria, including free fatty acids (FFAs)
(30, 49, 69 –71), fatty alcohols and aldehydes (72, 73), hydrocar-
bons (51, 74), and wax esters and triacylglycerols (Fig. 3D) (73).

The FAS pathway is tightly feedback-regulated, and overcom-
ing this bottleneck is one of the challenges for increasing pro-
duction yields (75). Engineering generally relies on first releas-
ing the fatty acyl-ACP from the carrier protein either by
hydrolysis to FFAs or reduction to aldehydes. FFAs are pro-
duced by introducing acyl-ACP thioesterase(s) to cleave fatty
acids from ACP and deleting enzymes that recycle FFAs back to
acyl-ACPs (49, 69, 76). This strategy relieves feedback inhibi-
tion of FAS and results in excretion of FFAs into the growth
medium (49, 76). FFA excretion has also been accomplished by
expressing lipases to cleave FFAs from membrane-bound dia-
cylglycerol lipids (77), although this method does result in cell
lysis. Alternatively, acyl-ACP reductase reduces ACP-linked
fatty acids to the corresponding aldehydes (67, 73), a versatile
substrate that can be converted to hydrocarbons by aldehyde-
deformylating oxygenase (51), fatty alcohols by reduction (72,
73), or recycled to FFAs by oxidation (73). Alkane overproduc-
tion has been explored by overexpressing acyl-ACP reductase,
aldehyde deformylating oxygenase, and increasing availability
of acyl-ACP substrate by overexpressing acyl-ACP synthase
and FAS complex enzymes (51). Changing culture conditions
by increasing light or nutrient starvation has also been shown to
increase alka/ene production in certain strains (74). Current
production of FFAs and related compounds may be limited
more by the negative physiological effects that overproduction
has on the host rather than metabolism (76, 77). Overexpres-
sion damages the thylakoid and plasma membranes, leading to
compromised photosynthesis, increased cell permeability, and
sensitivity to mechanical shock (49, 76, 77). The use of alterna-
tive cyanobacterial production hosts where toxicity is reduced
offers one means to overcome the current limits (30).

Fuel-like isoprenoid products

Cyanobacteria encode the methylerythritol phosphate
(MEP) pathway to synthesize isoprenoid compounds. The MEP
pathway is initiated from pyruvate and GAP. Cyanobacteria use
this pathway to generate precursors for carotenoids, phytol,
sterols, and other pigments (78). Because of the low natural
carbon flux into this pathway in cyanobacteria and inherent
regulation (79 –81), it has thus far been challenging to generate
high yields of isoprenoid molecules. In some strains, flux
through the MEP pathway can be increased by raising light
intensity (79). C10–C20 isoprenoids are attractive as “green” jet
fuels due to their chemical similarity to petroleum-derived
fuels. A variety of C5–C30 isoprenoids has now been produced,
most often by integration of a single enzyme. Cyanobacteria do
not naturally encode an isoprene synthase, and integration of
this gene from plants results in heterologous formation of iso-
prene that evaporates from the growth medium (78). Gao et al.
(80) used in silico metabolic modeling to simulate flux and
optimize carbon flow through the complete MEP pathway,
leading to significantly increased production of isoprene.
Engineering of the whole pathway represents a method to
overcome the inherent regulation of native pathways that
may limit product yields. Production of larger isoprenoid
compounds has been accomplished by introducing terpene
synthases from plant or tree species to redirect isoprenoid
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intermediates to limonene, �-phellandrene, caryophyllene,
bisabolene, farnesene, and squalene (63, 82– 86).

High-value natural products

Both plants and cyanobacteria synthesize thousands of
diverse secondary metabolites, or “natural products” (NPs) (16,
17, 87, 88). Many NPs have potent bioactivities that are valuable
to medicine and agriculture (17, 89). However, synthetic biol-
ogy and metabolic engineering have only rarely been applied to
NP pathways, due to the large size of the biosynthetic gene
clusters and the complex enzymatic transformations that are
involved (16, 90, 91). Fortunately, new tools should now allow
large gene clusters to be more easily cloned (92). Because of
their metabolic similarity to plants and capacity for production
of NPs, cyanobacteria are attractive production platforms for
high-value NPs, including isoprenoids and those synthesized by
non-ribosomal peptide synthetases (NRPS) and polyketide syn-
thases (PKS). In contrast, heterotrophic expression of NRPS,
polyketide synthase, or cytochrome P450s from plants or cya-
nobacteria is challenging due to genetic and biochemical
incompatibilities (93–96). Furthermore, the biosynthesis of
plant terpenoids often relies on cytochrome P450 monooxyge-
nases that use NADPH, a cofactor that is in abundance in cya-
nobacteria but not in heterotrophs (97). Successful expression
of a membrane-bound plant cytochrome P450 in a cyanobac-
terium led to the production of caffeic acid from p-coumarate
(98). Protein engineering has also been used to channel photo-
synthesis-derived electrons from cytochrome P450s to produce
plant NPs (97, 99). Englund et al. (79) reported integrating a
partial plant pathway to produce manoyl oxide, a precursor to
the diterpenoid forskolin. Production was accomplished by
integrating two stereospecific diterpene cyclases from Coleus
(79). Production yields were improved by overexpressing a het-
erologous geranyl pyrophosphate synthase and the first enzyme
in the MEP pathway (79). Videau et al. (100) engineered lyngb-
yatoxin production by cloning and transferring the biosyn-
thetic NRPS genes from a slow-growing marine cyanobacte-
rium to a laboratory strain. This study illustrates that model
strains can serve as heterologous production hosts for marine
cyanobacterial NPs.

Concluding comments

Significant progress has been made in the last 2 decades
toward metabolic engineering of cyanobacteria. These ad-
vances are due, in part, to improvements in synthetic biology
tools and our increased understanding of the underlying cya-
nobacterial metabolism. However, although many successful
proof of concept studies have been carried out, little work is
currently being performed to commercialize the technology.
The determinants of commercial success lie in the productivity,
titer, and stability that can ultimately be attained by engineered
strains in an industrial setting. In this quest, there is a need to
experimentally determine the theoretical limit of the produc-
tion rates. Much more work is needed in the area of metabolic
engineering to direct a larger portion of the fixed carbon into
the desired end products. Most of the proof of concept studies
were performed in slow-growing laboratory strains that may
not be suitable for outdoor cultivation. Thus, identification and

development of robust, fast-growing strains that grow well in
high light and temperature and in salt or wastewater are critical.
Finally, there has been little work performed on scaling up lab-
oratory systems to production scale. The biology has come a
long way, but the engineering efforts that are required for
industrialization have not received enough interest. Low-cost
bioreactors or other systems such as open ponds need to be
improved, and technology to harvest the end products needs to
be developed. As cyanobacterial productivity improves, invest-
ments should aim to acquire the technology and infrastructure
to scale up production. Although we may still be years away
from commercial cyanobacterial cell factories, the great poten-
tial of these organisms as sustainable green production systems
should attract continued interest from metabolic engineers for
years to come.
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