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Abstract

Aim—Ecosystem stability and its link with biodiversity have mainly been studied at the local 

scale. Here we present a simple theoretical model to address the joint dependence of diversity and 

stability on spatial scale, from local to continental.

Methods—The notion of stability we use is based on the temporal variability of an ecosystem-

level property, such as primary productivity. In this way, our model integrates the well-known 

species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, 

called the invariability–area relationship (IAR).

Results—We show that the link between the two relationships strongly depends on whether the 

temporal fluctuations of the ecosystem property of interest are more correlated within than 

between species. If fluctuations are correlated within species but not between them, then the IAR 

is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial 

proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to 

explore the effects of species loss and habitat destruction on stability, and find a rich variety of 

multi-scale spatial dependencies, with marked differences between the two assumptions.

Main conclusions—The dependence of ecosystem stability on biodiversity across spatial scales 

is governed by the spatial decay of correlations within and between species. Our work provides a 

point of reference for mechanistic models and data analyses. More generally, it illustrates the 

relevance of macroecology for ecosystem functioning and stability.
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1 Introduction

Decades of ecological research have explored how features of ecosystems affect their 

stability (Ives & Carpenter, 2007; May, 1973; McCann, 2000; Pimm, 1984). Because of the 

worldwide loss of biodiversity, most studies on ecosystem stability have focused on the role 

played by biodiversity, resulting in an extensive debate on the diversity–stability 

relationship. Although this debate is not yet settled, there is now strong empirical evidence 

and theoretical support that biodiversity tends to increase the stability of ecosystem 

processes (Campbell, Murphy, & Romanuk, 2011; Gross et al., 2014; Jiang & Pu, 2009; 

Lehman & Tilman, 2000; Loreau & de Mazancourt, 2013; Tilman, Reich, & Knops, 2006).

To date, the majority of studies addressing the effects of biodiversity on ecosystem stability 

have dealt with small spatial scales, such as microcosms (Petchey, Casey, Jiang, 

McPhearson, & Price, 2002; Steiner, Long, Krumins, & Morin, 2005) and grassland 

experiments (Bai, Han, Wu, Chen, & Li, 2004; Tilman et al., 2006). Yet sustaining 

ecosystem structure, functioning and services requires a broader understanding of stability 

across a wide range of scales. Therefore, there is a current need to better understand how 

biodiversity regulates ecosystem stability at larger spatial scales that are more relevant to 

ecosystem management (Chalcraft, 2013; Isbell et al., 2017; Peterson, Allen, & Holling, 

1998).

The spatial scaling of biodiversity is one of the most studied ecological patterns 

(Rosenzweig, 1995). In particular, the species–area relationship (SAR) describes how 

species richness S changes with area A. When increasing the observation area, additional 

species can be observed; hence, the SAR is an increasing function. Typically, for a limited 

range of intermediate spatial scales, empirical SARs are well approximated by a power-law 

function, S=cAz where c and z are empirical constants. When very small and very large 

scales are also included, SARs often exhibit three distinct phases on a log-log plot: concave 

at local scales, approximately linear at regional scales and convex at continental scales 

(Hubbell, 2001; Rosenzweig, 1995; Storch, Keil, & Jetz, 2012; see also Figure 1). Various 

simple models have been proposed to explain this triphasic shape (Allen & White, 2003; 

Chave, Muller-Landau, & Levin, 2002; Palmer, 2007; Rosenzweig, 1995; Rosindell & 

Cornell, 2007).

In contrast, the spatial scaling of ecosystem stability has hardly been studied. One problem 

is that ecological stability is a multi-faceted concept, for which numerous measures have 

been proposed (Grimm & Wissel, 1997; Pimm, 1984). For many of them it is unclear how 

they can be scaled up to larger spatial scales. An exception is stability measures based on 

temporal variability. Indeed, temporal variability, defined as the coefficient of variation of 

total biomass, productivity, or another ecosystem property of interest, can be readily 

quantified for areas of different size (Wang & Loreau, 2014). Using invariability, the inverse 

of variability, as a measure of stability, Wang et al. (2017) proposed the invariability–area 

relationship (IAR) to describe the spatial scaling of ecosystem stability. They showed that, 

similarly to SARs, empirical IARs have a triphasic shape on a log-log plot, suggesting a 

connection between SARs and IARs.
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Variability-based stability, which is commonly used in empirical studies (Donohue et al., 

2016; Jiang & Pu, 2009), is strongly determined by the asynchrony of the temporal 

fluctuations of the ecosystem property (Wang & Loreau, 2014). For example, consider the 

temporal fluctuations of productivity in two forest plots. Unless the fluctuations are perfectly 

synchronous between plots, the total invariability, that is, the invariability of the sum of the 

plot productivities, is larger than the invariability of the individual plots. The more 

asynchronous, or equivalently the more decorrelated1, the productivity fluctuations between 

plots, the larger the difference between total invariability and individual plot invariabilities, 

that is, the larger the stability gain when scaling up from one to two plots. This example 

shows that the IAR is an increasing function by construction. The rate of increase of the 

IAR, that is, its slope, at a particular spatial scale is governed by the asynchrony between 

parts of the ecosystem at that scale.

Hence, the spatial scaling of invariability can be understood in terms of temporal correlation 

at different spatial scales. In this paper we consider two very different assumptions about 

these correlations. First, we assume that species differences are the main source of spatial 

asynchrony. Because different parts of the ecosystem are populated by different species, this 

leads to decorrelation between the parts, and hence increased total invariability. This 

assumption is related to statistical explanations of the local diversity–stability relationship, 

such as the portfolio effect and the insurance hypothesis (May, 1974; Thibaut & Connolly, 

2013; Tilman, Lehman, & Bristow, 1998; Yachi & Loreau, 1999). Second, we assume that 

spatial distance is at the origin of asynchrony. This can occur when the correlations of the 

environmental disturbances determine the correlations of the ecosystem fluctuations directly, 

that is, without being mediated by species differences. This mechanism is related to the 

Moran effect2 in population ecology (Hudson & Cattadori, 1999; Liebhold, Koenig, & 

Bjørnstad, 2004). Clearly, under the second assumption we expect a weaker relationship 

between diversity and stability than under the first one.

We start by introducing a minimal model that incorporates the SAR and the IAR, and use it 

to clarify their relationship. The model predicts triphasic curves for both the SAR and the 

IAR, in qualitative agreement with empirical data. Then, we implement the two correlation 

assumptions. Under the first assumption, which we call decorrelation by species turnover 

(DST), the IAR essentially coincides with the SAR. Under the second assumption, called 

decorrelation by distance (DD), the IAR is generally unrelated to the SAR. Nevertheless, 

there is a range of parameter values for which the IAR-DD closely resembles the IAR-DST. 

Next, we subject the two model variants to different scenarios of species loss and habitat 

destruction, and show that the response of stability across spatial scales differs markedly 

between the two correlation assumptions. We conclude by discussing the implications of 

these findings, and argue that our simple model could serve as a framework for more 

mechanistic models.

1We use the terms ‘synchrony’ and ‘correlation’ interchangeably. If the temporal productivity fluctuations are synchronous or 
correlated between two plots, their correlation coefficient is close to 1. If the fluctuations are asynchronous or decorrelated, the 
correlation coefficient is close to 0.
2Suppose that the temporal fluctuations of the environment are correlated between spatial locations, and that in each of these locations 
the environmental fluctuations are correlated with the abundance fluctuations of the local population. The Moran effect then refers to 
the resulting correlation of the population fluctuations between locations. Note that in the current paper this effect is not restricted to 
populations of the same species, but is also used for populations of different species.
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2 Methods

2.1 Modelling approach

We construct a minimal model that simultaneously predicts the SAR and the IAR. To predict 

the SAR, we specify the geographical ranges of the species. Indeed, if species ranges are 

given, one can readily determine how many species are present in any specific area. While 

mechanistic models determine these ranges based on more detailed ecological variables, 

such as habitat preferences, dispersal properties and interaction strengths (e.g. Matias et al., 

2014; Rybicki & Hanski, 2013), here we consider species ranges as a model input. To 

predict the IAR, we specify how the entities making up the ecosystem fluctuate through 

time. As detailed below, the intensities and spatial correlations of these fluctuations suffice 

to determine invariability in any specific area. Again, mechanistic models could explain 

these fluctuation characteristics in terms of ecological processes, such as species 

interactions, dispersal and responses to environmental disturbances. In our model, however, 

the statistical properties of these fluctuations are an assumption, not a prediction.

While this model setup is rather general, for ease of presentation we discuss it in the context 

of a more specific system. We propose to look at the species diversity of plants and the 

variability of their productivity. The productivity of individual plants varies from year to 

year, and these individual-level fluctuations add up to generate variability of the primary 

productivity at the ecosystem level. The latter, together with the spatial distribution of 

individuals and species, determine the IAR. We now describe the model. Variables and 

parameters are summarized in Table 1. Mathematical details are presented in Supporting 

Information Appendices S1–S3.

2.1.1 Spatial distribution—We consider a very large, spatially homogeneous 

landscape. First, we distribute species ranges over the landscape using a simple random 

process (a Poisson point process, see Supporting Information Appendix S1). This random 

process is spatially homogeneous, that is, in any point of the landscape the number of 

species is the same on average. Species ranges do not change over time, and are assumed to 

be circular, with the same area for all species. Next, we distribute the individuals of the 

various species over their range, using a similar spatially homogeneous random process (see 

Supporting Information Appendix S1). The positions of the plants do not change over time. 

The combination of the two random processes is characterized by three parameters: Q, the 

species range size; λS, the spatial density of species ranges (more precisely, there are on 

average λSA species range centres in an area A of the landscape); and λI, the spatial density 

of individuals of a particular species within its range (in particular, each species has λIQ 
individuals on average).

2.1.2 Temporal fluctuations—Plant productivity fluctuates through time. We assume 

that temporal mean and variance of these fluctuations are the same for all individuals. That 

is, denoting the productivity of individual i by pi, meant (pi) = mp and vart pi = σp
2 are the 

same for all individuals, and hence independent of species identity. To specify the spatial 

correlation structure of these fluctuations, we distinguish between intra- and interspecific 
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correlations, which we denote by rho_intra and rho_inter, respectively. The correlation 

coefficient of productivities pi and pj of two individuals i and j is

corrt pi, p j =
covt pi, p j

σp
2

=
ρintra di j if i and j belong to the same species

ρinter di j if i and j belong to different species,

(1)

where dij is the distance between the two individuals.

2.2 Species-area relationship (SAR)

The SAR relates the number of observed species S(A) and the observation area A. For 

simplicity, we only consider circular observation areas. The number of species S(A) can be 

easily computed for the homogeneous spatial structure of our model (see Supporting 

Information Appendix S2). The derivation proceeds in two steps. First, we determine the set 

of species for which the range overlaps with the observation area. Second, for each of these 

species, we compute the probability that at least one individual is present in the region of 

overlap, which is a necessary condition to observe the species. The result of this 

computation can be expressed as a one-dimensional integral (see Supporting Information 

Appendix S2), which can be evaluated using numerical integration. The Supporting 

Information includes R code to compute the SAR.

As we will show in the Results section, the SAR predicted by our model often consists of 

three phases. In Supporting Information Appendix S2 we derive a simple linear 

approximation for each phase, leading to a piecewise linear approximation for the entire 

SAR. We use the latter approximation, which is fully analytical, to systematically describe 

the parameter dependences of the SAR (see Table 2).

2.3 Invariability-area relationship (IAR)

Denoting the total primary productivity in observation area A by P(A), we are interested in 

the variability of P(A), which we quantify as the squared coefficient of variation,

CVt
2 P A =

vart P A

meant
2 P A

. (2)

Low variability can be seen as an indicator of a stable ecosystem. Therefore, to obtain a 

proper stability measure, we take the reciprocal of variability, which is called invariability3 

(Haegeman et al., 2016; Wang et al., 2017),

3Alternatively, one could define variability as CVt (P(A)) and invariability as 1/CVt (P(A)), that is, without the squares. This change 
would not affect the stability patterns presented in the paper. Indeed, because invariability is represented on a logarithmic scale, the 
patterns obtained with our invariability measure (with square) are equal to those obtained with the alternative invariability measure 
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I A = 1
CVt

2 P A
=

meant
2 P A

vart P A . (3)

The IAR relates the invariability I(A) and the observation area A. In Supporting Information 

Appendix S3 we explain how this invariability can be computed for our model. For the mean 

in the numerator of I(A), we have

meant P A = mpN A , (4)

where N(A) is the number of individuals in A, which is proportional to the area A (see 

Supporting Information Appendix S3). For the variance in the denominator of I(A), we have

vart P A = ∑
i

vart pi + ∑
i, j

covt pi, p j

= σp
2 N A + σp

2 ∑
i, j

same species

ρintra di j + σp
2 ∑

i, j
different species

ρinter di j
(5)

where the sums are over individuals i and j in the observation area A. In Supporting 

Information Appendix S3 we explain how the double sums in the last expression can be 

evaluated using Monte Carlo integration. The Supporting Information includes R code to 

compute the IAR.

2.3.1 Decorrelation by species turnover (IAR-DST)—While the previous analysis 

holds for arbitrary functions ρintra(d) and ρinter(d), in this paper we present results for two 

simple choices of these functions.

In the first case, we assume that individuals of the same species have perfectly correlated 

productivity fluctuations, and that individuals belonging to different species have 

independent fluctuations. This corresponds to setting ρintra(d)=1 and ρinter(d)=0.

This admittedly extreme assumption could result from strong dispersal, so that entire species 

respond in unison to the environmental disturbances. In addition, plant species are assumed 

to have specific responses to the disturbances, so that productivity fluctuations are 

uncorrelated between species. Alternatively, the decorrelation between species can be 

generated by species interactions. For example, a combination of positive and negative 

species interactions, tending to increase and decrease species correlations, respectively, 

might cancel out species correlations on average.4 In any case, under this assumption the 

(without square) up to a factor of two. We prefer to work with the squared coefficient of variation because this yields a slightly tighter 
link between the SAR and the IAR (see also footnote 6).
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fluctuation correlations across space are governed by species differences. We call this 

decorrelation by species turnover (DST), and denote the corresponding IAR by IAR-DST.

2.3.2 Decorrelation by distance (IAR-DD)—In the second case, we assume that the 

productivity correlations between any two individuals, whether they belong to the same 

species or not, only depend on the distance between the individuals (Wang et al., 2017). This 

implies that intra- and interspecific correlations are identical, ρintra(d)=ρinter(d). Temporal 

correlations decay with distance, and one of the simplest functions describing this distance 

dependence is the exponential one (Bjørnstad & Falck, 2001; Liebhold et al., 2004),

ρintra d = ρinter d = ρ0 exp − d
d0

, (6)

where ρ0 is the correlation between two nearby individuals and d0 is the characteristic 

correlation length. For distances d well below d0 the correlation is equal to ρ0 and it vanishes 

for distances d well above d0. This assumption might be suitable for plant species whose 

productivity fluctuations reflect the variation of a dominant environmental variable, for 

example precipitation. Distance d0 would then correspond to the correlation length of the 

environmental disturbances. We call this assumption decorrelation by distance (DD), and 

denote the corresponding IAR by IAR-DD.

As we will show, both the IAR-DD and the IAR-DST often have a triphasic shape. As for 

the SAR, these relationships can be approximated by a simple piecewise linear function (see 

Supporting Information Appendix S3). We use this analytical approximation to study how 

the IAR depends on the model parameters (see Table 2).

3 Results

3.1 Species-area relationship (SAR)

Our model predicts a triphasic relationship between the number of species S(A) and the 

observation area A (on a log-log plot, Figure 1). The slope switches from one at very small 

spatial scales (point a in Figure 1), to a small value at intermediate scales (point b), and 

eventually to one again at large spatial scales (point c).

This shape can be characterized analytically using a piecewise linear approximation (Figure 

1 and Table 2). The transition between the first and second phase, which we call the 

downward inflection point, occurs at area 1=λI. Recall that λI is the spatial density of 

individuals of a species within its range, so that 1=λI is the average area occupied by one 

individual in the species range. The transition between the second and third phase, which we 

call the upward inflection point, occurs at area Q, which is the typical size of a species 

range. The number of species at intermediate scales (second phase), at which the piecewise 

4The effect of species interactions on species correlations is intricate. For example, the direct effect of a competitive interaction 
between two species is to induce a negative correlation between their fluctuations (the first species thrives when the second one is rare, 
and vice versa). But indirect interactions mediated by other species also contribute to the correlation of the two species. These indirect 
contributions are multiple and can compensate for the correlation induced by the direct interaction.
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linear approximation has zero slope, is equal to λSQ, where λS is the spatial density of 

species range centres. The product λSQ can be interpreted as the average number of species 

ranges present at an arbitrary point of the landscape. Note that while the zero-slope 

assumption is sufficient for our purpose, the piecewise linear approximation could be 

improved to get non-zero estimates5 for the exponent z of the power-law fit S(A) ∝ Az.

The three phases of the SAR can be explained in terms of universal geometric effects (Allen 

& White, 2003; Storch, 2016). First, note that any individual is surrounded by an area of size 

1=λI on average in which no conspecific individual is present. Hence, if the observation area 

A is well below 1=λI, there is only a small probability of observing two individuals of the 

same species. When increasing the observation area A (but still A ≪ 1/λI), a newly observed 

individual belongs most probably to a species not previously observed (panel a of Figure 1). 

As a consequence, the number of observed species S(A) increases linearly with the number 

of observed individuals, which is proportional to the observation area A. This explains why 

the SAR has a slope of 1 at small spatial scales (but see Williamson, 2003).

Second, when the observation area A becomes comparable to 1/λI, newly observed 

individuals often belong to already observed species, and the SAR exhibits a downward 

inflection. When further increasing the observation area (A ≫ 1/λI), most of the species 

whose range overlaps with the observation area are effectively observed (that is, there is 

already a conspecific individual present in the region of overlap; see panel b of Figure 1). As 

long as the observation area A remains smaller than species range size Q, there are seldom 

new species to be observed. This explains why the SAR plateaus at intermediate scales.

Third, when the observation area A becomes comparable to the species range size Q, new 

species ranges are appearing in the observation area, and the SAR exhibits an upward 

inflection. When further increasing the area (A ≫ Q), most observed species have their 

range centres included in the observation area (panel c of Figure 1). Hence, the number of 

observed species S(A) is approximately equal to the number of range centres in the 

observation area. This number, given by λSA, is linear in A. This explains why the SAR has 

a slope of 1 at large spatial scales.

3.2 Invariability-area relationship (IAR)

Our model also predicts a triphasic relationship between ecosystem invariability I(A) and 

observation area A (on a log-log plot, Figure 2), both in the case of decorrelation by species 

turnover (IAR-DST) and in the case of decorrelation by distance (IAR-DD). The slope 

changes from 1 at very small spatial scales, to a small value at intermediate scales and again 

to 1 at large spatial scales.

The three phases can be explicitly linked to the model parameters using a piecewise linear 

approximation (Figure 2 and Table 2). This link allows us to gain insight into the underlying 

mechanisms of the IAR. In the IAR-DST, the downward and upward inflection points 

5One possibility would be to fit a triphasic piecewise linear function to the predicted SAR, constraining the slope in the first and third 
phases to 1. This would yield a non-zero slope z for the second phase. However, this approach would probably not be analytically 
tractable. Also, in contrast to the predictions of Table 2, the fitted value for the slope z would be sensitive to specific model 
assumptions, such as the assumption of speciesindependent range sizes (see also Discussion).
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coincide with those of the SAR. Moreover, for each of the three phases, invariability is equal 

to the number of species multiplied by the invariability of a single plant. The latter 

invariability is equal to mp
2 / σp

2 , where mp is the mean and σp
2 is the variance of the 

productivity of a single individual. Hence, in the piecewise linear approximation, the entire 

IAR-DST coincides with the SAR up to the constant mp
2 / σp

2 . This result can be easily 

understood. As all individuals of the same species fluctuate in perfect synchrony, the 

invariability of the entire species, or of any part of that species, is equal to mp
2 / σp

2 .

Invariability can only increase by including other species. Because different species fluctuate 

independently, invariability is additive in the number of species.6 This explains why the 

IAR-DST is proportional to the SAR.

In contrast, the IAR-DD is not directly linked to the SAR. The piecewise linear 

approximation indicates that the IAR-DD coincides with the IAR-DST in the first phase. 

However, at larger spatial scales, the IAR-DD strongly depends on two specific parameters: 

the correlation coefficient ρ0 between nearby individuals, and the area over which the 

correlations extend, D0 = πd0
2 with d0 the correlation length. In particular, invariability of the 

second and third phases is inversely proportional to ρ0 and to ρ0D0, respectively. The 

piecewise linear approximation suggests a limited dependence on the spatial distribution of 

species and individuals in the ecosystem. Only the first phase depends on parameters λS and 

Q, and only through the total density of individuals (equal to λIλSQ, see Supporting 

Information Appendix S2). A more detailed analysis shows that there is a weak dependence 

on parameters λS and Q, due to the spatial clustering of individuals in species ranges (see 

Supporting Information Appendix S3). This clustering strengthens the average correlation of 

productivity fluctuations between individuals, thus increasing the synchrony of the 

ecosystem. As a result, invariability is slightly smaller than predicted by the piecewise linear 

approximation. Overall, in the case of decorrelation by distance, the spatial distribution of 

species, which entirely determines the SAR and the IAR-DST, has only a minor effect on the 

IAR-DD.

3.3 Stability loss across spatial scales

As an application of our model, we explore how changes in the distribution of individuals 

and species affect the spatial scaling of ecosystem stability. We focus on two components of 

global change, species loss and habitat destruction, and describe their effects at multiple 

spatial scales. Obviously, we do not intend here to provide a realistic description of these 

complex phenomena and their consequences. Rather, we explore the variety of ways in 

which ecosystem stability can be affected from small to large scales.

We simulate different global change scenarios by varying species density λS, individual 

density λI and species range size Q. We monitor the effects of these variations through the 

6The temporal mean of total productivity meant(P(A)) increases linearly with the number of species. For independently fluctuating 
species, the variance of total productivity is equal the sum of the variances of species productivities. Hence, the temporal variance 

vart(P(A)) increases linearly with the number of species. As a result, invariability I A = 1/CVt
2 P A  also increases linearly with 

the number of species. Note that invariability defined as 1/CVt(P(A)) would increase as the square root of the number of species.
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invariability-area relationship, assuming either decorrelation by species turnover (IAR-DST) 

or decorrelation by distance (IAR-DD). Recall that the SAR, which is independent of the 

decorrelation assumption, is directly proportional to the IAR-DST.

The first three scenarios deal with species loss. Scenario (a) simulates species loss by 

decreasing species density λS (Figure 3a). As the remaining species are not affected, this 

causes the total density of individuals (equal to λIλSQ) to decrease as well. The IAR-DST 

decreases at all spatial scales, while the IAR-DD only decreases at the smallest scales and is 

unaffected at larger scales. This can be explained by recalling that the two IARs coincide in 

the first phase, and that the IAR-DD does not depend on the distribution of individuals and 

species in the second and third phases.

Scenario (b) simulates species loss by decreasing species density λS and simultaneously 

increasing individual density λI while keeping the total density of individuals (equal to 

λIλSQ) constant (Figure 3b). This compensation could be due to competitive release, that is, 

the extinction of a species creates the opportunity for its competitors to increase their density 

(Ives, 1995; Segre, DeMalach, Henkin, & Kadmon, 2016). The IAR-DST decreases at all 

but the smallest scales, while the IAR-DD is not affected at all. The same explanation holds 

as in the previous scenario, with the addition that for both IARs the first phase is determined 

by the total density of individuals, which is constant in this scenario.

Scenario (c) simulates species loss by decreasing species density λS and simultaneously 

increasing species range size Q (Figure 3c). This joint variation is such that the total density 

of individuals remains constant. This could occur if the extinction of species allows 

competing species to expand their range. In this scenario, the IAR-DST decreases only at 

large scales, where species density λS governs invariability. The IAR-DD does not change at 

any scale, as in the previous scenario.

The last two scenarios look at habitat destruction. Scenario (d) simulates habitat destruction 

by decreasing species range size Q (Figure 3d). As all other parameters are kept constant, 

the total number of individuals decreases. For the two decorrelation assumptions, 

invariability decreases only at small scales. Indeed, for the IAR-DST, species range size Q 
does not affect the third phase, which is determined by species density λS. For the IAR-DD, 

species range size Q does not affect the second and the third phases, which are determined 

by the correlation parameters ρ0 and D0.

Scenario (e) simulates habitat destruction by decreasing species range size Q and 

simultaneously increasing individual density λI (Figure 3e), so that the total density of 

individuals remains constant. In this case habitat destruction reduces the space available per 

individual, but does not reduce the number of individuals. In comparison with the previous 

scenario, the IARs are not affected at the smallest scales, because the first phase is 

determined by the total density of individuals.

To sum up, despite its simplicity, our model predicts a rich variety of stability responses. 

Depending on the scenario considered, stability can be affected at a narrow or broad range of 

spatial scales, and predominantly at small, intermediate or large scales.
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4 Discussion

We constructed a minimal model that is able to predict simultaneously the SAR and the IAR. 

For both relationships, we obtained a triphasic curve, in qualitative agreement with empirical 

data (Rosenzweig, 1995; Storch et al., 2012; Wang et al., 2017). It is remarkable that a 

simple model like ours is able to reproduce these patterns. Recall, however, that our model is 

not mechanistic, in the sense that it is not built on basic ecological processes. Instead, its 

starting point is simple assumptions about the spatial distribution of individuals and species 

and their temporal fluctuations. We translated these assumptions into predictions for the 

SAR and the IAR, but we did not connect them to underlying mechanisms. As a 

consequence, our model does not allow us to directly infer the ecological drivers of the SAR 

and the IAR (but see below).

In our model randomness serves a pragmatic purpose, that is, it allows us to circumvent the 

complexity inherent in spatially extended ecosystems. But this does not mean that our model 

is incompatible with models that explicitly describe this complexity. In particular, 

irrespectively of the model complexity, the SAR and the IAR are entirely determined by the 

spatial configuration of the ecosystem and its fluctuation patterns. That is, once this spatio-

temporal structure is given, the specific model details no longer matter for the SAR and IAR 

predictions. The basic idea of our model is to directly generate random instances of this 

structure, hence bypassing the underlying ecological complexity. Also, note that this model 

randomness does not refute the importance of deterministic processes (see also Coleman, 

Mares, Willig, & Hsieh, 1982).

We used the model to investigate the links between the SAR and the IAR. To demarcate the 

range of possible outcomes, we considered two assumptions about the temporal correlations 

of the ecosystem fluctuations. In the first case, called DST, we assumed that species 

differences determine spatial asynchrony. We described a tight correspondence between the 

IAR-DST and the SAR, such that any process affecting the SAR has very similar effects on 

the IAR-DST. In the second case, called DD, we assumed that spatial separation governs the 

decorrelation between ecosystem parts. We found that the IAR-DD is largely independent of 

the SAR, such that processes affecting the SAR often leave the IAR-DD unchanged. 

Nevertheless, despite this fundamental difference between the IAR-DST and the IAR-DD, 

there is a range of parameter values for which the shapes of the IAR-DD and the IAR-DST 

are similar. Indeed, the piecewise linear approximation indicates that a close match7 is 

obtained for 2D0 ≈ Q and λSQ ρ0 ≈ 1 (see Table 2). Hence, the same IAR can hide very 

different underlying processes.

We explored how simple scenarios of species loss and habitat destruction affect the IAR 

under the two decorrelation assumptions. We described a variety of stability responses, 

differing at small, intermediate and large spatial scales (Figure 3). This emphasize the 

7These two equations can be interpreted as follows. The first one imposes that the spatial range over which individuals are correlated 
is approximately the same (D0 in DD and Q in DST). The second one imposes that the correlations within this range are 
approximately equal. To see the latter, rewrite the equation as λI λSQ×ρ0 ≈λI×1. The left-hand side corresponds to the case of DD: 
λIλSQ is the total density of individuals correlated with a given individual, each of them contributing correlation ρ0. The right-hand 
side corresponds to the case of DST: λI is the density of individuals correlated with a given individual (recall that only conspecific 
individuals are correlated), each of them contributing a correlation equal to 1.
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importance of investigating stability simultaneously at multiple scales. In particular, stability 

results at the local scale should not be extrapolated blindly, as this would represent a risk of 

underestimating (e.g. scenarios (b) and (c) under assumption DST) or overestimating (e.g. 

scenario (d) under assumptions DD and DST) large-scale stability. Note that the stability 

losses range over an order of magnitude (recall that invariability is represented on a 

logarithmic scale). We also found sharp differences between the response of the IAR-DD 

and that of the IAR-DST (e.g. in scenario (b)), even though the two IAR variants coincide 

for the reference scenario (black line in Figure 3). This shows that the IAR by itself does not 

suffice to predict the stability effects of species loss.

Our model points at the missing information: the correlation functions ρintra(d) and ρinter(d). 

The more they differ, the larger the role of biodiversity in ecosystem stability, and the 

stronger the impact of species loss on the IAR. We focused on two extreme cases, in which 

the difference between ρintra(d) and ρinter(d) is either maximal (assumption DST) or zero 

(assumption DD). In real ecosystems, the correlation functions are somewhere intermediate 

between these extremes. It would be interesting to empirically evaluate ρintra(d) and ρinter(d). 

This should be possible from species-level community data consisting of time series at 

multiple spatial locations. This analysis would enable us to determine to what extent species 

diversity contributes to asynchrony in the ecosystem, and hence to its invariability. The 

answer, which most probably will depend on spatial scale, would be an indicator of the 

ecosystem’s vulnerability to species loss, regardless of the detailed processes governing the 

ecosystem.

Apart from the specific choices for the correlation functions, our model is built on several 

other simplifying assumptions. In particular, we assumed a strong degree of spatial 

homogeneity and species symmetry. Because the theoretical SAR and IAR are defined as 

averages over the landscape [e.g. the number of species S(A) is the average over all circular 

areas of size A], we do not expect that relaxing these assumptions will fundamentally 

modify our results. For example, if range sizes are allowed to differ between species, it 

would suffice to reinterpret parameter Q as the average range size (Allen & White, 2003). 

This need not hold for range size distributions with a long tail (e.g. a power-law 

distribution), which might also affect the slope of the SAR and the IAR at large spatial 

scales (see also the power-law decay of correlations considered by Wang et al., 2017). Other 

model parameters can be made spatially heterogeneous and species dependent without 

qualitatively affecting the results.

For concreteness, we formulated the model in terms of plant productivity. However, our 

approach can be applied to other ecosystem properties and other taxonomic groups. For 

example, when considering mobile rather than sessile organisms, the movement of 

individuals introduces an additional contribution to ecosystem variability. A preliminary 

analysis shows that the corresponding IARs are similar to those studied in the paper. Also, 

the model interpretation given in the paper can be adapted to other levels of organization. 

For example, we assumed that individuals are the basic fluctuating entities, but in other 

contexts it might be more relevant to consider populations and their abundance fluctuations. 

Similarly, we assumed that species are the main entities that control decorrelation (at least 

under the DST assumption), but this role could also be played by functional groups, for 
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example. In each of these interpretations, the effect of diversity on stability across spatial 

scales depends on the relationship between appropriately redefined correlation functions 

ρintra(d) and ρinter(d).

In summary, although not mechanistic, our modelling approach can accommodate a wide 

range of spatially structured ecosystems. Clearly, the next step is to connect this framework 

with ecological mechanisms. This would allow us to explain the driving parameters of our 

model, in particular ρintra(d) and ρintra(d), in terms of ecological processes, such as habitat 

selection, resistance to environmental disturbances and dispersal (for a similar approach in a 

metacommunty setting, see Wang & Loreau, 2016). Moreover, we would be able to 

mechanistically construct global change scenarios, rather than postulating them, as we were 

forced to do in this paper. Indeed, species loss and habitat destruction might affect various 

parameters of our model (e.g. mp, σp
2 and the correlation functions), and more detailed 

models are needed to identify these multiple and interdependent effects (see Rybicki & 

Hanski, 2013 and Matias et al., 2014 for analogous work on the SAR). Importantly, even for 

these more complex models, invariability is eventually determined by the spatial correlations 

of the fluctuating entities. Therefore, our approach can provide an integrative perspective on 

the spatial scaling of ecosystem stability and its link with biodiversity.
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Figure 1. 
Our model predicts a triphasic species–area relationship (SAR). A log-log plot of number of 

species S(A) against observation area A has three distinct phases. Top panel: Exact solution 

of model (thick green line) and piecewise linear approximation (thin green line). The shaded 

region indicates the set of possible SARs for a fixed configuration of individuals. For points 

on the upper boundary, each individual belongs to a different species (see also Storch, 2016); 

for points on the lower boundary, all individuals belong to the same species. Bottom panel 

(a): In the first phase almost all individuals (represented by dots) in the observation area 
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belong to different species (represented by colours). Bottom panel (b): In the second phase 

the observed species have many individuals in the observation area. Some species range 

boundaries (represented by lines) are visible in the observation area. For clarity, only 20% of 

the species are shown. Bottom panel (c): In the third phase, the species ranges of the 

observed species (represented by circles) are for the most part included in the observed area. 

For clarity, only 10% of the species are shown. Parameter values: λI = 10, λS = 0.005, Q = 

104
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Figure 2. 
Our model predicts triphasic invariability–area relationships (IARs). We plot ecosystem 

invariability I(A) against observation area A under two decorrelation assumptions. Left 

panel: Decorrelation by species turnover (IAR-DST; in red). Exact model solution in thick 

red line and piecewise linear approximation in thin red line. Right panel: Decorrelation by 

distance (IAR-DD; in blue). Exact model solutions in thick blue line and piecewise linear 

approximations in thin blue line. The species–area relationship (dashed black line) is 

identical in the two panels, and coincides with the thick green line in Figure 1. The shaded 

region indicates the set of possible IARs for a fixed configuration of individuals. For points 

on the upper boundary, all individuals have independent fluctuations; for points on the lower 

boundary, all individuals have perfectly correlated fluctuations. Parameter values: λI=10, 

λS=0.005, Q=104, mp = 1, σp
2 = 1, ρ0=0.1, D0=105
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Figure 3. 
Simple scenarios of global change affect stability in various ways across spatial scales. We 

consider five scenarios: (a) Species loss alone, (b) species loss associated with an increase in 

population density, (c) species loss associated with an increase in range size, (d) habitat 

destruction alone and (e) habitat destruction associated with an increase in population 

density. Left column: illustration of simulated landscape. Middle column: Decorrelation by 

species turnover (IAR-DST; in red). Right column: Decorrelation by distance (IAR-DD; in 

blue). Reference IARs for the initial landscape (black line) are the same across scenarios. 
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Parameter values of the reference IARs are the same as in Figure 2, except ρ0=1/λSQ=0.02 

and D0=Q/2=5103. Parameter changes are (a) λS → λS/γ, (b) λS → λS/γ and λI → γλI, 

(c) λS → λS/γ and Q → γQ, (d) Q → Q/γ, and (e) Q → Q/γ and λI → γλI, where the 

factor γ is equal to γ = 4 for the curve closest to the reference, and equal to γ = 16 for the 

curve furthest from the reference
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Table 1

List of model variables and parameters

Symbol Meaning

Variables

   A Size of observation area

   N(A) Number of individuals in observation area A

   S(A) Number of species in observation area A

   P(A) Total productivity of individuals in observation area A

   I(A) Invariability of productivity P(A), that is, the reciprocal of the squared coefficient of variation of P(A)

Parameters

   λI Density of individuals within species range, that is, for a given species the density of individuals belonging to this species in the 
range of this species; units of area–1

   λS Density of species range centres; units of area–1

   Q Size of species range

   λIQ Average number of individuals per species

   λSQ For a given point of the landscape the average number of species ranges containing this point

   λIλSQ Total density of individuals, that is, the density of individuals all species confounded; units of area–1

   mp Mean productivity of an individual

   σρ
2 Variance of productivity of an individual

   ρintra(d) Correlation coefficient of the productivity fluctuations of two individuals belonging to the same species, that is, intraspecific 
correlation

   ρinter(d) Correlation coefficient of the productivity fluctuations of two individuals belonging to different species, that is, interspecific 
correlation

   ρo Correlation coefficient of the productivity fluctuations of two nearby individuals; specific to IAR-DD

   Do Correlation area, that is, for a given individual the area in which other individuals have productivity fluctuations correlated with 
this individual; specific to IAR-DD

IAR-DD = invariability–area relationship with decorrelation by distance.
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Table 2

Predictions of the piecewise linear approximation. The species-area relationship (SAR) and the two 

invariability–area relationships [IAR with decorrelation by species turnover (IAR-DST) and IAR with 

decorrelation by distance (IAR-DD)] are approximated by three line segments. The first one (‘First phase’ 

column) is linear in the area A, the second one (‘Second phase’ column) is constant, and the third one (‘Third 

phase’ column) is again linear in the area A. The downward inflection point is approximated as the 

intersection of the first and second line segment; the corresponding area is given in the ‘Downward’ column. 

The upward inflection point is approximated as the intersection of the second and third line segment; the 

corresponding area is given in the ‘Upward’ column. Note that both IAR-DST and IAR-DD are proportional 

to the productivity invariability of a single plant, I1 = mρ
2/ σρ

2.

First phase Downward Second phase Upward Third phase

SAR λIλSQ×A 1/λI λSQ Q λS×A

IAR-DST I1λIλSQ×A 1/λI I1λSQ Q I1λS×A

IAR-DD I1λIλSQ×A 1/ρoλIλSQ I1/ρo 2Do I1/2ρoDo×A
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